首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
? Premise of the study: Discovering missing ancestors is essential to understanding the evolutionary history of biodiversity on Earth. Evidence from extinct species can provide links for reconstructing intricate patterns of reticulate relationships among extant descendents. When fossils are unavailable and other evidence yields competing hypotheses to explain species ancestry, data from proteins and DNA can help resolve conflicts and generate novel perspectives. The identity of a parent shared by two tetraploid species in the cosmopolitan fern genus Dryopteris has remained elusive for more than 50 years. Based on available data, four hypotheses were developed previously, each providing a different resolution to this uncertainty. ? Methods: New molecular evidence from studies of isozymes and restriction site analysis of chloroplast DNA tested the competing hypotheses about the diploid ancestors of these two extant Dryopteris polyploids. ? Key results: The results falsify two of the hypotheses, resolve the uncertainty in the third, and support the fourth. ? Conclusions: Our data validate the prior existence of Dryopteris "semicristata," which was proposed 38 years ago as a diploid progenitor of the allotetraploids D. cristata and D. carthusiana but has never been collected. After developing a phylogeny using the new molecular data, we describe a plausible morphology for D. "semicristata" by extrapolating likely character states from related extant species.  相似文献   

2.
Reticulate, or non-bifurcating, evolution is now recognized as an important phenomenon shaping the histories of many organisms. It appears to be particularly common in plants, especially in ferns, which have relatively few barriers to intra- and interspecific hybridization. Reticulate evolutionary patterns have been recognized in many fern groups, though very few have been studied rigorously using modern molecular phylogenetic techniques in order to determine the causes of the reticulate patterns. In the current study, we examine patterns of branching and reticulate evolution in the genus Dryopteris, the woodferns. The North American members of this group have long been recognized as a classic example of reticulate evolution in plants, and we extend analysis of the genus to all 30 species in the New World, as well as numerous taxa from other regions. We employ sequence data from the plastid and nuclear genomes and use maximum parsimony (MP), maximum likelihood (ML), Bayesian inference (BI), and divergence time analyses to explore the relationships of New World Dryopteris to other regions and to reconstruct the timing and events which may have led to taxa displaying reticulate rather than strictly branching histories. We find evidence for reticulation among both the North and Central/South American groups of species, and our data support a classic hypothesis for reticulate evolution via allopolyploid speciation in the North America taxa, including an extinct diploid progenitor in this group. In the Central and South American species, we find evidence of extensive reticulation involving unknown ancestors from Asia, and we reject deep coalescent processes such as incomplete lineage sorting in favor of more recent intercontinental hybridization and chloroplast capture as an explanation for the origin of the Latin American reticulate taxa.  相似文献   

3.
A previous phylogenetic study of paralogous nuclear low-copy granule-bound starch synthase (GBSSI) gene sequences from polyploid and diploid species in Geinae indicated that the clade has experienced two major allopolyploid events in its history. These were estimated to have occurred several million years ago. In this extended study we test if the reticulate phylogenetic hypothesis for Geinae can be maintained when additional sequences are added. The results are compatible with the hypothesis and strengthen it in minor aspects. We also attempt to identify extant members of one of the inferred ancestral lineages of the allopolyploids. On the basis of previous molecular phylogenies, one specific group has been proposed to be the descendants of this taxon. However, none of the additional paralogues belong to this ancestral lineage. A general method is proposed for converting a bifurcating gene tree, with multiple paralogous low-copy gene sequences from allopolyploid taxa, into a reticulate species tree.  相似文献   

4.
5.
Tef (Eragrostis tef; Poaceae) is an allotetraploid (2n = 4x = 40) cereal crop whose origin within the large genus Eragrostis is unknown. Previous studies have suggested a total of 14 wild Eragrostis species as potential progenitors. Phylogenetic analysis of sequence data from the nuclear gene waxy and the plastid locus rps16 strongly supports the widely held hypothesis of a close relationship between tef and E. pilosa, a wild allotetraploid. Eragrostis heteromera, another previously proposed progenitor, is shown by the waxy data to be a close relative of one of the tef genomes. Other putative progenitors included in the taxon sample are not supported as closely related to tef. Plastid sequences from five varieties of tef and four E. pilosa accessions are identical and therefore are uninformative with respect to the question of multiple origins of these polyploids. The waxy phylogeny also resolves the relationships among other allopolyploids, supporting a close relationship between the morphologically similar allotetraploids E. macilenta, E. minor, and E. mexicana. Eragrostis cilianensis, another morphologically similar allopolyploid, appears to have shared one diploid progenitor with these species but derived its other genome from an unrelated diploid.  相似文献   

6.
BACKGROUND AND AIMS: Although allopolyploidy is a prevalent speciation mechanism in plants, its adaptive consequences are poorly understood. In addition, the effects of allopolyploidy per se (i.e. hybridization and chromosome doubling) can be confounded with those of subsequent evolutionary divergence between allopolyploids and related diploids. This report assesses whether fern species with the same ploidy level or the same altitudinal distribution have similar germination responses to temperature. The effects of polyploidy on spore abortion and spore size are also investigated, since both traits may have adaptive consequences. METHODS: Three allotetraploid (Dryopteris corleyi, D. filix-mas and D. guanchica) and three related diploid taxa (D. aemula, D. affinis ssp. affinis and D. oreades) were studied. Spores were collected from 24 populations in northern Spain. Four spore traits were determined: abortion percentage, size, germination time and germination percentage. Six incubation temperatures were tested: 8, 15, 20, 25 and 32 degrees C, and alternating 8/15 degrees C. KEY RESULTS: Allotetraploids had bigger spores than diploid progenitors, whereas spore abortion percentages were generally similar. Germination times decreased with increasing temperatures in a wide range of temperatures (8-25 degrees C), although final germination percentages were similar among species irrespective of their ploidy level. Only at low temperature (8 degrees C) did two allotetraploid species reach higher germination percentages than diploid parents. Allotetraploids showed faster germination rates, which would probably give them a competitive advantage over diploid parents. Germination behaviour was not correlated with altitudinal distribution of species. CONCLUSIONS: The results of this study suggest that (i) relative fitness of allopolyploids at sporogenesis does not differ from that of diploid parents and (ii) neither does allopolyploidization involve a change in the success of spore germination.  相似文献   

7.
Wang JB  Wang C  Shi SH  Zhong Y 《Hereditas》2000,133(1):1-7
The genus Aegilops comprises approximately 25 diploid, tetraploid and hexaploid species, in which the genome types of all allopolyploids involve either U or D genome, or both of them. The internal transcribed spacer (ITS) region of 18S-26S nuclear ribosomal DNA (rDNA) from 11 allopolyploid species and 7 related diploid species in the genus were directly sequenced by pooled PCR products. Phylogenetic analyses for tracing evolutionary patterns of parental rDNA in allopolyploid species were performed using the neighbor-joining method. The D genome involved tree included three clades (CC-DDCC, DDMM-DDMMSS-DDMMUU, and MM-MhMh-DDNN), but did not include Ae. squarrosa (DD). It indicated that the rDNA of ancestral D genome had been somewhat differentiated in allopolyploids. The U genome involved tree showed that the allopolyploids and their common ancestor, Ae. umbellulata, formed a clade, suggesting that rDNA in UUMM and UUSS genomes has been homogenizing toward that of ancestral U genome. The phylogenetic pattern of U genome based on ITS sequences also supported the "pivotal-differential" hypothesis.  相似文献   

8.
Phylogenetic relationships among 20 taxa of the fern genus Asplenium subgenus Ceterach (Filicopsida, represented by 73 accessions) were investigated using DNA sequence data from the nuclear ribosomal internal transcribed spacers (ITS nDNA) and plastid trnL-F intergenic spacer. In addition, a single sample per taxon was used in an analysis of the plastid rbcL gene. Chromosome counts were determined for all the samples, and these demonstrated a range from diploid to octoploid. Analyses of the DNA sequence data indicated that Asplenium subgenus Ceterach is polyphyletic, implicating homoplasy in the characters previously used to circumscribe this taxon. Plastid trnL-F and rbcL analyses resulted in identical tree topologies. The trees produced from the separate plastid and nuclear matrices agree in (1) the recognition of identical groups of accessions corresponding to A. dalhousiae, A. ceterach, A. aureum, A. cordatum, A. phillipsianum, and A. haughtonii; (2) the division of A. subg. Ceterach into two subclades, a Eurasian-Macaronesian and a strictly African alliance; (3) the position of A. dalhousiae as a member of the former subclade; (4) the lack of genetic variation in A. cordatum despite its morphological variability; and (5) the clustering of each autopolyploid with their diploid ancestor. However, the plastid and nuclear trees differ in their placement of A. haughtonii and A. dalhousiae, which might be due to different evolutionary histories of nuclear and plastid genomes, and is possibly an indication of ancient hybridization. The analyses confirm the existence of several strictly African taxa. Asplenium phillipsianum and A. cordatum each form species complexes of diploid and autopolyploid taxa, from which a third, morphologically intermediate, allotetraploid species has originated. Asplenium haughtonii is a distinct endemic species from Saint Helena. The maternally inherited plastid sequences support the hypothesis that A. aureum is an ancestor of A. lolegnamense and of A. octoploideum. Because gene conversion did not eliminate divergent ITS alleles in the allopolyploids, their reticulate ancestry could be demonstrated. Biparentally inherited nrITS sequences support the allopolyploid status of A. aureum, A. lolegnamense, and A. punjabense, indicating they share the ancestral A. javorkeanum genome.  相似文献   

9.
The Dactylorhiza incarnata/maculata complex (Orchidaceae) was used as a model system to understand genetic differentiation processes in a naturally occurring polyploid complex with much of ongoing diversification and wide distribution in recently glaciated areas in northern Europe. Data were obtained for 12 hypervariable regions in the plastid DNA genome. A total of 166 haplotypes were found in a sample of 1099 plants. Allopolyploid taxa have inherited their plastid genomes from D. maculata s.l. Overall haplotype diversity of the combined group of allopolyploid taxa was comparable to that of maternal D. maculata s.l., but populations of allopolyploids were also more strongly differentiated from each other and contained lower numbers of haplotypes than populations of D. maculata s.l. In addition to haplotypes found in extant D. maculata s.l., the allopolyploids also contained several distinct and widespread haplotypes that were not found in any of the parental lineages. Some of these haplotypes were shared between widespread allopolyploids. Divergent allopolyploids with small distributions did not seem to originate from local polyploidization events, but rather as segregates of already existing allopolyploids. Genetic diversification of allopolyploid Dactylorhiza is the result of repeated polyploid formation, secondary hybridization and introgression between already existing polyploids and extant representatives of parental lineages, hybridization between independently derived polyploid lineages, and phyletic diversification in the group of allopolyploids. Although some polyploid taxa must have evolved after the last glaciation, genetic material from the parental lineages has been transferred continuously for longer periods of time. This combination of processes may explain the taxonomic complexity encountered in Dactylorhiza and other polyploid complexes distributed in previously glaciated parts of Europe.  相似文献   

10.
Underpinnings of the distribution of allopolyploid species (hybrids with duplicated genome) along spatial and ecological gradients are elusive. As allopolyploid speciation combines the range of genetic and ecological characteristics of divergent diploids, allopolyploids initially show their additivity and are predicted to evolve differentiated ecological niches to establish in face of their competition. Here, we use four diploid wild wheats that differentially combined into four independent allopolyploid species to test for such additivity and assess the impact of ecological constraints on species ranges. Divergent genetic variation from diploids being fixed in heterozygote allopolyploids supports their genetic additivity. Spatial integration of comparative phylogeography and modelling of climatic niches supports ecological additivity of locally adapted diploid progenitors into allopolyploid species which subsequently colonised wide ranges. Allopolyploids fill suitable range to a larger extent than diploids and conservative evolution following the combination of divergent species appears to support their expansion under environmental changes.  相似文献   

11.
Mei J  Li Q  Qian L  Fu Y  Li J  Frauen M  Qian W 《Heredity》2011,106(6):955-961
Although there are a number of different allopolyploids in the plant kingdom, the exact ancestral parents of some allopolyploids have not been well characterized. We propose a strategy in which virtual allopolyploid lines derived from different types of parental species are used to investigate the progenitors of an allopolyploid. The genotypes of the parental lines and the natural allopolyploid were established using a set of DNA molecular markers. The genotypes of the virtual lines were then derived from those of the parental lines, and compared extensively with that of the natural allopolyploid. We applied this strategy to investigate the progenitors of the C subgenome of Brassica napus (rapeseed, AACC). A total of 39 accessions from 10 wild and 7 cultivated types of the B. oleracea cytodeme (CC), and 4 accessions of B. rapa (AA) were used to construct 156 virtual rapeseed lines. Genetic structure was compared among natural rapeseed, virtual rapeseed lines, and their parental lines by principal component analysis and analysis of ancestry. Our data showed that the C subgenome of natural rapeseed was related closely to the genome of cultivated B. oleracea and its related wild types, such as B. incana, B. bourgeaui, B. montana, B. oleracea ssp. oleracea and B. cretica. This finding indicated that these types or their progeny might be ancestral donors of the C subgenome of rapeseed. The successful application of the strategy of virtual allopolyploidy in rapeseed demonstrates that it can possibly be used to identify the progenitors of an allopolyploid species.  相似文献   

12.
Amphitropical disjunct distributions between western North America and western South America have intrigued botanists for over a century. Here, specific examples of migration and speciation are investigated using herbaceous species from the phlox family (Polemoniaceae) as a model for considering the timing of dispersal relative to speciation. Comparative DNA sequencing reveals that, in Collomia and Navarretia, the South American species are allopolyploids, suggesting either two dispersals prior to the allopolyploidization event for each species with subsequent extirpation of the diploid progenitors from South America, or allopolyploid formation prior to dispersal with extirpation of these polyploids from North America. Divergence time estimates support a Pliestocene dispersal hypothesis and sequence data indicate that, at least in Collomia, hybridization of the diploid progenitors occurred in South America.  相似文献   

13.
The Asplenium normale D. Don complex comprises several taxa that are either diploid or tetraploid. The tetraploids are assumed to have originated from diploid ancestors by relatively recent autopolyploidization or allopolyploidization. Some of the diploids are readily recognized morphologically but most of the taxa have until now been placed into a single species. However, phylogenetic studies have challenged this treatment and emphasized the notion that the taxonomic treatment of this complex needs to be revised. An integrative taxonomic approach was employed to delimit species in the complex using cytological, morphological, and DNA sequence data. Initially, we employed a diploid first approach to establish a robust taxonomic framework. Special efforts were made to collect and identify the diploid progenitors of each polyploid lineage identified in the plastid DNA based phylogenetic hypothesis. A total of six distinct diploid species were identified. The distinctive nature of the six diploids is strongly supported by sequence differences in plastid DNA and nuclear loci, as well as by the results of morphometric analysis. Diagnostic morphological characters were identified to distinguish the six diploid species, resulting in their revised taxonomy, which includes two novel species, namely, Asplenium normaloides and A. guangdongense. Further studies to strengthen the taxonomic classification of all of the tetraploid taxa are warranted.  相似文献   

14.
The morphological and ecological intermediacy of hybrid taxa has long interested and challenged fern biologists, resulting in numerous systematic contributions focused on disentangling relationships within reticulate species complexes. From a genetic perspective, hybrid ferns are especially interesting because they represent the union of divergent parental genomes in unique evolutionary entities. This review summarizes advances in our knowledge of the genetic and genomic aspects of hybridization in ferns from the mid-20th century to the present. The different organismal products of hybridization, evolutionary aspects of additive and non-additive gene expression in allopolyploids, genetic and genomic mechanisms leading to gene silencing and loss, the roles of multiple origins and introgression for imparting genetic variation to hybrid fern taxa and their progenitors, and the utility of allopolyploid ferns to investigate mechanisms of genome evolution in the homosporous ferns are discussed. Comparisons are made to other plant lineages and important future research directions are highlighted, with the goal of stimulating additional research on hybrid ferns.  相似文献   

15.
Chromosome evolution (including polyploidy, dysploidy, and structural changes) as well as hybridization and introgression are recognized as important aspects in plant speciation. A suitable group for investigating the evolutionary role of chromosome number changes and reticulation is the medium-sized genus Melampodium (Millerieae, Asteraceae), which contains several chromosome base numbers (x = 9, 10, 11, 12, 14) and a number of polyploid species, including putative allopolyploids. A molecular phylogenetic analysis employing both nuclear (ITS) and plastid (matK) DNA sequences, and including all species of the genus, suggests that chromosome base numbers are predictive of evolutionary lineages within Melampodium. Dysploidy, therefore, has clearly been important during evolution of the group. Reticulate evolution is evident with allopolyploids, which prevail over autopolyploids and several of which are confirmed here for the first time, and also (but less often) on the diploid level. Within sect. Melampodium, the complex pattern of bifurcating phylogenetic structure among diploid taxa overlain by reticulate relationships from allopolyploids has non-trivial implications for intrasectional classification.  相似文献   

16.
? Premise of the study: Polyploid speciation has been important in plant evolution. However, the conditions that favor the origination and persistence of polyploids are still not well understood. Here, we examine origins of 16 polyploid species in Mentzelia section Trachyphytum. ? Methods: We used phylogeny reconstructions based on DNA sequences from plastid regions and the nuclear gene isocitrate dehydrogenase (idh) to construct hypotheses of introgression and polyploidization. ? Key results: Molecular data suggest that homoploid hybridization has been surprisingly common in Trachyphytum. Diploid species had unequal involvement in polyploid origins, but most polyploid taxa had allopolyploid origins from extant progenitors. A few polyploids with extreme phenotypes did not appear to have extant progenitors. We infer that the progenitors of these species were derived from extinct diploid lineages or ancestral lineages of multiple extant diploids. In agreement with other recent studies, we recovered molecular evidence of multiple phylogenetically distinct origins for several polyploid taxa, including the widespread octoploid M. albicaulis. ? Conclusions: Evidence of high levels of introgression and allopolyploidy suggests that hybridization has played an important role in the evolution of Trachyphytum. Although idh sequences exhibited complicated evolution, including gene duplication, deletion, and recombination, they provided a higher percentage of informative characters for phylogeny reconstruction than the most variable plastid regions, allowing tests of hypotheses regarding polyploid origins. Given the necessity for rapidly evolving low-copy nuclear genes, researchers studying hybridization and polyploidy may increasingly turn to complex sequence data.  相似文献   

17.
山羊草属异源多倍体植物基因组进化的RAPD分析   总被引:5,自引:0,他引:5  
和24个随机引物对山羊草属(Aegilops L.)异源多倍体物种对其祖先二倍体物进行RAPD分析,对扩增出的313条带进行聚类分析发现,含D基因组的多倍体与二倍体祖先Ae.squarrosa(DD)在聚类图上聚为一支;除Ae.juvenalis(DDMMUU)聚到上一支外,含U基因组的多倍 与二倍体祖先Ae.umbellulata(UU)在聚类图上聚为另一支;多倍体与其他二倍体均不聚在一起,表明多倍体分别与Ae.squarrosa(DD)、Ae.umbellulata(UU)具有较近的亲缘关系,这说明多倍体开之后,D和U基因组变化较小,而其他基因组则发生了较大的变化。  相似文献   

18.
The hexaploids Carthamus creticus and C. turkestanicus are noxious weeds with wide but non-overlapping Mediterranean distributions, and C. creticus, together with another polyploid, C. lanatus, have also invaded similar climatic regions in North and South America, South Africa and Australia. Here we infer their origins using sequences of the plastid intergenic spacer trnH-psbA and the intron trnK and three introns of nuclear low-copy genes of the RNA Polymerase family (RPD2 and the duplicated RPC2), as well as RAPD markers (random amplified polymorphic DNA). Phylogenetic analyses of the nuclear introns and additivity analysis of the RAPD markers support the hypotheses that the two hexaploids are allopolyploids sharing a tetraploid progenitor lineage represented by the broadly Mediterranean C. lanatus, combined with different diploid progenitor lineages consistent with the different geographic distributions of the hexaploids. Whereas C. leucocaulos from the south-eastern Greek Islands represents the diploid progenitor lineage of the western C. creticus, the Irano-Turanian C. glaucus represents the diploid progenitor lineage of the eastern C. turkestanicus. The plastid data suggest that the diploid lineages served as the maternal progenitors of the hexaploids.  相似文献   

19.
20.
For Nicotiana, with 75 naturally occurring species (40 diploids and 35 allopolyploids), we produced 4656bp of plastid DNA sequence for 87 accessions and various outgroups. The loci sequenced were trnL intron and trnL-F spacer, trnS-G spacer and two genes, ndhF and matK. Parsimony and Bayesian analyses yielded identical relationships for the diploids, and these are consistent with other data, producing the best-supported phylogenetic assessment currently available for the genus. For the allopolyploids, the line of maternal inheritance is traced via the plastid tree. Nicotiana and the Australian endemic tribe Anthocercideae form a sister pair. Symonanthus is sister to the rest of Anthocercideae. Nicotiana sect. Tomentosae is sister to the rest of the genus. The maternal parent of the allopolyploid species of N. sect. Polydicliae were ancestors of the same species, but the allopolyploids were produced at different times, thus making such sections paraphyletic to their extant diploid relatives. Nicotiana is likely to have evolved in southern South America east of the Andes and later dispersed to Africa, Australia, and southwestern North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号