首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
深入理解生态系统服务权衡关系是推动生态系统有效管理和实现区域高质量发展的基础。然而,目前涉及生态系统服务权衡关系梯度效应的研究仍相对较少。选取三峡库区大宁河流域为研究区域,对典型平水年份2018年粮食生产、碳固持、土壤保持和产水量4种生态系统服务进行了量化评估和空间制图,探讨了海拔、降雨量、植被覆盖度3种环境因子梯度下生态系统服务的空间分异规律,采用均方根偏差进一步分析了生态系统服务权衡关系梯度效应。研究结果表明:粮食生产在空间上呈现中部、南部高,北部低的趋势,碳固持由西北向东南递减,土壤保持和产水量高值区均分布在西部。海拔、降雨量和植被覆盖度显著影响了生态系统服务,碳固持、土壤保持总体上随着环境梯度的增加而增加,而粮食生产随着3种环境因子梯度的增加呈下降的趋势。从生态系统服务权衡方面来看,碳固持与产水量为弱权衡关系,土壤保持与粮食生产为中度权衡,生态系统服务之间多为强权衡关系。由于多种环境梯度的相互作用,生态系统服务权衡关系随海拔梯度变化无明显规律,植被覆盖度增加显著加强了生态系统服务权衡关系,而降雨量增加显著减弱了生态系统服务权衡关系。因此,今后以流域生态系统服务协调和功能整体提升为目标的生态修复工程中,应更加注重统筹不同环境梯度区域内生态系统服务权衡关系。  相似文献   

2.
Mining activities, particularly acid mine drainage, often result in adverse effects on stream diversity and ecosystem functioning, and increased concern about these effects has generated a focus on restoration of mine‐impacted waterways. However, many stream restoration projects have not led to increased stream diversity and ecological recovery. One reason for this failure may be that restoration practitioners focus on local environmental conditions and fail to consider the importance of dispersal as a driver of stream invertebrate composition. To test this hypothesis, we used a meta‐community analysis to compare the influence of the local stream conditions with the regional supply of colonists. Invertebrate communities and physico‐chemical conditions were sampled in 37 streams across a mine‐impact gradient on the Stockton Plateau, West Coast of New Zealand's South Island. We found that pH, temperature, dissolved metals, and sediment significantly influenced invertebrate community composition. Furthermore, the spatial location of streams was a good predictor of stream diversity and invertebrate communities, independent of local environmental conditions. This result indicates an important role for regional dispersal barriers in determining stream invertebrate communities. Consequently, consideration of both the locations and strategic preservation of future colonist source streams and potential dispersal barriers during mine planning would enhance post‐mining restoration.  相似文献   

3.
Tens of thousands of stream kilometers worldwide are degraded by a legacy of acid loads, high metal concentrations, and altered habitat caused by acid mine drainage (AMD) from abandoned underground and surface mines. As the primary production base in streams, the condition of algal‐dominated periphyton communities is particularly important to nutrient cycling, energy flow, and higher trophic levels. Here, we synthesize current knowledge regarding how AMD‐associated stressors affect (i) algal communities and their use as ecological indicators, (ii) their functional roles in stream ecosystems, and (iii) how these findings inform management decisions and evaluation of restoration effectiveness. A growing body of research has found ecosystem simplification caused by AMD stressors. Species diversity declines, productivity decreases, and less efficient nutrient uptake and retention occur as AMD severity increases. New monitoring approaches, indices of biological condition, and attributes of algal community structure and function effectively assess AMD severity and effectiveness of management practices. Measures of ecosystem processes, such as nutrient uptake rates, extracellular enzyme activities, and metabolism, are increasingly being used as assessment tools, but remain in their infancy relative to traditional community structure‐based approaches. The continued development, testing, and implementation of functional measures and their use alongside community structure metrics will further advance assessments, inform management decisions, and foster progress toward restoration goals. Algal assessments will have important roles in making progress toward improving and sustaining the water quality, ecological condition, and ecosystem services of streams in regions affected by the legacy of unregulated coal mining.  相似文献   

4.
Ecosystem restoration implies focusing on multiple trophic levels and ecosystem functioning, yet higher trophic levels, that is, animals, are less frequently targeted by restoration than plants. Habitat diversity, the spatial heterogeneity between and within habitat patches in a landscape, is a well‐known driver of species diversity, and offers possible ways to increase species diversity at multiple trophic levels. We argue that habitat diversity is central in whole‐ecosystem restoration as we review its importance, provide a practical definition for its components, and propose ways to target it in restoration. Restoration targeting habitat diversity is used commonly in aquatic ecosystems, mostly to increase the physical diversity of habitats, meant to provide more niches available to a higher number of animal species. To facilitate the uptake of habitat diversity in terrestrial ecosystem restoration, we distinguish between compositional and structural habitat diversity, because different animal groups will respond to different aspects of habitat diversity. We also propose four methods to increase habitat diversity: varying the starting conditions to obtain divergent successional pathways, emulating natural disturbances, establishing keystone structures, and applying ecosystem engineer species. We provide two case studies to illustrate how these components and methods can be incorporated in restoration. We conclude that targeting habitat diversity is a promising way to restore habitats for a multitude of species of animals and plants, and that it should become mainstream in restoration ecology and practice. We encourage the restoration community to consider compositional and structural habitat diversity and to specifically target habitat diversity in ecosystem restoration.  相似文献   

5.
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

6.
 对不同海拔梯度高寒草甸群落植物多样性和初级生产力关系的研究结果表明:1)不同海拔梯度上,中间海拔梯度群落植物多样性最高,即物种丰富度、均匀度和多样性最大;2)不同海拔梯度上,群落生产力水平和物种丰富度中等时,物种多样性最高;3)随着海拔的逐渐升高,地上生物量逐渐减少;4)地下生物量具有“V”字形季节变化规律,在牧草返青期和枯黄期地下生物量最大,7月最小,且地下生物量主要分布在0~10 cm的土层中。地下生物量垂直分布呈明显的倒金字塔特征。  相似文献   

7.
《植物生态学报》2018,42(10):977
全球变化和人类活动导致物种生境的萎缩, 造成很多植物种群数量缩减, 遗传多样性快速丧失。对于物种多样性低的生态系统, 优势种的遗传多样性可能比物种多样性对生态系统功能产生更大的影响。因此, 了解遗传多样性和生态系统功能的关系(GD-EF)及其机制对生物多样性保护、应对环境变化和生态修复具有指导意义。该文综述了植物遗传多样性对生态系统结构(高营养级生物群落结构)和生态系统功能(初级生产力、养分循环和稳定性)的影响及机制、功能多样性对GD-EF的影响、遗传多样性效应和物种多样性效应的比较, 以及GD-EF在生态修复等实际应用的研究进展。最后指出当前研究的不足之处, 以期为后续研究提供参考: 1)还需深入研究GD-EF机制; 2)未评估遗传多样性对生态系统多功能性的影响; 3)不同遗传多样性测度对生态系统功能的影响不明确; 4)缺少长期的和多空间尺度结合的GD-EF实验; 5)遗传多样性效应相对于其他因子的作用不清楚。  相似文献   

8.
Restoration has the potential to increase habitat heterogeneity through the creation of unique habitat patches that, in turn, increase regional species richness or gamma diversity. While biological diversity and habitat heterogeneity are important factors to consider under a shifting climate, restoration actions and outcomes rarely examine these components. In this study, we examined the effects of riparian beaver dam analog (BDA) restoration on aquatic invertebrate diversity and habitat heterogeneity. Although the effects of BDAs on hydrology, geomorphology, and salmonid habitat have been explored, we are unaware of any studies assessing their effects on aquatic invertebrate diversity and the food web that supports them. We sampled aquatic invertebrates, basal carbon resources, dissolved nutrients, turbidity, and water temperature in pre- and post-BDA pond, side channel, and mainstem habitat over a three-year period. The BDAs functioned similarly to natural beaver dams and created slow-water environments that accumulated fine particulate organic material and increased pelagic phytoplankton production. Nonmetric multidimensional scaling, permutation multivariate analysis of variance, and Mantel's tests demonstrated that these changes led to the formation of a unique invertebrate community populated by lentic macroinvertebrates and zooplankton, which increased beta-diversity and gamma diversity. Further, BDAs in our study maintained high densities of invertebrates and buffered water temperatures in comparison to adjacent lotic habitats. These results support our hypothesis that BDAs can enhance invertebrate beta and gamma diversity through the creation and colonization of unique pond habitat and improve habitat and resource heterogeneity for native fishes under variable climate conditions.  相似文献   

9.
种、种的多样性及退化生态系统功能的恢复和维持研究   总被引:41,自引:8,他引:33  
物种多样性是生态系统的重要特征并维持系统的功能支行,生物种和不同种类构成的群落为人类提供诸如营养物质循环、生物生产力、营养功能等形式的重要生态服务,特种多样性与生态系统抵御逆境和干扰的能力紧密相关,多样性的提高会增加系统的稳定性,与单个种和种类的数量相比,功能群和功能多样性对生态系统功能的影响效应要大得多,且易于被用来测度稳定性和预测群落变化,本文提出并探讨了种对生态系统功能作用的几种形式,理解物种多样性与生态系统的功能关系能指导退化生态系统恢复和维持其功能的实践活动,尤其为恢复的初始阶段进行群落的“种类组装”提供生态理论基础。  相似文献   

10.
The loss of genetic diversity is accelerating due to habitat loss and population reduction caused by global change and anthropologenic activities. For species-poor ecosystems, the effect of genetic diversity on ecosystem functioning may not be smaller than that of species diversity. Therefore, understanding the relationship between genetic diversity and ecosystem functioning (GD-EF) and its underlying mechanisms is important for biodiversity conservation, responses of ecosystems to environmental change and ecological restoration. Here, we reviewed the studies on the effects of plant genetic diversity on ecosystem structures (community structure of the higher tropic level) and ecosystem functions (primary production, nutrient cycling and ecosystem stability), and the mechanisms underlying these relationships. We also discussed the influence of functional diversity on GD-EF, the comparison of effects of the genetic and species diversity on ecosystem functioning, and the application of GD-EF in the ecological restorations. We finally pointed out the limitations in current studies to provide references for the future: (1) further studies on the mechanisms of GD-EF are needed; (2) no study has evaluated the influence of genetic diversity on maltifunctinarity; (3) the impacts of different measurements of genetic diversity on ecosystem functioning are unclear; (4) there are lack of long-time GD-EF studies and GD-EF studies conducted at multidimensional scales; (5) the relative importance of genetic diversity and other factors on ecosystem functioning in the nature is unclear. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

11.
To meet agendas for biodiversity conservation and mitigation of climate change, large-scale restoration initiatives propose ecological restoration as an alternative that can reconcile these two objectives. In ongoing ecosystem restoration, increased diversity is always associated with increased productivity (and consequent carbon stock), which is among the most important ecosystem functions. The ecological paradigm of this association is that ecosystem biodiversity (B) is positively related to both ecosystem functions and services (EF and ES). However, BEF and BES relationships vary spatially and temporally, which makes understanding these relationships relevant and important for practical restoration actions. In this study, we asked how biodiversity and carbon stock recovery occurs during tropical forest restoration. We reviewed literature of the relationships between BEF and BES in the context of ecological restoration and asked whether ecological restoration can recover both. In addition, we conducted a metadata analysis of studies on the recovery of biodiversity and biomass in regenerating tropical forests (n = 83) to find the best model that describes this relationship. In general, studies showed that ecosystem biodiversity and productivity are positively related, and that restoration can recover both. We found an asymptotic and positive correlation between biodiversity and biomass in tropical forests, suggesting limitation of the mutual gains of these two ecosystem properties during restoration. We discuss these results in the context of ecological theory and the practice of ecological restoration.  相似文献   

12.
The resistance of an ecosystem to perturbations and the speed at which it recovers after the perturbations, which is called resilience, are two important components of ecosystem stability. It has been suggested that biodiversity increases the resilience and resistance of aggregated ecosystem processes. We test this hypothesis using a theoretical model of a nutrient-limited ecosystem in a heterogeneous environment. We investigate the stability properties of the model for its simplest possible configuration, i.e. , a system consisting of two plant species and their associated detritus and local resource depletion zones. Phenotypic diversity within the plant community is described by differences in the nutrient uptake and mortality rates of the two species. The usual measure of resilience characterizes the system as a whole and thus also applies to aggregated ecosystem processes. As a rule this decreases with increased diversity, though under certain conditions it is maximum for an intermediate value of diversity. Resistance is a property that characterizes each system component and process separately. The resistance of the inorganic nutrient pools, hence of nutrient retention in the ecosystem, decreases with increased diversity. The resistance of both total plant biomass and productivity either monotonically decreases or increases over part of the parameter range with increased diversity. Furthermore, it is very sensitive to parameter values. These results support the view that there is no simple relationship between diversity and stability in equilibrium deterministic systems, whether at the level of populations or aggregated ecosystem processes. We discuss these results in relation to recent experiments.  相似文献   

13.
Ongoing global warming will increase the frequency of soil freeze-thaw cycles (FTCs) in cool-temperate and other high-latitude regions. The spatial relevance of seasonally frozen ground amounts to c. 55% of the total land area of the northern hemisphere. Evidence suggests that FTCs contribute to nutrient dynamics. Knowledge of their effects on plant communities is scarce, although plants may be the decisive factor in controlling ecosystem functions such as nutrient retention. Here, the effects are analysed of five additional FTCs in winter for the above- and below-ground productivity of experimental grassland communities and soil enzymatic activity over the following growing season. Freeze-thaw cycles increased the above-ground productivity but reduced root length over the whole subsequent growing season. In summer, no changes in soil enzymatic activities representing the carbon, nitrogen and phosphorus cycles were observed in the FTC-manipulated plots, except for an increased cellobiohydrolase activity. Changes in productivity resulting in an increased shoot-to-root ratio and shifts in timing are capable of altering ecosystem stability and ecosystem services, such as productivity and nutrient retention.  相似文献   

14.
The increased translocation of plant species for biodiversity restoration and habitat creation has provoked a debate on provenance and genotypic diversity of the used plant material. Nonlocal provenances are often not adapted to the local environmental conditions, and low population genotypic diversity may result in genetic bottlenecks hampering successful establishment. We tested provenance differentiation of four plant species used in agri‐environment schemes to increase biodiversity of agricultural landscapes (wildflower strips). Provenances were collected close to the experimental field and at four further sites of different distances ranging from 120 to 900 km. In two of these provenances, different levels of genotypic diversity were simulated by sowing seed from a high and low number of mother plants. We found a large provenance differentiation in fitness‐related traits, particularly in seedling emergence. There was no evidence for a general superiority of the local population. The productivity was greater in populations of high genotypic diversity than in those of low diversity, but the effect was only significant in one species. Productivity was also more constant among populations of high diversity, reducing the risk of establishment failure. Our results indicate that the choice of an appropriate provenance and a sufficient genotypic diversity are important issues in ecological restoration. The use of local provenances does not always guarantee the best performance, but a spread of superior alien genotypes can be avoided. A sufficient genotypic diversity of the sown plants might be a biological insurance against fluctuations in ecosystem processes increasing the reliability of restoration measures.  相似文献   

15.
The diversity and composition of ecological communities often co-vary with ecosystem productivity. However, the relative importance of productivity, or resource abundance, versus the spatial distribution of resources in shaping those ecological patterns is not well understood, particularly for the bacterial communities that underlie most important ecosystem functions. Increasing ecosystem productivity in lakes has been shown to influence the composition and ecology of bacterial communities, but existing work has only evaluated the effect of increasing resource supply and not heterogeneity in how those resources are distributed. We quantified how bacterial communities varied with the trophic status of lakes and whether community responses differed in surface and deep habitats in response to heterogeneity in nutrient resources. Using ARISA fingerprinting, we found that bacterial communities were more abundant, richer, and more distinct among habitats as lake trophic state and vertical heterogeneity in nutrients increased, and that spatial resource variation produced habitat specific responses of bacteria in response to increased productivity. Furthermore, changes in communities in high nutrient lakes were not produced by turnover in community composition but from additional taxa augmenting core bacterial communities found in lower productivity lakes. These data suggests that bacterial community responses to nutrient enrichment in lakes vary spatially and are likely influenced disproportionately by rare taxa.  相似文献   

16.
Livestock grazing can compromise the biotic integrity and health of wetlands, especially in remotes areas like Patagonia, which provide habitat for several endemic terrestrial and aquatic species. Understanding the effects of these land use practices on invertebrate communities can help prevent the deterioration of wetlands and provide insights for restoration. In this contribution, we assessed the responses of 36 metrics based on the structural and functional attributes of invertebrates (130 taxa) at 30 Patagonian wetlands that were subject to different levels of livestock grazing intensity. These levels were categorized as low, medium and high based on eight features (livestock stock densities plus seven wetland measurements). Significant changes in environmental features were detected across the gradient of wetlands, mainly related to pH, conductivity, and nutrient values. Regardless of rainfall gradient, symptoms of eutrophication were remarkable at some highly disturbed sites. Seven invertebrate metrics consistently and accurately responded to livestock grazing on wetlands. All of them were negatively related to increased levels of grazing disturbance, with the number of insect families appearing as the most robust measure. A multivariate approach (RDA) revealed that invertebrate metrics were significantly affected by environmental variables related to water quality: in particular, pH, conductivity, dissolved oxygen, nutrient concentrations, and the richness and coverage of aquatic plants. Our results suggest that the seven aforementioned metrics could be used to assess ecological quality in the arid and semi-arid wetlands of Patagonia, helping to ensure the creation of protected areas and their associated ecological services.  相似文献   

17.
The preponderance of short‐term objectives and lack of systematic monitoring of restoration projects limits opportunities to learn from past experience and improve future restoration efforts. We conducted a retrospective, cross‐sectional survey of 89 riparian revegetation sites and 13 nonrestored sites. We evaluated 36 restoration metrics at each site and used project age (0–39 years) to quantify plant community and aquatic habitat trajectories with a maximum likelihood model selection approach to compare linear and polynomial relationships. We found significant correlations with project age for 16 of 21 riparian vegetation, and 11 of 15 aquatic habitat attributes. Our results indicated improvements in multiple ecosystem services and watershed functions such as diversity, sedimentation, carbon sequestration, and available habitat. Ten riparian vegetation metrics, including native tree and exotic shrub density, increased nonlinearly with project age, while litter and native shrub density increased linearly. Species richness and cover of annual plants declined over time. Improvements in aquatic habitat metrics, such as increasing pool depth and decreasing bankfull width‐to‐depth ratio, indicated potentially improved anadromous fish habitats at restored sites. We hypothesize that certain instream metrics did not improve because of spatial and/or temporal limitations of riparian vegetation to affect aquatic habitat. Restoration managers should be prepared to maintain or enhance understory diversity by controlling exotic shrubs or planting shade‐tolerant native species as much as 10 years after revegetation.  相似文献   

18.
Ecosystem nutrient use efficiency–the ratio of net primary productivity to soil nutrient supply–is an integrative measure of ecosystem functioning. High productivity and nutrient retention in natural systems are frequently attributed to high species diversity, even though some single-species systems can be highly productive and effective at resource capture. We investigated the effects of both individual species and life-form diversity on ecosystem nutrient use efficiency using model tropical ecosystems comprised of monocultures of three tree species and polycultures in which each of the tree species was coplanted with species of two additional life forms. Tree species significantly influenced nutrient use efficiency by whole ecosystems in monocultures; however, in polycultures, the additional life forms interacted with the influence exerted by the dominant tree. Furthermore, the presence of the additional life forms significantly increased nutrient uptake and uptake efficiency, but in only two of the three systems and 2 of the 4 years of the study period. These results indicate that the effect of life-form diversity on ecosystem functioning is not constant and that there may be temporal shifts in the influence exerted by different components of the community. Furthermore, although species (and life forms) exerted considerable influence on ecosystem nutrient use efficiency, this efficiency was most closely related to soil nutrient availability. These findings demonstrate that ecosystem nutrient use efficiency is an outcome not only of the characteristics of the species or life forms that comprise the system but also of factors that affect soil nutrient supply. The results argue against the simple upward scaling of nutrient use efficiency from leaves and plants to ecosystems. Received 29 March 2000; accepted 27 April 2001.  相似文献   

19.

Background

Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive.

Methods and Principal Findings

We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world''s tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport''s rule for the birds of Sikkim region of the Himalaya.

Conclusions and Significance

This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention.  相似文献   

20.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号