首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang C  Zhang J  Weissing FJ  Perc M  Xie G  Wang L 《PloS one》2012,7(4):e35183
In social dilemmas, cooperation among randomly interacting individuals is often difficult to achieve. The situation changes if interactions take place in a network where the network structure jointly evolves with the behavioral strategies of the interacting individuals. In particular, cooperation can be stabilized if individuals tend to cut interaction links when facing adverse neighborhoods. Here we consider two different types of reaction to adverse neighborhoods, and all possible mixtures between these reactions. When faced with a gloomy outlook, players can either choose to cut and rewire some of their links to other individuals, or they can migrate to another location and establish new links in the new local neighborhood. We find that in general local rewiring is more favorable for the evolution of cooperation than emigration from adverse neighborhoods. Rewiring helps to maintain the diversity in the degree distribution of players and favors the spontaneous emergence of cooperative clusters. Both properties are known to favor the evolution of cooperation on networks. Interestingly, a mixture of migration and rewiring is even more favorable for the evolution of cooperation than rewiring on its own. While most models only consider a single type of reaction to adverse neighborhoods, the coexistence of several such reactions may actually be an optimal setting for the evolution of cooperation.  相似文献   

2.
In order to understand the role of space in ecological communities where each species produces a certain type of resource and has varying abilities to exploit the resources produced by its own species and by the other species, we carry out a comparative study of an interacting particle system and its mean-field approximation. For a wide range of parameter values, we show both analytically and numerically that the spatial model results in predictions that significantly differ from its nonspatial counterpart, indicating that the use of the mean-field approach to describe the evolution of communities in which individuals only interact locally is invalid. In two-species communities, the disagreements between the models appear either when both species compete by producing resources that are more beneficial for their own species or when both species cooperate by producing resources that are more beneficial for the other species. In particular, while both species coexist if and only if they cooperate in the mean-field approximation, the inclusion of space in the form of local interactions may prevent coexistence even in cooperative communities. Introducing additional species, cooperation is no longer the only mechanism that promotes coexistence. We prove that, in three-species communities, coexistence results either from a global cooperative behavior, or from rock-paper-scissors type interactions, or from a mixture of these dynamics, which excludes in particular all cases in which two species compete. Finally, and more importantly, we show numerically that the inclusion of space has antagonistic effects on coexistence depending on the mechanism involved, preventing coexistence in the presence of cooperation but promoting coexistence in the presence of rock-paper-scissors interactions. Although these results are partly proved analytically for both models, we also provide somewhat more explicit heuristic arguments to explain the reason why the models result in different predictions.  相似文献   

3.
Cooperation is one of the essential factors for all biological organisms in major evolutionary transitions. Recent studies have investigated the effect of migration for the evolution of cooperation. However, little is known about whether and how an individuals’ cooperativeness coevolves with mobility. One possibility is that mobility enhances cooperation by enabling cooperators to escape from defectors and form clusters; the other possibility is that mobility inhibits cooperation by helping the defectors to catch and exploit the groups of cooperators. In this study we investigate the coevolutionary dynamics by using the prisoner’s dilemma game model on a lattice structure. The computer simulations demonstrate that natural selection maintains cooperation in the form of evolutionary chasing between the cooperators and defectors. First, cooperative groups grow and collectively move in the same direction. Then, mutant defectors emerge and invade the cooperative groups, after which the defectors exploit the cooperators. Then other cooperative groups emerge due to mutation and the cycle is repeated. Here, it is worth noting that, as a result of natural selection, the mobility evolves towards directional migration, but not to random or completely fixed migration. Furthermore, with directional migration, the rate of global population extinction is lower when compared with other cases without the evolution of mobility (i.e., when mobility is preset to random or fixed). These findings illustrate the coevolutionary dynamics of cooperation and mobility through the directional chasing between cooperators and defectors.  相似文献   

4.
To overcome stress, such as resource limitation, an organism often needs to successfully mediate competition with other members of its own species. This may favor the evolution of defective traits that are harmful to the species population as a whole, and that may lead to its dilution or even to its extinction (the tragedy of the commons). Here, we show that this phenomenon can be circumvented by cooperation plasticity, in which an individual decides, based on environmental conditions, whether to cooperate or to defect. Specifically, we analyze the evolution of density-dependent cooperation. In our model, the population is spatially subdivided, periodically remixed, and comprises several species. We find that evolution pushes individuals to be more cooperative when their own species is at lower densities, and we show that not only could this cooperation prevent the tragedy of the commons, but it could also facilitate coexistence between many species that compete for the same resource.  相似文献   

5.
Bacteria frequently exhibit cooperative behaviors but cooperative strains are vulnerable to invasion by cheater strains that reap the benefits of cooperation but do not perform the cooperative behavior themselves. Bacterial genomes often contain mobile genetic elements such as plasmids. When a gene for cooperative behavior exists on a plasmid, cheaters can be forced to cooperate by infection with this plasmid, rescuing cooperation in a population in which mutation or migration has allowed cheaters to arise. Here we introduce a second plasmid that does not code for cooperation and show that the social dilemma repeats itself at the plasmid level in both within‐patch and metapopulation scenarios, and under various scenarios of plasmid incompatibility. Our results suggest that although plasmid carriage of cooperative genes can provide a transient defense against defection in structured environments, plasmid and chromosomal defection remain the only stable strategies in an unstructured environment. We discuss our results in the light of recent bioinformatic evidence that cooperative genes are overrepresented on mobile elements.  相似文献   

6.
The evolution of cooperation in social dilemmas has been of considerable concern in various fields such as sociobiology, economics and sociology. It might be that, in the real world, reputation plays an important role in the evolution of cooperation. Recently, studies that have addressed indirect reciprocity have revealed that cooperation can evolve through reputation, even though pairs of individuals interact only a few times. To our knowledge, most indirect reciprocity models have presumed dyadic interaction; no studies have attempted analysis of the evolution of cooperation in large communities where the effect of reputation is included. We investigate the evolution of cooperation in sizable groups in which the reputation of individuals affects the decision-making process. This paper presents the following: (i) cooperation can evolve in a four-person case, (ii) the evolution of cooperation becomes difficult as group size increases, even if the effect of reputation is included, and (iii) three kinds of final social states exist. In medium-sized communities, cooperative species can coexist in a stable manner with betrayal species.  相似文献   

7.
The quest to determine how cooperation evolves can be based on evolutionary game theory, in spite of the fact that evolutionarily stable strategies (ESS) for most non-zero-sum games are not cooperative. We analyse the evolution of cooperation for a family of evolutionary games involving shared costs and benefits with a continuum of strategies from non-cooperation to total cooperation. This cost-benefit game allows the cooperator to share in the benefit of a cooperative act, and the recipient to be burdened with a share of the cooperator's cost. The cost-benefit game encompasses the Prisoner's Dilemma, Snowdrift game and Partial Altruism. The models produce ESS solutions of total cooperation, partial cooperation, non-cooperation and coexistence between cooperation and non-cooperation. Cooperation emerges from an interplay between the nonlinearities in the cost and benefit functions. If benefits increase at a decelerating rate and costs increase at an accelerating rate with the degree of cooperation, then the ESS has an intermediate level of cooperation. The game also exhibits non-ESS points such as unstable minima, convergent-stable minima and unstable maxima. The emergence of cooperative behaviour in this game represents enlightened self-interest, whereas non-cooperative solutions illustrate the Tragedy of the Commons. Games having either a stable maximum or a stable minimum have the property that small changes in the incentive structure (model parameter values) or culture (starting frequencies of strategies) result in correspondingly small changes in the degree of cooperation. Conversely, with unstable maxima or unstable minima, small changes in the incentive structure or culture can result in a switch from non-cooperation to total cooperation (and vice versa). These solutions identify when human or animal societies have the potential for cooperation and whether cooperation is robust or fragile.  相似文献   

8.
The evolution of cooperation among nonrelatives has been explained by direct, indirect, and strong reciprocity. Animals should base the decision to help others on expected future help, which they may judge from past behavior of their partner. Although many examples of cooperative behavior exist in nature where reciprocity may be involved, experimental evidence for strategies predicted by direct reciprocity models remains controversial; and indirect and strong reciprocity have been found only in humans so far. Here we show experimentally that cooperative behavior of female rats is influenced by prior receipt of help, irrespective of the identity of the partner. Rats that were trained in an instrumental cooperative task (pulling a stick in order to produce food for a partner) pulled more often for an unknown partner after they were helped than if they had not received help before. This alternative mechanism, called generalized reciprocity, requires no specific knowledge about the partner and may promote the evolution of cooperation among unfamiliar nonrelatives.  相似文献   

9.
Conditional dissociation, i.e. the option to leave an interacting partner in response to his behaviour, is a mechanism that has been shown to promote cooperation in several settings, but the fundamental features that make conditional dissociation work in this way are not yet fully understood. This paper identifies some of the key conditions that make conditional dissociation lead to high levels of cooperation, explains how this mechanism can support the evolutionary coexistence of cooperative and non-cooperative behaviour typically observed in nature, and provides an analytical formula to estimate the expected degree of cooperation thus achieved. Our model involves a population of individuals who are paired to play an iterated prisoner’s dilemma. All individuals share the same capacity to react to the action previously chosen by their partner and, without any other a priori constraint or exclusion, they may use any behavioural rule that is compatible with this capacity. The dynamic evolution of the population eventually enters either a non-cooperative or a partially cooperative regime, depending mainly on the expected lifetime of individuals. Whenever the partially cooperative regime materializes, the cornerstone of its long-run stability is the coexistence of defectors and “Out-for-Tat” strategists, the latter being those who start cooperating and respond to defection by merely leaving. We find, therefore, that conditional dissociation is the essential disciplinary device supporting cooperation, whilst other conditional strategies (such as Tit-for-Tat) remain present only in small population shares. These conclusions are obtained both by extensive numerical simulations and through analytical mean-field methods that approximate the stochastic simulation dynamics and deliver accurate predictions for general parameter configurations.  相似文献   

10.
Cross-feeding is the exchange of nutrients among species of microbes. It has two potential evolutionary origins, one as an exchange of metabolic wastes or byproducts among species, the other as a form of cooperation known as reciprocal altruism. This paper explores the conditions favoring the origin of cooperative cross-feeding between two species. There is an extensive literature on the evolution of cooperation, and some of the requirements for the evolution of cooperative cross-feeding follow from this prior work–specifically the requirement that interactions be limited to small groups of individuals, such as colonies in a spatially structured environment. Evolution of cooperative cross-feeding by a species also requires that cross-feeding from the partner species already exists, so that the cooperating mutant will automatically be reciprocated for its actions. Beyond these considerations, some unintuitive dynamical constraints apply. In particular, the benefit of cooperative cross-feeding applies only in the range of intermediate cell densities. At low density, resource concentrations are too low to offset the cost of cooperation. At high density, resources shared by both species become limiting, and the two species become competitors. These considerations suggest that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. However, the principles identified here may enable the experimental evolution of cross-feeding, as born out by a recent study.  相似文献   

11.
In the bacterium Pseudomonas aeruginosa, the synthesis and secretion of extracellular protease is a typical cooperative behavior regulated by quorum sensing. However, this type of cooperative behavior is easily exploited by other individuals who do not synthesize public goods, which is known as the “tragedy of the commons”. Here P. aeruginosa was inoculated into casein media with different nitrogen salts added. In casein broth, protease (a type of public good) is necessary for bacterial growth. After 30 days of sequential transfer, some groups propagated stably and avoided “tragedy of the commons”. The evolved cooperators who continued to synthesize protease were isolated from these stable groups. By comparing the characteristics of quorum sensing in these cooperators, an identical evolutionary pattern was found. A variety of cooperative behaviors regulated by quorum sensing, such as the synthesis and secretion of protease and signals, were significantly reduced during the process of evolution. Such reductions improved the efficiency of cooperation, helping to prevent cheating. In addition, the production of pyocyanin, which is regulated by the RhlIR system, increased during the process of evolution, possibly due to its role in stabilizing the cooperation. This study contributes towards our understanding of the evolution of quorum sensing of P. aeruginosa.  相似文献   

12.
Cooperative or altruistic behavior is known to be vulnerable to destructive exploitation in the absence of spatial segregation and perceptual discrimination on the part of cooperators. In this study, a non-standard, agent-based, spatially explicit model of the evolution of cooperation shows that spatial gradients of increasing individual mortality risk can allow cooperative subpopulations to persist among players randomly matched for one-shot Prisoner's Dilemma. Further, the dynamically stable cooperator population formed on the gradient at the boundary of the survivable non-cooperative range provides ideal conditions for the evolution of discriminating strategies such as tit-for-tat. It is suggested that such gradients may commonly exist at the boundaries of the ranges of existing populations, providing a new basic mechanism for the evolution of cooperation.  相似文献   

13.
The spatial version of Prisoners Dilemma (PD) is studied, which incorporates habitat decay through change in the mortality parameter and habitat isolation through change in the colonization coefficient. We found four kinds of evolutionary results, which are affected profoundly by the elements of the payoff matrix and the ratio of the colonization coefficient to the mortality parameter: population extinction, a pure cooperator population, coexistence of cooperators and defectors, and a pure defector population. First, the parameter region of cooperation (pure cooperator and coexistence region) shrinks with an increase in the cooperative cost, and that of defection extends. The increase in cooperative reward makes the cooperative region extend and the defector region become small. Second, the cooperative reward can compensate for the extinction risk due to habitat destruction and allow a population to survive even if the colonization coefficient is smaller than the mortality parameter. Third, although habitat destruction (including decay and isolation) increase the extinction risk of a population, moderate external power can push the evolution of cooperation ahead of population extinction, and even make a completely cooperative world come into being. Finally, for certain values of elements of the payoff matrix, the population suffering habitat destruction can maintain a stable population size by regulating the frequencies of cooperators and defectors. This implies that the multi-behavior strategy within a population may be a mechanism to defend against the influences of a changing environment.  相似文献   

14.
Understanding the evolutionary origin and persistence of cooperative behavior is a fundamental biological problem. The standard "prisoner's dilemma," which is the most widely adopted framework for studying the evolution of cooperation through reciprocal altruism between unrelated individuals, does not allow for varying degrees of cooperation. Here we study the continuous iterated prisoner's dilemma, in which cooperative investments can vary continuously in each round. This game has been previously considered for a class of reactive strategies in which current investments are based on the partner's previous investment. In the standard iterated prisoner's dilemma, such strategies are inferior to strategies that take into account both players' previous moves, as is exemplified by the evolutionary dominance of "Pavlov" over "tit for tat." Consequently, we extend the analysis of the continuous prisoner's dilemma to a class of strategies in which current investments depend on previous payoffs and, hence, on both players' previous investments. We show, both analytically and by simulation, that payoff-based strategies, which embody the intuitively appealing idea that individuals invest more in cooperative interactions when they profit from these interactions, provide a natural explanation for the gradual evolution of cooperation from an initially noncooperative state and for the maintenance of cooperation thereafter.  相似文献   

15.
It was recently demonstrated that capuchin monkeys notice and respond to distributional inequity, a trait that has been proposed to support the evolution of cooperation in the human species. However, it is unknown how capuchins react to inequitable rewards in an unrestricted cooperative paradigm in which they may freely choose both whether to participate and, within the bounds of their partner's behavior, which reward they will receive for their participation. We tested capuchin monkeys with such a design, using a cooperative barpull, which has been used with great success in the past. Contrary to our expectations, the equity of the reward distribution did not affect success or pulling behavior. However, the behavior of the partner in an unequal situation did affect overall success rates: pairs that had a tendency to alternate which individual received the higher-value food in unequal reward situations were more than twice as successful in obtaining rewards than pairs in which one individual dominated the higher-value food. This ability to equitably distribute rewards in inherently biased cooperative situations has profound implications for activities such as group hunts, in which multiple individuals work together for a single, monopolizable reward.  相似文献   

16.
Kin selection theory predicts that costly cooperative behaviors evolve most readily when directed toward kin. Dispersal plays a controversial role in the evolution of cooperation: dispersal decreases local population relatedness and thus opposes the evolution of cooperation, but limited dispersal increases kin competition and can negate the benefits of cooperation. Theoretical work has suggested that plasticity of dispersal, where individuals can adjust their dispersal decisions according to the social context, might help resolve this paradox and promote the evolution of cooperation. Here, we experimentally tested the hypothesis that conditional dispersal decisions are mediated by a cooperative strategy: we quantified the density‐dependent dispersal decisions and subsequent colonization efficiency from single cells or groups of cells among six genetic strains of the unicellular Tetrahymena thermophila that differ in their aggregation level (high, medium, and low), a behavior associated with cooperation strategy. We found that the plastic reaction norms of dispersal rate relative to density differed according to aggregation level: highly aggregative genotypes showed negative density‐dependent dispersal, whereas low‐aggregation genotypes showed maximum dispersal rates at intermediate density, and medium‐aggregation genotypes showed density‐independent dispersal with intermediate dispersal rate. Dispersers from highly aggregative genotypes had specialized long‐distance dispersal phenotypes, contrary to low‐aggregation genotypes; medium‐aggregation genotypes showing intermediate dispersal phenotype. Moreover, highly aggregation genotypes showed evidence for beneficial kin‐cooperation during dispersal. Our experimental results should help to resolve the evolutionary conflict between cooperation and dispersal: cooperative individuals are expected to avoid kin‐competition by dispersing long distances, but maintain the benefits of cooperation by dispersing in small groups.  相似文献   

17.
Efforts to identify ecological and life history factors associated with cooperative breeding have been largely unsuccessful, and interest is growing in the role of phylogenetic history in determining the distribution of this social system among lineages. In birds, cooperative breeding is distributed non-randomly among lineages, suggesting that phylogenetic inertia may play an important role in determining its distribution. The bird genus Aphelocoma has been particularly well studied because, although it is a relatively small genus, it shows broad among-lineage variation in level of cooperation. Previous analyses described an unusual unidirectional pattern of evolutionary loss of cooperation in Aphelocoma. Here, historical reconstructions based on new phylogenetic data suggest that evolutionary changes in cooperation have been bidirectional, with at least one gain and at least one loss over relatively recent timescales. This result emphasizes that, although history plays an important role in determining the incidence of cooperative breeding, cooperative behavior can switch relatively quickly in evolutionary time and may be influenced by the ecological context within which particular populations are distributed.  相似文献   

18.
合作的进化为研究植物–传粉者相互关系提供了新的视角。植物与传粉者通过"报酬换服务"建立种间合作关系。这一合作关系从建立、维持到解体面临着3个关键问题:(1)在植物和传粉者不了解对方质量信息时,双方如何选择出最适伙伴,进而建立合作关系;(2)合作方如何限制欺骗策略(比如,盗蜜和欺骗性传粉)的扩散以维持合作关系;(3)什么过程可导致传粉合作关系的解体。植物与传粉者间信号博弈或筛选博弈可促进二者合作关系的建立。面对欺骗策略,传粉者和植物分别采用伙伴选择机制和防御机制加以应对。合作者与欺骗者的稳定共存也有助于植物–传粉者合作的维持。从合作转向对抗、转向新的伙伴和合作放弃3个过程可导致植物–传粉者的合作关系的解体。植物与传粉者合作关系的理论预期已经得到了部分实验结果支持,深化了我们对植物与传粉者合作过程中关键机制的理解。在今后的研究中,需要进一步探讨以下问题:(1)传粉者对植物信号诚实性的选择作用和植物对传粉者的筛选作用;(2)植物与传粉者各自应对欺骗策略的可能机制及其相对重要性;(3)合作者与欺骗者稳定共存的机制;(4)植物与传粉者合作系统对全球变化的响应。  相似文献   

19.
The evolution of multicellular organisms represents one of the major evolutionary transitions in the history of life. A potential advantage of forming multicellular clumps is that it provides an efficiency benefit to pre-existing cooperation, such as the production of extracellular ‘public goods’. However, this is complicated by the fact that cooperation could jointly evolve with clumping, and clumping could have multiple consequences for the evolution of cooperation. We model the evolution of clumping and a cooperative public good, showing that (i) when considered separately, both clumping and public goods production gradually increase with increasing genetic relatedness; (ii) in contrast, when the traits evolve jointly, a small increase in relatedness can lead to a major shift in evolutionary outcome—from a non-clumping state with low public goods production to a cooperative clumping state with high values of both traits; (iii) high relatedness makes it easier to get to the cooperative clumping state and (iv) clumping can be inhibited when it increases the number of cells that the benefits of cooperation must be shared with, but promoted when it increases relatedness between those cells. Overall, our results suggest that public goods sharing can facilitate the formation of well-integrated cooperative clumps as a first step in the evolution of multicellularity.  相似文献   

20.
The ecological constraints hypothesis is widely accepted as an explanation for the evolution of delayed dispersal in cooperatively breeding birds. Intraspecific studies offer the strongest support. Observational studies have demonstrated a positive association between the severity of ecological constraints and the prevalence of cooperation, and experimental studies in which constraints on independent breeding were relaxed resulted in helpers moving to adopt the vacant breeding opportunities. However, this hypothesis has proved less successful in explaining why cooperative breeding has evolved in some species or lineages but not in others. Comparative studies have failed to identify ecological factors that differ consistently between cooperative and noncooperative species. The life history hypothesis, which emphasizes the role of life history traits in the evolution of cooperative breeding, offers a solution to this difficulty. A recent analysis showed that low adult mortality and low dispersal predisposed certain lineages to show cooperative behaviour, given the right ecological conditions. This represents an important advance, not least by offering an explanation for the patchy phylogenetic distribution of cooperative breeding. We discuss the complementary nature of these two hypotheses and suggest that rather than regarding life history traits as predisposing and ecological factors as facilitating cooperation, they are more likely to act in concert. While acknowledging that different cooperative systems may be a consequence of different selective pressures, we suggest that to identify the key differences between cooperative and noncooperative species, a broad constraints hypothesis that incorporates ecological and life history traits in a single measure of 'turnover of breeding opportunities' may provide the most promising avenue for future comparative studies. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号