首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was carried out to identify and annotate the genome wide SNPs in Murrah buffalo genome. A total of 21.2 million raw reads from 4 pooled female Murrah buffalo samples were obtained using restriction enzyme digestion followed by sequencing with Illumina Hiseq 2000. After quality filtration, the reads were aligned to Murrah buffalo genome (ICAR-NBAGR) and Water buffalo genome (UMD_CASPUR_WB_2.0) which resulted in 99.37% and 99.67% of the reads aligning, respectively. A total of 130,688 high quality SNPs along with 35,110 indels were identified versus the Murrah bufffalo genome. Similarly 219,856 high quality SNPs along with 15,201 indels were identified versus the Water buffalo genome. We report 483 SNPs in 66 genes affecting Milk Production, 436 SNPs in 38 genes affecting fertility and 559 SNPs in 72 genes affecting other major traits. The average genome coverage was 13.4% and 14.8% versus the Murrah and Water buffalo genomes, respectively.  相似文献   

2.
SUMMARY: The interpretation of genome-wide association results is confounded by linkage disequilibrium between nearby alleles. We have developed a flexible bioinformatics query tool for single-nucleotide polymorphisms (SNPs) to identify and to annotate nearby SNPs in linkage disequilibrium (proxies) based on HapMap. By offering functionality to generate graphical plots for these data, the SNAP server will facilitate interpretation and comparison of genome-wide association study results, and the design of fine-mapping experiments (by delineating genomic regions harboring associated variants and their proxies). AVAILABILITY: SNAP server is available at http://www.broad.mit.edu/mpg/snap/.  相似文献   

3.
Existing methods to ascertain small sets of markers for the identification of human population structure require prior knowledge of individual ancestry. Based on Principal Components Analysis (PCA), and recent results in theoretical computer science, we present a novel algorithm that, applied on genomewide data, selects small subsets of SNPs (PCA-correlated SNPs) to reproduce the structure found by PCA on the complete dataset, without use of ancestry information. Evaluating our method on a previously described dataset (10,805 SNPs, 11 populations), we demonstrate that a very small set of PCA-correlated SNPs can be effectively employed to assign individuals to particular continents or populations, using a simple clustering algorithm. We validate our methods on the HapMap populations and achieve perfect intercontinental differentiation with 14 PCA-correlated SNPs. The Chinese and Japanese populations can be easily differentiated using less than 100 PCA-correlated SNPs ascertained after evaluating 1.7 million SNPs from HapMap. We show that, in general, structure informative SNPs are not portable across geographic regions. However, we manage to identify a general set of 50 PCA-correlated SNPs that effectively assigns individuals to one of nine different populations. Compared to analysis with the measure of informativeness, our methods, although unsupervised, achieved similar results. We proceed to demonstrate that our algorithm can be effectively used for the analysis of admixed populations without having to trace the origin of individuals. Analyzing a Puerto Rican dataset (192 individuals, 7,257 SNPs), we show that PCA-correlated SNPs can be used to successfully predict structure and ancestry proportions. We subsequently validate these SNPs for structure identification in an independent Puerto Rican dataset. The algorithm that we introduce runs in seconds and can be easily applied on large genome-wide datasets, facilitating the identification of population substructure, stratification assessment in multi-stage whole-genome association studies, and the study of demographic history in human populations.  相似文献   

4.
The KB-Rank tool was developed to help determine the functions of proteins. A user provides text query and protein structures are retrieved together with their functional annotation categories. Structures and annotation categories are ranked according to their estimated relevance to the queried text. The algorithm for ranking first retrieves matches between the query text and the text fields associated with the structures. The structures are next ordered by their relative content of annotations that are found to be prevalent across all the structures retrieved. An interactive web interface was implemented to navigate and interpret the relevance of the structures and annotation categories retrieved by a given search. The aim of the KB-Rank tool is to provide a means to quickly identify protein structures of interest and the annotations most relevant to the queries posed by a user. Informational and navigational searches regarding disease topics are described to illustrate the tool's utilities. The tool is available at the URL http://protein.tcmedc.org/KB-Rank.  相似文献   

5.
NRPs (neuropilins) are co-receptors for class 3 semaphorins, polypeptides with key roles in axonal guidance, and for members of the VEGF (vascular endothelial growth factor) family of angiogenic cytokines. They lack a defined signalling role, but are thought to mediate functional responses as a result of complex formation with other receptors, such as plexins in the case of semaphorins and VEGF receptors (e.g. VEGFR2). Mutant mouse studies show that NRP1 is essential for neuronal and cardiovascular development, whereas NRP2 has a more restricted role in neuronal patterning and lymphangiogenesis, but recent findings indicate that NRPs may have additional biological roles in other physiological and disease-related settings. In particular, NRPs are highly expressed in diverse tumour cell lines and human neoplasms and have been implicated in tumour growth and vascularization in vivo. However, despite the wealth of information regarding the probable biological roles of these molecules, many aspects of the regulation of cellular function via NRPs remain uncertain, and little is known concerning the molecular mechanisms through which NRPs mediate the functions of their various ligands in different cell types.  相似文献   

6.
Computational biology has the opportunity to play an importantrole in the identification of functional single nucleotide polymorphisms(SNPs) discovered in large-scale genotyping studies, ultimatelyyielding new drug targets and biomarkers. The medical geneticsand molecular biology communities are increasingly turning tocomputational biology methods to prioritize interesting SNPsfound in linkage and association studies. Many such methodsare now available through web interfaces, but the interesteduser is confronted with an array of predictive results thatare often in disagreement with each other. Many tools todayproduce results that are difficult to understand without bioinformaticsexpertise, are biased towards non-synonymous SNPs, and do notnecessarily reflect up-to-date versions of their source bioinformaticsresources, such as public SNP repositories. Here, I assess theutility of the current generation of webservers; and suggestimprovements for the next generation of webservers to betterdeliver value to medical geneticists and molecular biologists.   相似文献   

7.
With recent advances in genotyping and sequencing technologies,many disease susceptibility loci have been identified.However,much of the genetic heritability remains unexplained and the replication rate between independent studies is still low.Meanwhile,there have been increasing efforts on functional annotations of the entire human genome,such as the Encyclopedia of DNA Elements(ENCODE)project and other similar projects.It has been shown that incorporating these functional annotations to prioritize genome wide association signals may help identify true association signals.However,to our knowledge,the extent of the improvement when functional annotation data are considered has not been studied in the literature.In this article,we propose a statistical framework to estimate the improvement in replication rate with annotation data,and apply it to Crohn’s disease and DNase I hypersensitive sites.The results show that with cell line specific functional annotations,the expected replication rate is improved,but only at modest level.  相似文献   

8.
9.
The draft sequence of several complete protozoan genomes is now available and genome projects are ongoing for a number of other species. Different strategies are being implemented to identify and annotate protein coding and RNA genes in these genomes, as well as study their genomic architecture. Since the genomes vary greatly in size, GC-content, nucleotide composition, and degree of repetitiveness, genome structure is often a factor in choosing the methodology utilised for annotation. In addition, the approach taken is dictated, to a greater or lesser extent, by the particular reasons for carrying out genome-wide analyses and the level of funding available for projects. Nevertheless, these projects have provided a plethora of material that will aid in understanding the biology and evolution of these parasites, as well as identifying new targets that can be used to design urgently required drug treatments for the diseases they cause.  相似文献   

10.
ABC A-subfamily transporters: structure, function and disease   总被引:7,自引:0,他引:7  
ABC transporters constitute a family of evolutionarily highly conserved multispan proteins that mediate the translocation of defined substrates across membrane barriers. Evidence has accumulated during the past years to suggest that a subgroup of 12 structurally related "full-size" transporters, referred to as ABC A-subfamily transporters, mediates the transport of a variety of physiologic lipid compounds. The emerging importance of ABC A-transporters in human disease is reflected by the fact that as yet four members of this protein family (ABCA1, ABCA3, ABCR/ABCA4, ABCA12) have been causatively linked to completely unrelated groups of monogenetic disorders including familial high-density lipoprotein (HDL) deficiency, neonatal surfactant deficiency, degenerative retinopathies and congenital keratinization disorders. Although the biological function of the remaining 8 ABC A-transporters currently awaits clarification, they represent promising candidate genes for a presumably equally heterogenous group of Mendelian diseases associated with perturbed cellular lipid transport. This review summarizes our current knowledge on the role of ABC A-subfamily transporters in physiology and disease and explores clinical entities which may be potentially associated with dysfunctional members of this gene subfamily.  相似文献   

11.
All bacterial superantigens use common structural strategies to bind to major histocompatibility complex class II receptors, while binding the T cell antigen receptor in different ways.

Overstimulation of the immune response is responsible for the acute pathological effects, while reactivation of developmentally silenced T cells might result in autoimmune disease. Certain diseases might be controlled with superantigens or genetically attenuated vaccines.  相似文献   


12.
A hallmark of neurodegenerative diseases is the reactive gliosis characterized by a phenotypic change in astrocytes and microglia. This glial response is associated with modifications in the expression and function of connexins (Cxs), the proteins forming gap junction channels and hemichannels. Increased Cx expression is detected in most reactive astrocytes located at amyloid plaques, the histopathological lesions typically present in the brain of Alzheimer's patients and animal models of the disease. The activity of Cx channels analyzed in vivo as well as in vitro after treatment with the amyloid β peptide is also modified and, in particular, hemichannel activation may contribute to neuronal damage. In this review, we summarize and discuss recent data that suggest glial Cx channels participate in the neurodegenerative process of Alzheimer's disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

13.
14.
15.

Background  

Visualization of sequence annotation is a common feature in many bioinformatics tools. For many applications it is desirable to restrict the display of such annotation according to a score cutoff, as biological interpretation can be difficult in the presence of the entire data. Unfortunately, many visualisation solutions are somewhat static in the way they handle such score cutoffs.  相似文献   

16.
MOTIVATION: The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity. RESULTS: We have developed LS-SNP, a genomic scale software pipeline to annotate nsSNPs. LS-SNP comprehensively maps nsSNPs onto protein sequences, functional pathways and comparative protein structure models, and predicts positions where nsSNPs destabilize proteins, interfere with the formation of domain-domain interfaces, have an effect on protein-ligand binding or severely impact human health. It currently annotates 28,043 validated SNPs that produce amino acid residue substitutions in human proteins from the SwissProt/TrEMBL database. Annotations can be viewed via a web interface either in the context of a genomic region or by selecting sets of SNPs, genes, proteins or pathways. These results are useful for identifying candidate functional SNPs within a gene, haplotype or pathway and in probing molecular mechanisms responsible for functional impacts of nsSNPs. AVAILABILITY: http://www.salilab.org/LS-SNP CONTACT: rachelk@salilab.org SUPPLEMENTARY INFORMATION: http://salilab.org/LS-SNP/supp-info.pdf.  相似文献   

17.
Bcl2-associated athanogene 2 (BAG2) shares a similar molecular structure and function with other BAG family members. Functioning as a co-chaperone, it interacts with the ATPase domain of the heat shock protein 70 (dHsp70) through its BAG domain. It also interacts with many other molecules and regulates various cellular functions. An increasing number of studies have indicated that BAG2 is involved in the pathogenesis of various diseases, including cancers and neurodegenerative diseases. This paper is a comprehensive review of the structure, functions, and protein interactions of BAG2. We also discuss its roles in diseases, including cancer, Alzheimer’s disease, Parkinson’s disease and spinocerebellar ataxia type-3. Further research on BAG2 could lead to an understanding of the pathogenesis of these disorders or even to novel therapeutic approaches.  相似文献   

18.
Numerous missense mutations in the presenilins are associated with the autosomal dominant form of familial Alzheimer disease. Presenilin genes encode polytopic transmembrane proteins, which are processed by proteolytic cleavage and form high-molecular-weight complexes under physiological conditions. The presenilins have been suggested to be functionally involved in developmental morphogenesis, unfolded protein responses and processing of selected proteins including the beta-amyloid precursor protein. Although the underlying mechanism by which presenilin mutations lead to development of Alzheimer disease remains elusive, one consistent mutational effect is an overproduction of long-tailed amyloid beta-peptides. Furthermore, presenilins interact with beta-catenin to form presenilin complexes, and the physiological and mutational effects are also observed in the catenin signal transduction pathway.  相似文献   

19.
In humans, genome-wide association studies (GWAS) have been shown to be an effective and thorough approach for identifying polymorphisms associated with disease phenotypes. Here, we describe the first study to perform a genome-wide association study in canine atopic dermatitis (cAD) using the Illumina Canine SNP20 array, containing 22,362 single-nucleotide polymorphisms (SNPs). The aim of the study was to identify SNPs associated with cAD using affected and unaffected Golden Retrievers. Further validation studies were performed for potentially associated SNPs using Sequenom genotyping of larger numbers of cases and controls across eight breeds (Boxer, German Shepherd Dog, Labrador, Golden Retriever, Shiba Inu, Shih Tzu, Pit Bull, and West Highland White Terriers). Using meta-analysis, two SNPs were associated with cAD in all breeds tested. RS22114085 was identified as a susceptibility locus (p?=?0.00014, odds ratio?=?2) and RS23472497 as a protective locus (p?=?0.0015, odds ratio?=?0.6). Both of these SNPs were located in intergenic regions, and their effects have been demonstrated to be independent of each other, highlighting that further fine mapping and resequencing is required of these areas. Further, 12 SNPs were validated by Sequenom genotyping as associated with cAD, but these were not associated with all breeds. This study suggests that GWAS will be a useful approach for identifying genetic risk factors for cAD. Given the clinical heterogeneity within this condition and the likelihood that the relative genetic effect sizes are small, greater sample sizes and further studies will be required.  相似文献   

20.
Phosphoinositides (PIs) have long been known to have an essential role in cell physiology. Their intracellular localization and concentration must be tightly regulated for their proper function. This spatial and temporal regulation is achieved by a large number of PI kinases and phosphatases that are present throughout eukaryotic species. One family of these enzymes contains a conserved PI phosphatase domain termed Sac. Although the Sac domain is homologous among different Sac domain-containing proteins, all appear to exhibit varied substrate specificity and subcellular localization. Dysfunctions in several members of this family are implicated in a range of human diseases such as cardiac hypertrophy, bipolar disorder, Down’s syndrome, Charcot-Marie-Tooth disease (CMT) and Amyotrophic Lateral Sclerosis (ALS). In plant, several Sac domain-containing proteins have been implicated in the stress response, chloroplast function and polarized secretion. In this review, we focus on recent findings in the family of Sac domain-containing PI phosphatases in yeast, mammal and plant, including the structural analysis into the mechanism of enzymatic activity, cellular functions, and their roles in disease pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号