首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Death signaling provided by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS) are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC), a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI)+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1), and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.  相似文献   

2.
Pancreatic cancer remains a devastating malignancy with a poor prognosis and is largely resistant to current therapies. To understand the resistance of pancreatic tumors to Fas death receptor-induced apoptosis, we investigated the molecular mechanisms of Fas-activated survival signaling in pancreatic cancer cells. We found that knockdown of the Fas-associated protein with death domain (FADD), the adaptor that mediates downstream signaling upon Fas activation, rendered Fas-sensitive MiaPaCa-2 and BxPC-3 pancreatic cells resistant to Fas-induced apoptosis. By contrast, Fas activation promoted the survival of the FADD knockdown MiaPaCa-2 and BxPC-3 cells in a concentration-dependent manner. The pharmacological inhibitor of ERK, PD98059, abrogated Fas-promoted cell survival in FADD knockdown MiaPaCa-2 and BxPC-3 cells. Furthermore, increased phosphorylation of Src was demonstrated to mediate Fas-induced ERK activation and cell survival. Immunoprecipitation of Fas in the FADD knockdown cells identified the presence of increased calmodulin, Src, and phosphorylated Src in the Fas-associated protein complex upon Fas activation. Trifluoperazine, a calmodulin antagonist, inhibited Fas-induced recruitment of calmodulin, Src, and phosphorylated Src. Consistently, trifluoperazine blocked Fas-promoted cell survival. A direct interaction of calmodulin and Src and their binding site were identified with recombinant proteins. These results support an essential role of calmodulin in mediating Fas-induced FADD-independent activation of Src-ERK signaling pathways, which promote survival signaling in pancreatic cancer cells. Understanding the molecular mechanisms responsible for the resistance of pancreatic cells to apoptosis induced by Fas-death receptor signaling may provide molecular insights into designing novel therapies to treat pancreatic tumors.  相似文献   

3.
4.
Pancreatic cancer, the fourth leading cause of cancer-related death in the United States, is resistant to current chemotherapies. Therefore, identification of different pathways of cell death is important to develop novel therapeutics. Our previous study has shown that triptolide, a diterpene triepoxide, inhibits the growth of pancreatic cancer cells in vitro and prevents tumor growth in vivo. However, the mechanism by which triptolide kills pancreatic cancer cells was not known, hence, this study aimed at elucidating it. Our study reveals that triptolide kills diverse types of pancreatic cancer cells by two different pathways; it induces caspase-dependent apoptotic death in some cell lines and death via a caspase-independent autophagic pathway in the other cell lines tested. Triptolide-induced autophagy requires autophagy-specific genes, atg5 or beclin 1 and its inhibition results in cell death via the apoptotic pathway, whereas inhibition of both autophagy and apoptosis rescues triptolide-mediated cell death. Our study shows for the first time that induction of autophagy by triptolide has a pro-death role in pancreatic cancer cells. Since triptolide kills diverse pancreatic cancer cells by different mechanisms, it makes an attractive chemotherapeutic agent for future use against a broad spectrum of pancreatic cancers.Key words: pancreatic cancer, triptolide, apoptosis, caspase-3Pancreatic adenocarcinoma is one of the most lethal human malignancies. It is the fourth leading cause of cancer-related death in the United States. The five-year survival rate for pancreatic cancer is estimated to be <5% due to its aggressive growth, metastasis and resistance to radiation and most systemic chemotherapies. Hence, efforts are ongoing to understand the pathobiology of pancreatic cancer to develop innovative and effective therapies against it. A promising candidate for future therapeutic use against pancreatic cancer is a diterpene triepoxide, triptolide. Our previous studies show that triptolide inhibits the growth of pancreatic cancer cells in vitro and prevents tumor growth in vivo. Since the mechanism by which triptolide kills pancreatic cancer cells was not known, we decided to elucidate it.The K-ras, p53, p16 and DPC4 genes are the most frequently altered genes in pancreatic adenocarcinoma. In this study we have used diverse pancreatic cancer cell lines, MiaPaCa-2, Capan-1, S2-013 and S2-VP10 cells, which have mutations in all the above-mentioned genes and BxPC-3 and Hs766T cells, which have mutations in the p53, p16 and DPC4 genes, but have a wild-type K-ras gene. The treatment of all the cell lines with triptolide results in a significant time- and dose-dependent decrease in cell viability, independent of cell cycle arrest. After treatment with triptolide, only MiaPaCa-2, Capan-1 and BxPC-3 cells show an increase in the apoptosis parameters: cytochrome c release from mitochondria into the cytosol, caspase-3 activation and phosphatidylserine externalization. In contrast to this, S2-013, S2-VP10 and Hs766T cells show an induction of autophagy: an increase in LC3-II levels (by immunoblotting and immufluorescence), increase in acridine orange-positive cells, inhibition of the PtdIns3K/Akt/mTOR pathway and induction of the ERK1/2 pathway. Also, none of the cell lines tested show necrosis as evidenced by the absence of the release of lactate dehydrogenase. These results indicate that triptolide induces apoptosis in MiaPaCa-2, Capan-1 and BxPC-3 cells, whereas it induces autophagy in S2-013, S2-VP10 and Hs766T cells.Since the role of autophagy in cancer was controversial we investigated whether triptolide-induced autophagy has a prosurvival or a pro-death role. As autophagy-associated cell death is independent of caspase-3, we tested the effect of triptolide on pancreatic cancer cells in the absence of caspase-3. Treatment of cells with triptolide post-caspase-3 knockdown shows a significant rescue of cell viability only in MiaPaCa-2, but not S2-013 or S2-VP10 cells. This indicates that in contrast to MiaPaCa-2, triptolide-mediated cell death in S2-013 and S2-VP10 cells is independent of caspase-3. Next, we tested the role of autophagy in triptolide-mediated cell death in pancreatic cancer cells. In spite of a knockdown of autophagy-specific genes (atg5 and beclin 1), treatment of S2-013 and S2-VP10 cells with triptolide show a significant decline in cell viability, which is comparable to the cells treated with triptolide in the presence of autophagy genes. Subsequently we show that death in the absence of autophagy-specific genes is due to the utilization of an alternate cell death pathway, apoptosis. Furthermore, in the absence of both autophagy-specific and apoptosis-specific genes, triptolide-mediated cell death is rescued in S2-013 and S2-VP10 cells. Thus, these results confirm that triptolide-induced autophagy has a pro-death role in S2-013 and S2-VP10 cells and that these cells do not have a defect in the apoptotic machinery; however, they respond to triptolide by activating the autophagic pathway instead of the apoptotic pathway. Our studies also reveal the presence of a crosstalk between the two cell death pathways, apoptosis and autophagy, in pancreatic cancer cells.In conclusion, our study shows for the first time that triptolide induces autophagy in pancreatic cancer cells. It sheds light on the fundamental question as to whether autophagy is protective or causes cell death, proving convincingly that induction of autophagy causes cell death of some pancreatic cancer cells. Although a basal level of autophagy is necessary to maintain cellular homeostasis, its prosurvival role can be switched into a cell death mechanism if the amplitude of autophagy increases above a threshold level which is incompatible with viability, as seen in S2-013, S2-VP10 and Hs766T cells after triptolide treatment. Furthermore, there exists a crosstalk between apoptosis and autophagy in S2-013 and S2-VP10 cells; either both pathways function independently to kill the cells, with autophagy being the preferred pathway or autophagy antagonizes apoptosis and hence apoptosis is seen only after inhibiting autophagy. Although there is no direct correlation between the selection of cell death pathway in response to triptolide and the genotype of the cell lines, the choice of autophagic cell death pathway could depend on the metastatic potential of the cells; S2-013, S2-VP10 and Hs766T cell lines being more metastatic than the others, which merits further investigation. In conclusion, the ability of triptolide to induce cell death in diverse pancreatic cancer cells by either mechanism makes it an attractive chemotherapeutic agent against a broad spectrum of pancreatic cancers.  相似文献   

5.
In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1), an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells.  相似文献   

6.
We present immunohistochemical evidence that the mTOR/p70s6k pathway is activated in pancreatic tumors and show that the mTOR inhibitor and rapamycin analog CCI-779 potently suppresses the proliferation of pancreatic cancer cells. Consistent with a recent study, CCI-779 increased c-Jun phosphorylation (Ser63) in a dose- and time-dependent manner, and induced apoptosis in p53-defective BxPC-3 cells. In contrast to the study, however, we observed that CCI-779 concomitantly increased c-Jun protein levels and that its ability to induce apoptosis might not require the activated c-Jun. Furthermore, CCI-779 neither induced c-Jun phosphorylation in other p53-defective pancreatic cancer cells (MiaPaCa-2) nor inhibited their proliferation. c-Jun, in fact, appeared to be partly responsible for the resistance of MiaPaCa-2 cells to CCI-779. Together, these results indicate a complex role for c-Jun in cellular responses to CCI-779 and provide an important basis for investigating CCI-779 further as a potential therapeutic agent for pancreatic tumors.  相似文献   

7.
Caspase-1 (interleukin-1beta-converting enzyme) is reported to play an important role in the regulation of apoptosis. We investigated the inhibition of caspase-1 by the cell permeable caspase-1 inhibitor Ac-AAVALLPAVLLALLAP-YVAD.CHO in pancreatic carcinoma cells. Inhibition of caspase-1 induced a non-apoptotic/"necrotic-like" cell death in AsPC-1, BxPC-3, MiaPaCa-2 and Panc-1 cells. Expression levels of bcl-2 and bax were up-regulated in caspase-1 inhibitor-treated cells while that of bcl-x(L) remained unaltered. Our observations support our previous findings that caspase-1 is potentially involved in anti-apoptotic processes in pancreatic carcinoma.  相似文献   

8.
目的:观察西达本胺对胰腺癌细胞BxPC-3和PANC-1生长抑制及诱导细胞凋亡作用,探讨西达本胺抗胰腺癌的机制。方法:西达本胺处理BxPC-3和PANC-1细胞后,用流式细胞术检测细胞的凋亡率,用罗丹明123和DCFH—DA染色方法测定细胞线粒体膜跨膜电位变化和活性氧(ROS)的产生,用Western印迹检测Bcl-2家族和γH2AX蛋白表达的变化。结果:西达本胺对胰腺癌细胞BxPC-3和PANC-1具有生长抑制和诱导细胞凋亡的作用,且呈时间和剂量依赖关系;处理72h后,胰腺癌细胞内ROS产生增强导致DNA损伤发生,且线粒体跨膜电位明显下降;促凋亡蛋白Bax的表达,抑制抑凋亡蛋白Bcl-2和Mcl—1的表达。结论:西达本胺具有抑制胰腺癌细胞增殖,诱导细胞凋亡的作用;西达本胺增强胰腺癌细胞内ROS的产生并导致DNA损伤,最终诱导细胞凋亡的发生。  相似文献   

9.
Negatively charged phosphatidylserine (PS) and sialic acid-containing glycosphingolipids (GM1) were observed to be over represented on the cell membranes of pancreatic cancer cells (BxPC-3) as opposed to normal pancreatic cells. Cationic liposomes (CL) were also found to selectively accumulate into the negatively charged cell membranes of BxPC-3 cells and inhibited their growth but have no effect on the viability of normal pancreatic cells. CL induced apoptosis in BxPC-3 cells via activation of caspase-3, -8, and -9 and mitochondrial events and inhibited tumor enlargement in xenograft mouse models of pancreatic cancer.  相似文献   

10.
雷公藤甲素诱导胰腺癌细胞凋亡   总被引:2,自引:0,他引:2  
目的:观察雷公藤甲素对胰腺癌细胞BxPC-3和PANC-1生长抑制及诱导细胞凋亡作用,探讨雷公藤甲素抗胰腺癌的机制。方法:雷公藤甲素处理BxPC-3和PANC—1细胞后,用M1rr法检测细胞的生长抑制,用流式细胞术检测细胞的凋亡率,用罗丹明123和DCFH—DA染色方法测定细胞线粒体膜跨膜电位变化和活性氧(ROS)的产生,用Western印迹检测Bcl-2、Bax蛋白表达的变化。结果:雷公藤甲素对胰腺癌细胞BxPC-3和PANC—1具有生长抑制和诱导细胞凋亡的作用,且呈时间和剂量依赖关系;处理72h后,胰腺癌细胞线粒体跨膜电位明显下降,Bax表达上调,Bcl-2表达下降。结论:雷公藤甲素能有效抑制胰腺癌细胞增殖,通过增强线粒体通透性诱导细胞凋亡。  相似文献   

11.
Checkpoint kinase 2 (CHK2) plays pivotal function as an effector of cell cycle checkpoint arrest following DNA damage. Recently, we found that co‐treatment of NSC109555 (a potent and selective CHK2 inhibitor) potentiated the cytotoxic effect of gemcitabine (GEM) in pancreatic cancer MIA PaCa‐2 cells. Here, we further examined whether NSC109555 could enhance the antitumour effect of GEM in pancreatic adenocarcinoma cell lines. In this study, the combination treatment of NSC109555 plus GEM demonstrated strong synergistic antitumour effect in four pancreatic cancer cells (MIA PaCa‐2, CFPAC‐1, Panc‐1 and BxPC‐3). In addition, the GEM/NSC109555 combination significantly increased the level of intracellular reactive oxygen species (ROS), accompanied by induction of apoptotic cell death. Inhibition of ROS generation by N‐acetyl cysteine (NAC) significantly reversed the effect of GEM/NSC109555 in apoptosis and cytotoxicity. Furthermore, genetic knockdown of CHK2 by siRNA enhanced GEM‐induced apoptotic cell death. These findings suggest that inhibition of CHK2 would be a beneficial therapeutic approach for pancreatic cancer therapy in clinical treatment.  相似文献   

12.
KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.  相似文献   

13.
Colchicine, a natural product of Colchicum autumnae currently used for gout treatment, is a tubulin targeting compound which inhibits microtubule formation by targeting fast dividing cells. This tubulin-targeting property has lead researchers to investigate the potential of colchicine and analogs as possible cancer therapies. One major study conducted on an analogue of allocolchicine, ZD 6126, was halted in phase 2 clinical trials due to severe cardio-toxicity associated with treatment. This study involves the development and testing of novel allocolchicine analogues that hold non-toxic anti-cancer properties. Currently we have synthesized and evaluated the anti-cancer activities of two analogues; N-acetyl-O-methylcolchinol (NSC 51046 or NCME), which is structurally similar to ZD 6126, and (S)-3,8,9,10-tetramethoxyallocolchicine (Green 1), which is a novel derivative of allocolchicine that is isomeric in the A ring. NSC 51046 was found to be non-selective as it induced apoptosis in both BxPC-3 and PANC-1 pancreatic cancer cells and in normal human fibroblasts. Interestingly, we found that Green 1 was able to modestly induce pro-death autophagy in these pancreatic cancer cells and E6-1 leukemia cells but not in normal human fibroblasts. Unlike colchicine and NSC 51046, Green 1 does not appear to affect tubulin polymerization indicating that it has a different molecular target. Green 1 also caused increased reactive oxygen species (ROS) production in mitochondria isolated from pancreatic cancer cells. Furthermore, in vivo studies revealed that Green 1 was well tolerated in mice. Our findings suggest that a small change in the structure of colchicine has apparently changed the mechanism of action and lead to improved selectivity. This may lead to better selective treatments in cancer therapy.  相似文献   

14.

Background

MicroRNAs (miRNAs) are reportedly involved in pancreatic ductal adenocarcinoma (PDAC) development. Current methods do not allow us to reliably monitor miRNA function. Asensors are adeno-associated virus (AAV) vector miRNA sensors for real-time consecutive functional monitoring of miRNA profiling in living cells.

Methods

miR-200a, -200b, -21, -96, -146a, -10a, -155, and -221 in three PDAC cell lines (BxPC-3, CFPAC-1, SW1990), pancreatic epithelioid carcinoma cells (PANC-1), and human pancreatic nestin-expressing cells (hTERT-HPNE) were monitored by Asensors. Subsequently, the real-time consecutive functional profile of all miRNAs was evaluated.

Results

Selected miRNAs were detectable in all cell lines with high sensitivity and reproducibility. In the three PDAC cell lines, BxPC-3, CFPAC-1, and SW1990, the calibrated signal unit of the eight miRNAs Asensors was significantly lower than that of the Asensor control. However, in PANC-1 cells, miR-200a and -155 showed upregulation of target gene expression at 24 hours after infection with the sensors; at 48 hours, miR-200b and -155 displayed upregulation of reporter expression; and at 72 hours, reporter gene expression was upregulated by miR-200a and -200b. The result that miRNA could upregulate gene expression was further confirmed in miR-155 of hTERT-HPNE cells. Furthermore, miRNA activity varied among cell/tissue types and time.

Conclusion

It is possible that miRNA participates in the pathophysiology of pancreatic cancer, but the current popular methods do not accurately reveal the real-time miRNA function. Thus, this report provided a convenient, accurate, and sensitive approach to miRNA research.  相似文献   

15.
16.
17.
L Shen  SH Kim  CY Chen 《PloS one》2012,7(7):e40435
Pancreatic cancer is a devastating human malignancy and gain of functional mutations in K-ras oncogene is observed in 75%-90% of the patients. Studies have shown that oncogenic ras is not only able to promote cell growth or survival, but also apoptosis, depending upon circumstances. Using pancreatic cancer cell lines with or without expressing mutated K-ras, we demonstrated that the inhibition of endogenous PKC activity sensitized human pancreatic cancer cells (MIA and PANC-1) expressing mutated K-ras to apoptosis, which had no apoptotic effect on BxPC-3 pancreatic cancer cells that contain a normal Ras as well as human lung epithelial BAES-2B cells. In this apoptotic process, the level of ROS was increased and PUMA was upregulated in a p73-dependent fashion in MIA and PANC-1 cells. Subsequently, caspase-3 was cleaved. A full induction of apoptosis required the activation of both ROS- and p73-mediated pathways. The data suggest that PKC is a crucial factor that copes with aberrant K-ras to maintain the homeostasis of the pancreatic cancer cells harboring mutated K-ras. However, the suppression or loss of PKC disrupts the balance and initiates an apoptotic crisis, in which ROS and p73 appear the potential, key targets.  相似文献   

18.
19.
20.
目的:化疗是晚期胰腺癌的主要治疗手段,但临床效果有限。为提高胰腺癌化疗效果,本研究将化疗药物奥沙利铂(OXA)联合肿瘤全细胞抗原负载的树突状细胞(DC)体外作用于胰腺癌BxPC-3细胞系,观察对其增殖的影响。方法:自健康人外周血中分离培养DC和T细胞。反复冻融BxPC.3细胞,使其裂解并提取全细胞抗原后致敏DC,再以DC激活T细胞。ELISA检测T细胞培养上清中IL-2、IL-4、IL-10和IFN-g的含量。将T细胞与不同浓度的OXA联合作用于BxPC-3细胞,MTT法检测杀伤率。结果:负载BxPC.3全细胞抗原的DC能显著激活T细胞使其成为效应性T细胞,并使其分泌IL-2和IFN—Y。不同浓度的OXA与效应性T细胞联合作用于BxPC.3细胞可明显抑制其增殖,且杀伤效果与OXA的浓度呈正相关。结论:负载BxPC-3全细胞抗原的DC可诱导出抗肿瘤的效应性T细胞,联合OXA能显著提高对BxPC-3细胞的杀伤作用。生物治疗联合化疗抑制胰腺癌细胞增殖的作用明显,具有较好的临床应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号