首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of castration and hormone treatment on cognitive performance were evaluated in male rats. Castrated animals received either testosterone or estradiol and were compared with gonadally intact animals and with castrated controls. Results revealed a dissociation between the effects of testosterone and estradiol on cognitive performance in male rats. Specifically, estradiol enhanced acquisition of a delayed matching-to-position spatial task, similar to previously published observations in females. In contrast, neither castration nor testosterone treatment had any significant effect on acquisition of the delayed matching-to-position task, but did appear to affect delay-dependent working memory. None of the treatments had any significant effect on acquisition of a configural association negative patterning task, suggesting that effects on the delayed matching-to-position task were not due to effects on motivational factors. These data demonstrate that, as in females, gonadal hormones influence cognitive performance in males and suggest that estradiol and testosterone affect distinct cognitive domains.  相似文献   

2.
Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive control. Thus, surprisingly little is known about the factors that influence individuals'' initial decision of whether or not to act in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card Sorting Task, Go/No-Go task) and created novel ‘free-choice’ versions in which human subjects were free to select an automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money based on their choices. Our findings demonstrated that subjects'' decision to engage cognitive control was driven by an explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited fMRI-adaptation to show that the lateral prefrontal cortex (LPFC) represents associations between rules and expected reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational incentives.  相似文献   

3.
Thinking about personal future events is a fundamental cognitive process that helps us make choices in daily life. We investigated how the imagination of episodic future events is influenced by implicit motivational factors known to guide decision making. In a two-day functional magnetic resonance imaging (fMRI) study, we controlled learned reward association and stimulus novelty by pre-familiarizing participants with two sets of words in a reward learning task. Words were repeatedly presented and consistently followed by monetary reward or no monetary outcome. One day later, participants imagined personal future events based on previously rewarded, unrewarded and novel words. Reward association enhanced the perceived vividness of the imagined scenes. Reward and novelty-based construction of future events were associated with higher activation of the motivational system (striatum and substantia nigra/ ventral tegmental area) and hippocampus, and functional connectivity between these areas increased during imagination of events based on reward-associated and novel words. These data indicate that implicit past motivational experience contributes to our expectation of what the future holds in store.  相似文献   

4.
Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions) as well as subregions of the dorsal basal ganglia (caudate and putamen). Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1) represent the reward expected from effort exertion, (2) correlate with the performance attained, and (3) switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia.  相似文献   

5.
In the field of the neurobiology of learning, significant emphasis has been placed on understanding neural plasticity within a single structure (or synapse type) as it relates to a particular type of learning mediated by a particular brain area. To appreciate fully the breadth of the plasticity responsible for complex learning phenomena, it is imperative that we also examine the neural mechanisms of the behavioral instantiation of learned information, how motivational systems interact, and how past memories affect the learning process. To address this issue, we describe a model of complex learning (rodent adaptive navigation) that could be used to study dynamically interactive neural systems. Adaptive navigation depends on the efficient integration of external and internal sensory information with motivational systems to arrive at the most effective cognitive and/or behavioral strategies. We present evidence consistent with the view that during navigation: 1) the limbic thalamus and limbic cortex is primarily responsible for the integration of current and expected sensory information, 2) the hippocampal-septal-hypothalamic system provides a mechanism whereby motivational perspectives bias sensory processing, and 3) the amygdala-prefrontal-striatal circuit allows animals to evaluate the expected reinforcement consequences of context-dependent behavioral responses. Although much remains to be determined regarding the nature of the interactions among neural systems, new insights have emerged regarding the mechanisms that underlie flexible and adaptive behavioral responses.  相似文献   

6.
In today's society, numerous situations arise in which sleep deprivation is a common occurrence. Subjective perceptions are a vital component to understanding the effects of sustained performance during sleep deprivation, as they may be the first indication of the effects of sustained performance or sleep deprivation on the individual. Using the theoretical framework of the Controlled Attention Model, this study examined the effects of 16?h of sustained performance under 28?h of acute sleep deprivation on perceived effort, motivation, and stress of 24 participants while completing a complex cognitive and a simple vigilance task. Perceived effort increased for both tasks, with higher effort reported on the cognitive than the vigilance task at the beginning of the experimental period, but with higher effort reported on the vigilance than the cognitive task at the end. Subjective motivation decreased for both tasks, with significantly higher levels of motivation on the cognitive than the vigilance task. Perceived stress did not change for either task. Results suggest that functioning under sustained performance and sleep-deprivation conditions affects subjective perceptions differently for cognitive versus vigilance tasks. The controlled attention model offers one means of understanding how different tasks could affect a person's subjective perceptions and ability to perform, in that different levels of controlled attention are required for the two tasks. (Author correspondence: )  相似文献   

7.
The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals that can synchronize or entrain to environmental cues. Although light exerts powerful influences on SCN output, other non-photic stimuli can modulate the SCN as well. We recently demonstrated that daily performance of a cognitive task requiring sustained periods of attentional effort that relies upon basal forebrain (BF) cholinergic activity dramatically alters circadian rhythms in rats. In particular, normally nocturnal rats adopt a robust diurnal activity pattern that persists for several days in the absence of cognitive training. Although anatomical and pharmacological data from non-performing animals support a relationship between cholinergic signaling and circadian rhythms, little is known about how endogenous cholinergic signaling influences SCN function in behaving animals. Here we report that BF cholinergic projections to the SCN provide the principal signal allowing for the expression of cognitive entrainment in light-phase trained animals. We also reveal that oscillator(s) outside of the SCN drive cognitive entrainment as daily timed cognitive training robustly entrains SCN-lesioned arrhythmic animals. Ablation of the SCN, however, resulted in significant impairments in task acquisition, indicating that SCN-mediated timekeeping benefits new learning and cognitive performance. Taken together, we conclude that cognition entrains non-photic oscillators, and cholinergic signaling to the SCN serves as a temporal timestamp attenuating SCN photic-driven rhythms, thereby permitting cognitive demands to modulate behavior.  相似文献   

8.
Maternal physiology and behavior change dramatically over the course of pregnancy to nurture the fetus and prepare for motherhood. Further, the experience of motherhood itself continues to influence brain functioning well after birth, shaping behavior to promote the survival of offspring. To meet these goals, cognitive abilities, such as spatial memory and navigation, may be enhanced to facilitate foraging behavior. Existing studies on pregnant and maternal rats demonstrate enhanced cognitive function in specific spatial domains. We adopted a novel object-in-place task to assess the ability of female rats to integrate information about specific objects in specific locations, a critical element of foraging behavior. Using a longitudinal design to study changes in spatial memory across pregnancy and motherhood, an advantage in the object-in-place memory of primiparous female rats compared to nulliparous females emerged during lactation not during pregnancy, and was maintained after weaning at 42 days postpartum. This enhancement was not dependent on the non-mnemonic variables of anxiety or neophobia. Parity did not affect the type of learning strategy used by females to locate a cued escape platform on a dual-solution water maze task. Results indicate that the enhancement of object-in-place memory, a cognitive function that facilitates foraging, emerged after pregnancy during the postpartum period of lactation and persisted for several weeks after weaning of offspring.  相似文献   

9.
Despite the well-established involvement of both sensory (“bottom-up”) and cognitive (“top-down”) processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported “far-transfer” to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills.  相似文献   

10.
11.
Y Sei  P K Arora  P Skolnick  I A Paul 《FASEB journal》1992,6(11):3008-3013
Mice infected with an immunosuppressive murine leukemia virus (MuLV) mixture, LP-BM5, displayed profound and selective deficits in spatial learning in a modified Morris water maze. These deficits appeared before the appearance of gross neurological impairment or histopathological changes in the central nervous system. Thus, LP-BM5-infected mice displayed deficits in several aspects of trained performance compared to controls. Furthermore, a failure to exhibit any evidence of task acquisition in this maze was observed almost twice as frequently (P less than 0.0005) in infected mice as in uninfected controls. Moreover, in the absence of gross visual, motoric, or motivational impairment, LP-BM5 MuLV-infected animals exhibited neither the target directed search pattern nor the spatial preference characteristic of controls. The spatial learning and memory deficit described here is the first report of cognitive impairment accompanying viral-induced immunosuppression in a nonprimate species.  相似文献   

12.
An agent’s beliefs usually depend on informational or cognitive factors such as observation or received communication or reasoning, but also affective factors may play a role. In this paper, by adopting neurological theories on the role of emotions and feelings, an agent model is introduced incorporating the interaction between cognitive and affective factors in believing. The model describes how the strength of a belief may not only depend on information obtained, but also on the emotional responses on the belief. For feeling emotions a recursive body loop between preparations for emotional responses and feelings is assumed. The model introduces a second feedback loop for the interaction between feeling and belief. The strength of a belief and of the feeling both result from the converging dynamic pattern modelled by the combination of the two loops. For some specific cases it is described, for example, how for certain personal characteristics an optimistic world view is generated in the agent’s beliefs, or, for other characteristics, a pessimistic world view. Moreover, the paper shows how such affective effects on beliefs can emerge and become stronger over time due to experiences obtained. It is shown how based on Hebbian learning a connection from feeling to belief can develop. As these connections affect the strenghts of future beliefs, in this way an effect of judgment ‘by experience built up in the past’ or ‘by gut feeling’ can be obtained. Some example simulation results and a mathematical analysis of the equilibria are presented.  相似文献   

13.
Cognitive flexibility is an important executive function and refers to the ability to adapt behaviors in response to changes in the environment. Of note, many brain disorders are associated with impairments in cognitive flexibility. Several classical neurotransmitter systems including dopamine, acetylcholine and noradrenaline are shown to be important for cognitive flexibility, however, there is not much known about the role of neuropeptides. The neuropeptide orexin, which is brain-widely released by neurons in the lateral hypothalamus, is a major player in maintaining sleep/wake cycle, feeding behavior, arousal, and motivational behavior. Recent studies showed a role of orexin in attention, cognition and stress-induced attenuation of cognitive flexibility by disrupting orexin signaling locally or systemically. However, it is not known so far whether brain-wide reduction or loss of orexin affects cognitive flexibility. We investigated this question by testing male and female orexin-deficient mice in the attentional set shifting task (ASST), an established paradigm of cognitive flexibility. We found that orexin deficiency impaired the intra-dimensional shift phase of the ASST selectively in female homozygous orexin-deficient mice and improved the first reversal learning phase selectively in male homozygous orexin-deficient mice. We also found that these orexin-mediated sex-based modulations of cognitive flexibility were not correlated with trait anxiety, narcoleptic episodes, and reward consumption. Our findings highlight a sexually dimorphic role of orexin in regulating cognitive flexibility and the need for further investigations of sex-specific functions of the orexin circuitry.  相似文献   

14.
Optimists hold positive a priori beliefs about the future. In Bayesian statistical theory, a priori beliefs can be overcome by experience. However, optimistic beliefs can at times appear surprisingly resistant to evidence, suggesting that optimism might also influence how new information is selected and learned. Here, we use a novel Pavlovian conditioning task, embedded in a normative framework, to directly assess how trait optimism, as classically measured using self-report questionnaires, influences choices between visual targets, by learning about their association with reward progresses. We find that trait optimism relates to an a priori belief about the likelihood of rewards, but not losses, in our task. Critically, this positive belief behaves like a probabilistic prior, i.e. its influence reduces with increasing experience. Contrary to findings in the literature related to unrealistic optimism and self-beliefs, it does not appear to influence the iterative learning process directly.  相似文献   

15.
Temptations besiege us, and we must resist their appeal if we are to achieve our long-term goals. In two studies, we tested the hypothesis that cognitive reappraisal could be used to successfully maintain performance in a task embedded in temptation. In Study 1, 62 participants had to search for information on the Internet while resisting attractive task-irrelevant content on preselected sites. In Study 2, 58 participants had to count target words in a funny TV sequence. Compared to the no-reappraisal condition, participants who understood the situation as a test of willpower (the reappraisal condition) (1) performed better at the task (Studies 1 and 2), and (2) were less tempted by the attractive content of the TV sequence (Study 2). These findings suggest that, by making the temptation less attractive and the task more appealing, cognitive reappraisal can help us resist temptation.  相似文献   

16.
Art preferences are affected by a number of subjective factors. This paper reports two studies which investigated whether need for closure shapes implicit art preferences. It was predicted that higher need for closure would negatively affect implicit preferences for abstract art. In study one, 60 participants were tested for dispositional need for closure and then completed an Implicit Association Test (IAT) task to measure their implicit preference for abstract (vs. figurative) paintings. In study two, 54 participants completed the same IAT task. In this experiment need for closure was both manipulated by cognitive load and tapped as a dispositional trait. Results of the studies converged in showing that after controlling for other important individual factors such as participants''expertise and cognitive ability, need for closure, both as a dispositional trait and as a situationally induced motivational state, was negatively associated with implicit preference for abstract art.  相似文献   

17.
Age is often associated with a decline in cognitive abilities that are important for maintaining functional independence, such as learning new skills. Many forms of motor learning appear to be relatively well preserved with age, while learning tasks that involve associative binding tend to be negatively affected. The current study aimed to determine whether age differences exist on a configural response learning task, which includes aspects of motor learning and associative binding. Young (M = 24 years) and older adults (M = 66.5 years) completed a modified version of a configural learning task. Given the requirement of associative binding in the configural relationships between responses, we predicted older adults would show significantly less learning than young adults. Older adults demonstrated lower performance (slower reaction time and lower accuracy). However, contrary to our prediction, older adults showed similar rates of learning as indexed by a configural learning score compared to young adults. These results suggest that the ability to acquire knowledge incidentally about configural response relationships is largely unaffected by cognitive aging. The configural response learning task provides insight into the task demands that constrain learning abilities in older adults.  相似文献   

18.
From the perspective of philosophy, the idea of humans lying to themselves seems irrational and maladaptive, if even possible. However, the paradigm of cognitive modularity admits the possibility of self-deception. Trivers argues that self-deception can increase fitness by improving the effectiveness of inter-personal deception. Ramachandran criticizes Trivers' conjecture, arguing that the costs of self-deception outweigh its benefits. We first modify a well-known cognitive modularity model of Minsky to formalize a cognitive model of self-deception. We then use Byrne's multi-dimensional dynamic character meta-model to integrate the cognitive model into an evolutionary hawk-dove game in order to investigate Trivers' and Ramachandran's conjectures. By mapping the influence of game circumstances into cognitive states, and mapping the influence of multiple cognitive modules into player decisions, our cognitive definition of self-deception is extended to a behavioral definition of self-deception. Our cognitive modules, referred to as the hunger and fear daemons, assess the benefits and the cost of competition and generate player beliefs. Daemon-assessment of encounter benefits and costs may lead to inter-daemonic conflict, that is, ambivalence, about whether or not to fight. Player-types vary in the manner by which such inter-daemonic conflict is resolved, and varieties of self-deception are modeled as type-specific conflict-resolution mechanisms. In the display phase of the game, players signal to one another and update their beliefs before finally committing to a decision (hawk or dove). Self-deception can affect player beliefs, and hence player actions, before or after signaling. In support of Trivers' conjecture, the self-deceiving types do outperform the non-self-deceiving type. We analyse the sensitivity of this result to parameters of the cognitive model, specifically the cognitive resolution of the players and the influence of player signals on co-player beliefs.  相似文献   

19.
Summary The effects of the non-competitive NMDA antagonist dizocilpine in tests of cognitive function have been compared with its effects on motor function in rats. Severe motor impairments were observed at doses above 0.1 mg/kg. Dizocilpine (0.075 mg/kg) had no effect on the acquisition of a spatial discrimination task in a Y-maze, but disrupted reversal learning. Both the acquisition and reversal of a visual discrimination task were impaired following dizocilpine (0.075 mg/kg). Dizocilpine (0.04 mg/kg) also disrupted performance of a fivechoice visual reaction time task. It is clear that dizocilpine can impair cognitive function at doses which do not induce pronounced motor dysfunction. The impairment induced by dizocilpine includes a disruption of spatial discrimination learning and a deficit in tasks with sustained attentional demands.  相似文献   

20.
Scientists and equestrians continually seek to achieve a clearer understanding of equine learning behaviour and its implications for training. Behavioural and learning processes in the horse are likely to influence not only equine athletic success but also the usefulness of the horse as a domesticated species. However given the status and commercial importance of the animal, equine learning behaviour has received only limited investigation. Indeed most experimental studies on equine cognitive function to date have addressed behaviour, learning and conceptualization processes at a moderately basic cognitive level compared to studies in other species. It is however, likely that the horses with the greatest ability to learn and form/understand concepts are those, which are better equipped to succeed in terms of the human-horse relationship and the contemporary training environment. Within equitation generally, interpretation of the behavioural processes and training of the desired responses in the horse are normally attempted using negative reinforcement strategies. On the other hand, experimental designs to actually induce and/or measure equine learning rely almost exclusively on primary positive reinforcement regimes. Employing two such different approaches may complicate interpretation and lead to difficulties in identifying problematic or undesirable behaviours in the horse. The visual system provides the horse with direct access to immediate environmental stimuli that affect behaviour but vision in the horse is of yet not fully investigated or understood. Further investigations of the equine visual system will benefit our understanding of equine perception, cognitive function and the subsequent link with learning and training. More detailed comparative investigations of feral or free-ranging and domestic horses may provide useful evidence of attention, stress and motivational issues affecting behavioural and learning processes in the horse. The challenge for scientists is, as always, to design and commission experiments that will investigate and provide insight into these processes in a manner that withstands scientific scrutiny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号