共查询到20条相似文献,搜索用时 0 毫秒
1.
Qi Zhang Bohan Cheng Haixu Jiang Huili Zhang Hui Li 《Acta biochimica et biophysica Sinica》2022,(1):55-63
Previous studies have reported that the N6-methyladenosine demethylase ALKBH5 can regulate adipogenesis in humans.However,its function in birds remains unclear.... 相似文献
2.
3.
Sheu TJ Schwarz EM Martinez DA O'Keefe RJ Rosier RN Zuscik MJ Puzas JE 《The Journal of biological chemistry》2003,278(1):438-443
The formation of new bone during the process of bone remodeling occurs almost exclusively at sites of prior bone resorption. In an attempt to discover what regulatory pathways are utilized by osteoblasts to effect this site-specific formation event we probed components of an active bone resorption surface with an osteoblast phage expression library. In these experiments primary cultures of rat osteoblasts were used to construct a phage display library in T7 phage. Tartrate-resistant acid phosphatase (type V) (TRAP) was used as the bait in a biopanning procedure. 40 phage clones with very high affinity for TRAP were sequenced, and of the clones with multiple consensus sequences we identified a regulatory protein that modulates osteoblast differentiation. This protein is the TGFbeta receptor-interacting protein (TRIP-1). Our data demonstrate that TRAP activation of TRIP-1 evokes a TGFbeta-like differentiation process. Specifically, TRIP-1 activation increases the activity and expression of osteoblast alkaline phosphatase, osteoprotegerin, collagen, and Runx2. Moreover, we show that TRAP interacts with TRIP intracellularly, that activation of the TGFbeta type II receptor by TRIP-1 occurs in the presence of TRAP and that the differentiation process is mediated through the Smad2/3 pathway. A final experiment demonstrates that osteoblasts, when cultured in osteoclast lacunae containing TRAP, rapidly and specifically differentiate into a mature bone-forming phenotype. We hypothesize that binding to TRAP may be one mechanism by which the full osteoblast phenotype is expressed during the process of bone remodeling. 相似文献
4.
5.
6.
Kermer P Krajewska M Zapata JM Takayama S Mai J Krajewski S Reed JC 《Cell death and differentiation》2002,9(4):405-413
Bag 1 acts as a co-chaperone for Hsp70/Hsc70. We report here that stable over-expression of Bag1 in immortalized neuronal CSM14.1 cells prevents death following serum deprivation. Bag1 over-expression slowed the proliferative rate of CSM14.1 cells, resulted in increased levels of phospo-MAP kinases and accelerated neuronal differentiation. Immunocytochemistry revealed mostly nuclear localization of Bag1 protein in these cells. However, during differentiation in vitro, Bag1 protein shifted from predominantly nuclear to mostly cytosolic in CSM14.1 cells. To explore in vivo parallels of these findings, we investigated Bag1 expression in the developing mouse nervous system using immunohistochemical methods. Early in brain development, Bag1 was found in nuclei of neuronal precursor cells, whereas cytosolic Bag1 staining was observed mainly after completion of neuronal precursor migration and differentiation. Taken together, these findings raise the possibility that the Bag1 protein is expressed early in neurogenesis in vivo and is capable of modulating neuronal cell survival and differentiation at least in part from a nuclear location. 相似文献
7.
8.
Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2 总被引:1,自引:0,他引:1
Porter LA Dellinger RW Tynan JA Barnes EA Kong M Lenormand JL Donoghue DJ 《The Journal of cell biology》2002,157(3):357-366
The decision for a cell to self-replicate requires passage from G1 to S phase of the cell cycle and initiation of another round of DNA replication. This commitment is a critical one that is tightly regulated by many parallel pathways. Significantly, these pathways converge to result in activation of the cyclin-dependent kinase, cdk2. It is, therefore, important to understand all the mechanisms regulating cdk2 to determine the molecular basis of cell progression. Here we report the identification and characterization of a novel cell cycle gene, designated Speedy (Spy1). Spy1 is 40% homologous to the Xenopus cell cycle gene, X-Spy1. Similar to its Xenopus counterpart, human Speedy is able to induce oocyte maturation, suggesting similar biological characteristics. Spy1 mRNA is expressed in several human tissues and immortalized cell lines and is only expressed during the G1/S phase of the cell cycle. Overexpression of Spy1 protein demonstrates that Spy1 is nuclear and results in enhanced cell proliferation. In addition, flow cytometry profiles of these cells demonstrate a reduction in G1 population. Changes in cell cycle regulation can be attributed to the ability of Spy1 to bind to and prematurely activate cdk2 independent of cyclin binding. We demonstrate that Spy1-enhanced cell proliferation is dependent on cdk2 activation. Furthermore, abrogation of Spy1 expression, through the use of siRNA, demonstrates that Spy1 is an essential component of cell proliferation pathways. Hence, human Speedy is a novel cell cycle protein capable of promoting cell proliferation through the premature activation of cdk2 at the G1/S phase transition. 相似文献
9.
Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation
Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases. 相似文献
10.
11.
Vaishali B. Patel Yingjie Yu Jayanta K. Das Bhaumik B. Patel Adhip P.N. Majumdar 《Biochemical and biophysical research communications》2009,388(4):752-40341
Schlafen-3 (Slfn-3), a novel gene, has been shown to be a negative regulator of proliferation. The current investigation was undertaken to determine whether Slfn-3 might play a role in regulating cellular differentiation. Butyric acid, a short chain fatty acid, which induced differentiation of intestinal cells as evidenced by increased alkaline phosphatase (ALP) activity in the rat small intestinal IEC-6 cells, also produced a marked increase in Slfn-3 expression. Furthermore, overexpression of Slfn-3 caused stimulation of ALP activity in IEC-6 cells, which was exacerbated by butyrate. On the other hand, downregulation of Slfn-3 by slfn-3-si-RNA greatly attenuated the butyrate-mediated induction of differentiation of IEC-6 cells. Additionally, we observed that increased expression of Slfn-3 in colon cancer HCT-116 cells stimulated TGF-β expression and modulated expression of its downstream effectors as evidenced by increased expression of p27kip1 and downregulation of CDK-2. In addition, Slfn-3 increases E-cadherin expression but downregulates β-catenin. In conclusion, our data show that Slfn-3 plays a critical role in regulating intestinal mucosal differentiation. Furthermore our data also show that TGF-β signaling pathway plays an important role in mediating slfn-3 induced differentiation. 相似文献
12.
The estrogen-responsive B box protein: a novel regulator of keratinocyte differentiation 总被引:2,自引:0,他引:2
Beer HD Munding C Dubois N Mamie C Hohl D Werner S 《The Journal of biological chemistry》2002,277(23):20740-20749
13.
Yuan Si Kazuki Inoue Katsuhide Igarashi Jun Kanno Yuuki Imai 《Biochemical and biophysical research communications》2013
Chondrocyte differentiation is controlled by various regulators, such as Sox9 and Runx2, but the process is complex. To further understand the precise underlying molecular mechanisms of chondrocyte differentiation, we aimed to identify a novel regulatory factor of chondrocyte differentiation using gene expression profiles of micromass-cultured chondrocytes at different differentiation stages. From the results of microarray analysis, the autoimmune regulator, Aire, was identified as a novel regulator. Aire stable knockdown cells, and primary cultured chondrocytes obtained from Aire−/− mice, showed reduced mRNA expression levels of chondrocyte-related genes. Over-expression of Aire induced the early stages of chondrocyte differentiation by facilitating expression of Bmp2. A ChIP assay revealed that Aire was recruited on an Airebinding site (T box) in the Bmp2 promoter region in the early stages of chondrocyte differentiation and histone methylation was modified. These results suggest that Aire can facilitate early chondrocyte differentiation by expression of Bmp2 through altering the histone modification status of the promoter region of Bmp2. 相似文献
14.
15.
16.
17.
Regulation of neuronal proliferation and differentiation by nitric oxide 总被引:16,自引:0,他引:16
Gibbs SM 《Molecular neurobiology》2003,27(2):107-120
Many studies have revealed the free radical nitric oxide (NO) to be an important modulator of vascular and neuronal physiology.
It also plays a developmental role in regulating synapse formation and patterning. Recent studies suggest that NO may also
mediate the switch from proliferation to differentiation during neurogenesis. Many mechanisms of this response are conserved
between neuronal precursor cells and the cells of the vascular system, where NO can inhibit the proliferative response of
endothelial and smooth-muscle cells to injury. In cultured neuroblastoma cells, NO synthase (NOS) expression is increased
in the presence of various growth factors and mitogens. Subsequent production of NO leads to cessation of cell division and
the acquisition of a differentiated phenotype. The inhibitory action of NO on neuroblast proliferation has also been demonstrated
in vivo for vertebrate and invertebrate nervous systems, as well as in the adult brain. Potential downstream effectors of
NO include the second messenger cyclic GMP, activation of the tumor-suppressor genes p53 and Rb, and the cyclin-dependent kinase inhibitor p21. These studies highlight a new role for NO in the nervous system, as a coordinator of proliferation and patterning during
neural development and adult neurogenesis. 相似文献
18.
19.
GnRH as a cell proliferation regulator: mechanism of action and evolutionary implications 总被引:2,自引:0,他引:2
Gonadotropin-releasing hormone (GnRH) is well known as the central regulator of the reproductive system through its stimulation of gonadotropin release from the pituitary. Studies on GnRH have demonstrated that GnRH has both stimulatory and inhibitory effects on cell proliferation depending on the cell type; however, the mechanisms of these effects remain to be elucidated. Against this background we used four human cell lines, TSU-Pr1, Jurkat, HHUA and DU145, and newly found that GnRH increased or decreased the colony-formation depending on the cell line. Moreover, we demonstrated that the stimulatory and inhibitory effects of GnRH exhibit distinct ligand selectivities. In order to investigate the molecular basis of these phenomena, analyses of the expression of human GnRH receptors were performed and, moreover, the effects of GnRH were analyzed under conditions in which human GnRH receptors were knocked down by the technique of RNA interference. Consequently, it was found that human type II GnRH receptor, which had been suspected of being nonfunctional because of alterations in its sequence, is involved in the effects of GnRH on cell proliferation. In this article, the influence of the autocrine activities of the cells is also reviewed, focusing on the characteristics of substances secreted from the four cell lines. Based on recent studies of GnRH and its receptors and our up-to-date findings, the evolutionary implications of GnRH action are discussed. 相似文献
20.
Coordinating cell proliferation and differentiation 总被引:15,自引:0,他引:15
Cell proliferation and differentiation are highly coordinated processes during development. Recent studies have revealed that this coordination may result from dual functions residing in the central regulators of proliferation, allowing them to also regulate differentiation. Studies have also shown that some terminally differentiated cells can be made to divide beyond their normal capacity. 相似文献