首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are two major myeloid pulmonary dendritic cell (DC) populations: CD103+ DCs and CD11bhigh DCs. In this study, we investigated in detail the origins of both myeloid DC pools using multiple experimental approaches. We show that, in resting lung, Ly-6ChighCCR2high monocytes repopulated CD103+ DCs using a CCR2-dependent mechanism, and these DCs preferentially retained residual CCR2 in the lung, whereas, conversely, Ly-6ClowCCR2low monocytes repopulated CD11bhigh DCs. CX3CR1 was required to generate normal numbers of pulmonary CD11bhigh DCs, possibly because Ly-6Clow monocytes in the circulation, which normally express high levels of CX3CR1, failed to express bcl-2 and may have diminished survival in the circulation in the absence of CX3CR1. Overall, these data demonstrate that the two circulating subsets of monocytes give rise to distinct tissue DC populations.  相似文献   

2.
CD48 is a glycosyl phosphatidylinositol anchor protein known to be virtually expressed by all human leukocytes. Its ligand, 2B4, is a signaling lymphocyte activation molecule-related receptor involved in NK cell activation. Because dendritic cells (DCs) are strong inducers of NK cell functions, we analyzed the expression of CD48 in different human DC subsets. We observed that monocytes differentiating in DCs promptly down-regulate CD48. Similarly, DCs isolated from inflamed lymph nodes generally do not express CD48. Plasmocytoid DCs do not express CD48 either, whereas myeloid DCs harbored in blood, bone marrow, and thymus express it. In addition, we showed that CD48 expression in DCs affects NK cell functions during NK/DC cross-talk, because NK cells obtained from normal donors and from X-linked lymphoproliferative disease patients are, respectively, triggered or inhibited by DCs expressing surface CD48. Remarkably, IFN-gamma production by lymph node NK cells, in contrast to blood NK cells, can be negatively modulated by 2B4/CD48 interactions, indicating a 2B4 inhibitory pathway in lymph node NK cells. Therefore, the CD48 deficiency of DCs harbored in inflamed lymph nodes that we report in this study might be relevant to successfully activate lymph node NK cells in the early phase of the immune response. Our results show that distinct subsets of human DCs, differently from all other mononuclear hemopoietic cells, specifically do not express CD48. Moreover, the expression of CD48 depends on the anatomic location of DCs and might be related to the tissue-specific 2B4 function (activating or inhibitory) of the NK cells with which they interact.  相似文献   

3.
During the course of a microbial infection, different antigen presenting cells (APCs) are exposed and contribute to the ensuing immune response. CD8α(+) dendritic cells (DCs) are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm) and are crucial for CD8(+) T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8α(+) DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8α(+) DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into β2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b(+) DCs primarily secrete low levels of TNFα while CD8α(+) DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFα and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8α(+) DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFα. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFα and inducible nitric oxide synthase (iNOS). Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming.  相似文献   

4.
5.
In spite of the extensive research in the field of gene therapy, host immune responses continue to be the major barrier in translating basic research to clinical practice. Helper-dependent adenoviral (HD-Ad) vectors show great potential for pulmonary gene therapy, but the knowledge of pulmonary immune responses toward these vectors is very limited. In this study, we show that HD-Ad vectors are potent stimulators of dendritic cell (DC) maturation, thus leading to stimulation of T cell proliferation with approximately 6% of naive CD4(+) T cells from pulmonary mediastinal lymph node responding to HD-Ad-treated DCs. In contrast to the belief that HD-Ad vectors are unable to prime adaptive immune response, we show for the first time, through in vivo pulmonary studies in mice, that HD-Ad vectors can prime CD4(+) and CD8(+) T cell responses in the lung at high and substantially low doses. This indicates cross-presentation of HD-Ad-derived epitopes by DCs to prime CD8(+) T cell responses. To assess the basis of pulmonary T cell response against HD-Ad vectors, we examined the response of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) in the lung. In response to HD-Ad delivery, there is induction of maturation in both cDC and pDC subsets, but it is the cDCs, not pDCs, that migrate rapidly to draining lymph nodes within the first 2 days after vector delivery to prime adaptive immune response against these vectors. These findings have implications for development of strategies to prevent adaptive immune responses against gene therapy vectors.  相似文献   

6.
IL-15 plays a multifaceted role in immune homeostasis, but the unreliability of IL-15 detection has stymied exploration of IL-15 regulation in vivo. To visualize IL-15 expression, we created a transgenic mouse expressing emerald-GFP (EmGFP) under IL-15 promoter control. EmGFP/IL-15 was prevalent in innate cells including dendritic cells (DCs), macrophages, and monocytes. However, DC subsets expressed varying levels of EmGFP/IL-15 with CD8(+) DCs constitutively expressing EmGFP/IL-15 and CD8(-) DCs expressing low EmGFP/IL-15 levels. Virus infection resulted in IL-15 upregulation in both subsets. By crossing the transgenic mice to mice deficient in specific elements of innate signaling, we found a cell-intrinsic dependency of DCs and Ly6C(+) monocytes on IFN-α receptor expression for EmGFP/IL-15 upregulation after vesicular stomatitis virus infection. In contrast, myeloid cells did not require the expression of MyD88 to upregulate EmGFP/IL-15 expression. These findings provide evidence of previously unappreciated regulation of IL-15 expression in myeloid lineages during homeostasis and following infection.  相似文献   

7.
CD47 is a ubiquitously expressed cell surface glycoprotein that associates with integrins and regulates chemotaxis, migration, and activation of leukocytes. CD47 is also a ligand for signal regulatory protein alpha, a cell surface receptor expressed on monocytes, macrophages, granulocytes, and dendritic cell (DC) subsets that regulates cell activation, adhesion, and migration. Although the function of CD47 in macrophages and granulocytes has been studied in detail, little is known about the role of CD47 in DC biology in vivo. In this study we demonstrate that CD47(-/-) mice exhibit a selective reduction of splenic CD11c(high)CD11b(high)CD8alpha(-)CD4(+) DCs. These DCs correspond to marginal zone DCs and express signal regulatory protein alpha, possibly explaining their selective deficiency in CD47(-/-) mice. Deficiency of marginal zone DCs resulted in impairment of IgG responses to corpusculate T cell-independent Ags. Although epidermal DCs were present in normal numbers in CD47(-/-) mice, their migration to draining lymph nodes in response to contact sensitization was impaired, while their maturation was intact. In vitro, CD47(-/-) mature DCs showed normal CCR7 expression but impaired migration to CCL-19, whereas immature DC response to CCL-5 was only slightly impaired. These results demonstrate a fundamental role of CD47 in DC migration in vivo and in vitro and in the function of marginal zone DCs.  相似文献   

8.
The breakdown in tolerance of autoreactive B cells in the lupus-prone NZM2410-derived B6.Sle1.Sle2.Sle3 (TC) mice results in the secretion of autoantibodies. TC dendritic cells (DCs) enhance B cell proliferation and antibody secretion in a cytokine-dependent manner. However, the specific cytokine milieu by which TC DCs activate B cells was not known. In this study, we compared TC and C57BL/6 (B6) control for the distribution of DC subsets and for their production of cytokines affecting B cell responses. We show that TC DCs enhanced B cell proliferation through the production of IL-6 and IFN-γ, while antibody secretion was only dependent on IL-6. Pre-disease TC mice showed an expanded PDCA1+ cells prior to disease onset that was localized to the marginal zone and further expanded with age. The presence of PDCA1+ cells in the marginal zone correlated with a Type I Interferon (IFN) signature in marginal zone B cells, and this response was higher in TC than B6 mice. In vivo administration of anti-chromatin immune complexes upregulated IL-6 and IFN-γ production by splenic DCs from TC but not B6 mice. The production of BAFF and APRIL was decreased upon TC DC stimulation both in vitro and in vivo, indicating that these B cell survival factors do not play a role in B cell modulation by TC DCs. Finally, TC B cells were defective at downregulating IL-6 expression in response to anti-inflammatory apoptotic cell exposure. Overall, these results show that the TC autoimmune genetic background induces the production of B cell-modulating inflammatory cytokines by DCs, which are regulated by the microenvironment as well as the interplay between DC.  相似文献   

9.
Inflammatory cytokines produced at the early stages of malaria infection contribute to shaping protective immunity and pathophysiology. To gain mechanistic insight into these processes, it is important to understand the cellular origin of cytokines because both cytokine input and cytokine-producing cells play key roles. Here, we determined cytokine responses by monocytes, macrophages, and dendritic cells (DCs) to purified Plasmodium falciparum and Plasmodium berghei ANKA, and by spleen macrophages and DCs from Plasmodium yoelii 17NXL-infected and P. berghei ANKA-infected mice. The results demonstrate that monocytes and macrophages do not produce inflammatory cytokines to malaria parasites and that DCs are the primary source early in infection, and DC subsets differentially produce cytokines. Importantly, blocking of phagosomal acidification by inhibiting vacuolar-type H+-ATPase enabled macrophages to elicit cytokine responses. Because cytokine responses to malaria parasites are mediated primarily through endosomal Toll-like receptors, our data indicate that the inability of macrophages to produce cytokines is due to the phagosomal acidification that disrupts endosomal ligand-receptor engagement. Macrophages efficiently produced cytokines to LPS upon simultaneously internalizing parasites and to heat-killed Escherichia coli, demonstrating that phagosomal acidification affects endosomal receptor-mediated, but not cell surface receptor-mediated, recognition of Toll-like receptor agonists. Enabling monocytes/macrophages to elicit immune responses to parasites by blocking endosomal acidification can be a novel strategy for the effective development of protective immunity to malaria. The results have important implications for enhancing the efficacy of a whole parasite-based malaria vaccine and for designing strategies for the development of protective immunity to pathogens that induce immune responses primarily through endosomal receptors.  相似文献   

10.
INTRODUCTION: Antigen-presenting cells, like dendritic cells (DCs) and macrophages, play a significant role in the induction of an immune response and an imbalance in the proportion of macrophages, immature and mature DCs within the tumor could affect significantly the immune response to cancer. DCs and macrophages can differentiate from monocytes, depending on the milieu, where cytokines, like interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce DC differentiation and tumor necrosis factor (TNF)-alpha induce DC maturation. Thus, the aim of this work was to analyze by immunohistochemistry the presence of DCs (S100+ or CD1a+), macrophages (CD68+), IL-4 and TNF-alpha within the microenvironment of primary lung carcinomas. RESULTS: Higher frequencies of both immature DCs and macrophages were detected in the tumor-affected lung, when compared to the non-affected lung. Also, TNF-alpha-positive cells were more frequent, while IL-4-positive cells were less frequent in neoplastic tissues. This decreased frequency of mature DCs within the tumor was further confirmed by the lower frequency of CD14-CD80+ cells in cell suspensions obtained from the same lung tissues analyzed by flow cytometry. CONCLUSION: These data are discussed and interpreted as the result of an environment that does not oppose monocyte differentiation into DCs, but that could impair DC maturation, thus affecting the induction of effective immune responses against the tumor.  相似文献   

11.
Dendritic cells (DCs) are bone marrow-derived mononuclear cells that play a central role in the initiation of immune responses. Because human lung DCs have been incompletely characterized, we enumerated and phenotyped mononuclear cell populations from excess lung tissue obtained at surgery. Myeloid DCs (MDCs) were identified as CD1c(+)CD11c(+)CD14(-)HLA-DR(+) cells and comprised approximately 2% of low autofluorescent (LAF) mononuclear cells. Plasmacytoid DCs (PDCs) were characterized as CD123(+)CD11c(-)CD14(-)HLA-DR(+) cells and comprised approximately 1.0% of the LAF mononuclear cells. Cells enriched in MDCs expressed CD86, moderate CD80, and little CD40, but cells enriched in PDCs had little to no expression of these three costimulatory molecules. CD11c(+)CD14(-) lineage-negative (MDC-enriched) LAF cells were isolated and shown to be much more potent in stimulating an alloreaction than CD11c(+)CD14(+) lineage-negative (monocyte-enriched) LAF cells. PDC-enriched cells were more capable of responding to a TLR-7 agonist by secreting IFN-alpha than MDC-enriched cells. MDC-enriched cells were either CD123(+) or CD123(-), but both subsets secreted cytokines and chemokines typical of MDC upon stimulation with a TLR-4 agonist and both subsets failed to secrete IFN-alpha upon stimulation with a TLR-7 agonist. By immunohistochemistry, we identified MDCs throughout different anatomical locations of the lung. However, our method did not allow the localization of PDCs with certainty. In conclusion, in the human lung MDCs were twice as numerous and expressed higher levels of costimulatory molecules than PDCs. Our data suggest that both lung DC subsets exert distinct immune modulatory functions.  相似文献   

12.
The origin and function of the different myeloid cell subsets that appear in the lung during pulmonary tuberculosis are unknown. Herein we show that adoptively transferred monocytes give rise to many of the macrophage and dendritic cell (DC) subsets that appear following aerosol infection with virulent Mycobacterium tuberculosis. Monocyte differentiation in infected peripheral tissue is surprisingly heterogeneous and results in the formation of five distinct myeloid subsets, including both classically activated macrophages, that produce inducible NO synthase via an IFN-gamma-dependent mechanism, and DC. In contrast, monocytes recruited to draining pulmonary lymph nodes are functionally different and acquire a mature DC phenotype. Thus, while monocytes are recruited to the lungs of uninfected mice, their differentiation and acquisition of myeloid effector functions are dramatically altered in the presence of inflammation and bacteria and are dependent on tissue localization. Therefore, our results support a model in which recruited monocytes are well poised to influence multiple aspects of host immunity to infections in the lungs. This report provides the first direct evidence for monocyte differentiation into both the macrophage and DC lineages in vivo following infection with a live human pathogen.  相似文献   

13.
Impaired immune function and associated immunosuppression are hallmarks of septic syndromes. As part of an overall deactivation of the immune system, profound depletion of dendritic cells (DCs) occurs in both septic patients and septic mice. Such depletion of DCs is potentially associated with immunosuppression and with failure to induce a protective Th1 immune response; it may equally be predictive of fatal outcome in septic patients. To evaluate the impact of enhanced DC survival on LPS-induced immunosuppression and on survival after LPS-induced septic shock, we created a transgenic mouse model specifically overexpressing the human form of the antiapoptotic protein Bcl-2 in DCs (DC-hBcl-2 mice). DCs derived from DC-hBcl-2 mice exhibited higher resistance to maturation-induced apoptosis after LPS treatment both in vitro and in vivo. Moreover, prolongation of DC survival diminished sublethal LPS-induced DC loss and immunosuppression, with maintenance of the differentiation potential of Th1 cells and enhanced T cell activation. Such modulation of the immune response appears to constitute a key feature of the attenuated mortality observed after LPS-induced shock in DC-hBcl-2 mice. Our study therefore identifies DC death as a key determinant of endotoxin-induced immunosuppression and mortality in mice.  相似文献   

14.
Dendritic cells (DCs) regulate both innate and adaptive immune responses. In this article, we exploit the unique avascularity of the cornea to examine a role for local or very early infiltrating DCs in regulating the migration of blood-derived innate immune cells toward HSV-1 lesions. A single systemic diphtheria toxin treatment 2 d before HSV-1 corneal infection transiently depleted CD11c(+) DCs from both the cornea and lymphoid organs of CD11c-DTR bone marrow chimeric mice for up to 24 h postinfection. Transient DC depletion significantly delayed HSV-1 clearance from the cornea through 6 d postinfection. No further compromise of viral clearance was observed when DCs were continuously depleted throughout the first week of infection. DC depletion did not influence extravasation of NK cells, inflammatory monocytes, or neutrophils into the peripheral cornea, but it did significantly reduce migration of NK cells and inflammatory monocytes, but not neutrophils, toward the HSV-1 lesion in the central cornea. Depletion of NK cells resulted in similar loss of viral control to transient DC ablation. Our findings demonstrate that resident corneal DCs and/or those that infiltrate the cornea during the first 24 h after HSV-1 infection contribute to the migration of NK cells and inflammatory monocytes into the central cornea, and are consistent with a role for NK cells and possibly inflammatory monocytes, but not polymorphonuclear neutrophils, in clearing HSV-1 from the infected cornea.  相似文献   

15.
Although dendritic cells (DCs) regulate immune responses, they exhibit functional heterogeneity depending on their anatomical location. We examined the functional properties of intestinal DCs after oral administration of cholera toxin (CT), the most potent mucosal adjuvant. Two CD11c+ DC subsets were identified both in Peyer's patches and mesenteric lymph nodes (MLN) based on the expression of CD8alpha (CD8+ and CD8- DCs, respectively). A third subset of CD11c+CD8int was found exclusively in MLN. Feeding mice with CT induced a rapid and transient mobilization of a new CD11c+CD8- DC subset near the intestinal epithelium. This recruitment was associated with an increased production of the chemokine CCL20 in the small intestine and was followed by a massive accumulation of CD8int DCs in MLN. MLN DCs from CT-treated mice were more potent activators of naive T cells than DCs from control mice and induced a Th2 response. This increase in immunostimulating properties was accounted for by CD8int and CD8- DCs, whereas CD8+ DCs remained insensitive to CT treatment. Consistently, the CD8int and CD8- subsets expressed higher levels of costimulatory molecules than CD8+ and corresponding control DCs. Adoptive transfer experiments showed that these two DC subsets, unlike CD8+ DCs, were able to present Ags orally coadministered with CT in an immunostimulating manner. The ability of CT to mobilize immature DCs in the intestinal epithelium and to promote their emigration and differentiation in draining lymph nodes may explain the exceptional adjuvant properties of this toxin on mucosal immune responses.  相似文献   

16.
The murine gamma-herpesvirus-68 (gammaHV68) establishes viral latency in dendritic cells (DCs). In the present study, we examined the specific consequences of DC infection by gammaHV68, both in vivo and in vitro. Ex vivo analysis of infected mice showed that the virus colonizes respiratory DCs very early after infection and that all subsets of splenic DCs analyzed are viral targets. We have developed and characterized an in vitro model of gammaHV68 infection of DCs. Using this model, we demonstrated that viral infection neither induces full DC maturation nor interferes with exogenous activation, which is assessed by cell surface phenotypic changes. However, whereas gammaHV68 infection alone failed to elicit cytokine secretion, IL-10 secretion of exogenously activated DCs was enhanced. Furthermore, gammaHV68-infected DCs efficiently stimulated virus-specific T cell hybridomas but failed to induce alloreactive stimulation of normal T cells. These data indicate that viral infection doesn't interfere with Ag processing and presentation but does interfere with the ability of DCs to activate T cells. The inhibition of T cell activation was partially reversed by blocking IL-10. Analysis of infected mice shows elevated levels of IL-10 expression in DCs and that lack of endogenous IL-10 is associated with decreased gammaHV68 long-term latency. Taken together, these observations indicate that gamma2-herpesvirus infection of DCs is a mechanism of viral immune evasion, partially mediated by IL-10.  相似文献   

17.
An emerging concept is that different types of dendritic cells (DCs) initiate different immune outcomes, such as tolerance vs inflammation. In this study, we have characterized the DCs from the lung draining lymph nodes of mice immunized for allergic airway inflammation or tolerance and examined their interactions with CD4(+) T cells. The DC population derived from tolerized mice was predominantly CD11c(+), B220(+), Gr-1(+), CD11b(-), and MHC class II(low), which resembled plasmacytoid-type DCs whereas DCs from the inflammatory condition were largely CD11c(+), B220(-), Gr-1(-), CD11b(+), and MHC class II(high) resembling myeloid-type DCs. The DCs from the tolerogenic condition were poor inducers of T cell proliferation. DCs from both conditions induced T cell IL-4 production but the T cells cultured with tolerogenic DCs were unresponsive to IL-4 as indicated by inhibition of STAT6 activation and expression of growth factor-independent 1, which has been recently shown to be important for STAT6-activated Th2 cell expansion. Our data suggest that airway tolerance vs inflammation is determined by the DC phenotype in lung draining lymph nodes.  相似文献   

18.
Dendritic cells (DCs) are potent antigen-presenting cells (APCs). Among so-called professional APCs, only DCs can activate naive T cells to initiate immune response. To better understand molecular mechanisms underlying unique functions of DCs, we searched for genes specifically expressed in human DCs, using PCR-based cDNA subtraction in conjunction with differential screening. cDNAs generated from CD34(+) stem cell-derived CD1a(+) DC were subtracted with cDNA from monocytes and used for generation of a cDNA library. The cDNA library was differentially screened to select genes expressed in DCs more abundantly than in monocytes. We identified a gene encoding a protein composed of 244 amino acids, which we designated as DCNP1 (dendritic cell nuclear protein 1). In Northern blot analysis, DCNP1 mRNA was highly expressed in mature DCs and at a lower level in immature DCs. In contrast, monocytes and B cells do not express the gene. In multiple human tissue Northern blot analysis, expression of DCNP1 was detected in brain and skeletal muscle. To examine subcellular localization of DCNP1, we performed immunofluorescence analysis using an anti-DCNP1 polyclonal antibody and found the molecule to be localized mainly in the perinucleus. In an immunohistochemical analysis, we compared the expression of DCNP1 with CD68, a marker for DCs and macrophages, in spleen, lymph node, liver, and brain. While DCNP1-positive cells showed a similar tissue distribution to CD68-positive cells, the number of DCNP1-positive cells was much smaller than that of CD68-positive cells. Our findings are consistent with the proposal that DCNP1 is specifically expressed in DCs.  相似文献   

19.
Dendritic cells (DCs) are the most professional antigen-presenting cells of the mammalian immune system. They are able to phagocytize, process antigen materials, and then present them to the surface of other cells including T lymphocytes in the immune system. These capabilities make DC therapy become a novel and promising immune-therapeutic approach for cancer treatment as well as for cancer vaccination. Many trials of DC therapy to treat cancers have been performed and have shown their application value. They involve harvesting monocytes or hematopoietic stem cells from a patient and processing them in the laboratory to produce DCs and then reintroduced into a patient in order to activate the immune system. DCs were successfully produced from peripheral, umbilical cord blood-derived monocytes or hematopoietic stem cells. In this research, we produced DCs from human menstrual blood-derived monocytes. Briefly, monocytes were isolated by FACS based on FSC vs. SSC plot from lysed menstrual blood. Obtained monocytes were induced into DCs by a two-step protocol. In the first step, monocytes were incubated in RPMI medium supplemented with 2% FBS, GM-CSF, and IL-4, followed by incubation in RPMI medium supplemented with α-TNF in the second step. Our data showed that induced monocytes had typical morphology of DCs, expressed HLA-DR, HLA-ABC, CD80 and CD86 markers, exhibited uptake of dextran-FITC, stimulated allogenic T cell proliferation, and released IL-12. These results demonstrated that menstrual blood can not only be a source of stromal stem cell but also DCs, which are a potential candidate for immune therapy.  相似文献   

20.
TLRs initiate the host immune response to microbial pathogens by activating cells of the innate immune system. Dendritic cells (DCs) can be categorized into two major groups, conventional DCs (including CD8(+) and CD8(-) DCs) and plasmacytoid DCs. In mice, these subsets of DCs express a variety of TLRs, with conventional DCs responding in vitro to predominantly TLR3, TLR4, TLR5, and TLR9 ligands, and plasmacytoid DCs responding mainly to TLR7 and TLR9 ligands. However, the in vivo requirement of DCs to initiate immune responses to specific TLR agonists is not fully known. Using mice depleted of >90% of CD11c(+) MHC class II(+) DCs, we demonstrate that cellular recruitment, including CD4(+) T cell and CX5(+)DX5(+) NK cell recruitment to draining lymph nodes following the footpad administration of TLR4 and TLR5 agonists, is dramatically decreased upon reduction of DC numbers, but type I IFN production can partially substitute for DCs in response to TLR3 and TLR7 agonists. Interestingly, TLR ligands can activate T cells and NK cells in the draining lymph nodes, even with reduced DC numbers. The findings reveal considerable plasticity in the response to TLR agonists, with TLR4 and TLR5 agonists sharing the requirement of DCs for subsequent lymph node recruitment of NK and T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号