首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical chemistry aims at developing analytical methods and techniques for unequivocal identification and accurate quantitation of natural and synthetic compounds in a given matrix. Analytical methods based on the mass spectrometry (MS) technology, e.g., GC/MS and LC/MS and their variants, GC/tandem MS and LC/tandem MS, are best suited both for qualitative and quantitative analyses. GC/MS methods not only serve as reference methods, e.g., in clinical chemistry, but they are now widely and routinely used for quantitative determination of numerous analytes. However, despite inherent accuracy, analytical methods based on GC/MS commonly consist of several analytical steps, including extraction and derivatization of the analyte. In general, unequivocal identification and accurate quantification of an analyte in very low concentrations in complex matrices require further chromatographic techniques, such as high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) for sample purification. In recent years, affinity chromatography (e.g., boronate and immunoaffinity chromatography) has been developed to a superior technique for sample preparation of numerous classes of compounds in GC/MS. In this article, the application and importance of affinity chromatography as a method for sample preparation in modern quantitative GC/MS method is described and discussed, using as examples various natural and synthetic compounds, such as arachidonic acid derivates, nitrosylated and nitrated proteins, steroids, drugs, and toxins.  相似文献   

2.
Few in vitro screening studies on the biological activities of plant extracts that are intended for oral administration consider the effect of the gastrointestinal system. This study investigated this aspect on extracts of Camellia sinensis (green tea) and Salvia officinalis (sage) using antimicrobial activity as a model for demonstration. Both the crude extracts and their products after exposure to simulated gastric fluid (SGF) as well as simulated intestinal fluid (SIF) were screened for antimicrobial activity. The chromatographic profiles of the crude plant extracts and their SGF as well as SIF products were recorded and compared qualitatively by means of high performance liquid chromatography coupled to mass spectrometry. The effect of epithelial transport on the crude plant extracts was determined by applying them to an in vitro intestinal epithelial model (Caco-2). The crude extracts for both plants exhibited reduced antimicrobial activity after exposure to SGF, while no antimicrobial activity was detected after exposure to SIF. These results suggested chemical modification or degradation of the antimicrobial compounds when exposed to gastrointestinal conditions. This was confirmed by a reduction of the peak areas on the LC–UV–MS chromatograms. From the chromatographic profiles obtained during the transport study, it is evident that some compounds in the crude plant extracts were either not transported across the cell monolayer or they were metabolised during passage through the cells. It can be deduced that the gastrointestinal environment and epithelial transport process can dramatically affect the chromatographic profiles and biological activity of orally ingested natural products.  相似文献   

3.
Matrix effects caused by compounds endogenous to the biological sample are a primary challenge in quantitative LC/MS/MS bioanalysis. Many approaches have been developed to minimize matrix effects such as optimization of sample extraction procedures and use of isotopically labeled internal standards. Unexpected matrix components may still remain undetected, however, because of the selective mass transitions monitored during MS/MS analysis. Glycerophosphocholines are the major phospholipids in plasma that have been widely shown to cause significant matrix effects on electrospray ionization efficiencies for target analytes. The purpose of this work was to investigate potential matrix effects resulting from different endogenous lipid classes, including phospholipids, acylglycerols and cholesterols, in order to establish a library for the relative presence of these components in biological sample extracts obtained by commonly used sample preparation techniques. Thirteen compounds were selected which were representatives of eight phospholipids classes, mono, di, triacylglycerols, cholesterol and cholesterol esters. Post-column infusion experiments were carried out to compare relative ion suppression effects of these compounds. Chlorpheniramine and loratadine were selected as model test analytes. A Concentration Normalized Suppression Factor (%CNSF) was defined to allow comparison of ion suppression effects resulting from different endogenous lipids according to their typical concentrations in human plasma and erythrocytes. A simple LC/MS/MS method was developed to monitor these endogenous components in sample extracts and their extraction recoveries from a plasma pool were compared using protein precipitation, liquid-liquid extraction, supported-liquid extraction, solid phase extraction and Hybrid SPE-precipitation methods. Endogenous lipid components other than GPChos, such as cholesterols and triacylglycerols, may result in significant matrix effects and should be monitored during method development. No single extraction procedure was efficient in removing all of the various lipid components. Use of the results presented here, along with a consideration of analyte chemical structure, the type of matrix and the type of sample preparation procedure, may help a bioanalytical scientist to better anticipate and minimize matrix effects in developing LC/MS/MS-based methods.  相似文献   

4.
Separation of metal chelates and organometallic compounds by SFC and SFE/GC   总被引:2,自引:0,他引:2  
Supercritical fluid chromatography (SFC) combines the high diffusion coefficients of gas chromatography (GC) and the solubility properties of liquid chromatography (LC). SFC generally requires lower temperatures for chromatographic separations and thus is more suitable for analyzing thermally labile compounds including a number of metal chelates and organometallic compounds. SFC also allows interfacing between supercritical fluid extraction (SFE) and chromatographic analysis of metal-containing compounds. A large number of metal chelates and organometallic compounds can be separated by SFC. This article summarizes SFC separation of various chelates of transition metals, heavy metals, lanthanides and actinides as well as organometallic compounds of lead, mercury, and tin reported in the recent literature. This article also discusses SFC detection systems and the determination of solubility of organometallic compounds by SFC.  相似文献   

5.
Introduction – Pyrrolizidine alkaloids (PAs) serve an important function in plant defence. Objective – To compare different extraction methods and detection techniques, namely gas chromatography with nitrogen phosphorus detection (GC‐NPD) and liquid chromatography tandem mass spectrometry (LC‐MS/MS) with quadrupole analysers for analysing PAs in Jacobaea vulgaris. Methodology – Both formic acid and sulfuric acid were tested for PA extraction from dry plant material. For GC‐NPD, reduction is required to transform PA N‐oxides into tertiary amines. Zinc and sodium metabisulfite were compared as reducing agents. Results – The lowest PA concentration measured with GC‐NPD was approximately 0.03 mg/g and with LC‐MS/MS 0.002 mg/g. The detection of major PAs by both techniques was comparable but a number of minor PAs were not detected by GC‐NPD. With the LC‐MS/MS procedure higher concentrations were found in plant extracts, indicating that losses may have occurred during the sample preparation for the GC‐NPD method. Zinc proved a more effective reducing agent than sodium metabisulfite. The sample preparation for LC‐MS/MS analysis using formic acid extraction without any reduction and purification steps is far less complex and less time consuming compared to GC‐NPD analysis with sulfuric acid extraction and PA N‐oxide reduction with zinc and purification. Conclusions – In terms of sensitivity and discrimination, formic acid extraction in combination with LC‐MS/MS detection is the method of choice for analysing PAs (both free and N‐oxides forms) in plant material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The Phenomenex EZ:faast™ amino acid analysis kit is available for gas (GC) or liquid (LC) chromatographic analysis of amino acids (AA) using mass spectrometry (MS) and other GC detectors. We used it for rapid GC determination of plasma tryptophan, its brain uptake competitors (Val, Leu, Ile, Phe and Tyr) and many other amino acids. Based on solid-phase extraction, this fast method enables one person to process two plasma samples in 8–10 min and six samples in ∼15 min up to GC injection and a 7-min GC run per plasma sample. Using a Perkin-Elmer Clarus 500 GC, a Total Chrome software, a flame-ionisation detector (FID) and norvaline as internal standard, we used this method to analyse ∼1,000 plasma samples from normal subjects undergoing acute tryptophan depletion and loading tests. The limit of detection for most amino acids is 1 nmol/ml (1 μM) and in many cases less. With manual injection, coefficients of variation for the above six amino acids were 1.5–6.2% (intra-assay) and 3.8–9.7% (inter-assay). This simple, rapid and elegant method will be valuable to the amino acid analyst and researcher, as it can save much manpower time and meet urgent emergency requests and the demands of a high-throughput laboratory.  相似文献   

7.
An overview is presented of gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), the two major hyphenated techniques employed in metabolic profiling that complement direct 'fingerprinting' methods such as atmospheric pressure ionization (API) quadrupole time-of-flight MS, API Fourier transform MS, and NMR. In GC/MS, the analytes are normally derivatized prior to analysis in order to reduce their polarity and facilitate chromatographic separation. The electron ionization mass spectra obtained are reproducible and suitable for library matching, mass spectral collections being readily available. In LC/MS, derivatization and library matching are at an early stage of development and mini-reviews are provided. Chemical derivatization can dramatically increase the sensitivity and specificity of LC/MS methods for less polar compounds and provides additional structural information. The potential of derivatization for metabolic profiling in LC/MS is demonstrated by the enhanced analysis of plant extracts, including the potential to measure volatile acids such as formic acid, difficult to achieve by GC/MS. The important role of mass spectral library creation and usage in these techniques is discussed and illustrated by examples.  相似文献   

8.
In this work, we study the effect of different variables affecting elution profile distortion on the enantiomeric resolution eventually achievable when working with on‐line coupled liquid chromatography to gas chromatography (LC‐GC). Specifically, the proposed configuration combines achiral reversed‐phase liquid chromatography (RPLC) and chiral gas chromatography (enantio‐GC), with heptakis‐(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin as enantioselective stationary phase to analyse target fractions transferred (from LC to GC) via the through oven transfer adsorption desorption (TOTAD) interface. The high degree of orthogonality resulting from the combination of two chromatographic columns having very different separation mechanisms (and also requiring mobile phases in distinct physical states), as well as integration of the sample preparation step in the first dimension of the system, significantly contributed to exploit the performance of the proposed two‐dimensional approach. Occasional adverse effects, which may result in severe peak distortions during LC‐GC analysis and could be explained by flow instabilities due to viscous fingering, are circumvented by using the outstanding capacity of the TOTAD interface for achieving effective elimination of the eluent arriving from the LC preseparation.  相似文献   

9.
Methods for retinoid analysis in tissue include direct spectrophotometry or fluorometry and retinoid responsive reporter constructs in the form of cell reporter assays or transgenic reporter animals, but chromatographic methods dominate and posses several superior features in quantitative analysis. The multitude of extraction protocols used can coarsely be divided into manual liquid-liquid extraction protocols and semi- or fully automated solid phase extraction-based protocols. Liquid chromatographic separation in reversed phase dominates although normal phase is also used. Detection is mainly performed with UV detectors although electrochemical and fluorescence detection is also used. Mass spectrometry in combination with LC is more often used in retinoid analysis and is likely to dominate in the future.  相似文献   

10.
Bisphenol A (BPA) is a synthetic compound broadly used in medical devices as well as in packaging of food and drinks. Recently, BPA toxicity has become of concern to environmental public health. Red wine that is susceptible to BPA contamination is an alcoholic beverage made from yeast fermentation of grapes in the presence of grape skins so as to extract phenolic compounds. The aim of this study was to validate an efficient, low cost, and time-saving method for BPA determination in red-wine beverage. To this end, a rapid and simple microextraction method is here proposed consisting in liquid–liquid separation assisted by a vortex–ultrasound–vortex procedure combined with gas chromatographic analysis (GC-Fid or GC-IT/MS). By means of a comparative study between real red-wine matrix and synthetic hydroalcoholic solutions, different parameters related to the microextraction steps were investigated. The minimal amount of extraction solvent for a given volume of sample was calculated for both the systems. It was demonstrated that for red-wine matrix, the extent of phase separation is strongly affected by some wine constituents and that separation can be tuned by varying the amount of the extraction solvent. This double vortex–ultrasound-assisted method achieved high recovery of BPA and enrichment factor compared with other microextraction methods.  相似文献   

11.
Adio AM  König WA 《Phytochemistry》2005,66(5):599-609
The essential oil of the liverwort Plagiochila asplenioides from two different locations in Northern Germany were investigated by chromatographic and spectroscopic methods. Seven compounds were isolated by preparative gas chromatography (GC) and their structures investigated by mass spectrometry (MS), NMR techniques and chemical correlations in combination with enantioselective GC. In addition to known constituents, aromadendra-1(10),3-diene, two aromatic sesquiterpene hydrocarbons, bisabola-1,3,5,7(14)-tetraene and bisabola-1,3,5,7-tetraene, three sesquiterpene ethers, muurolan-4,7-peroxide, plagiochilines W and X, in addition to ent-4-epi-maaliol, could be identified as natural compounds for the first time.  相似文献   

12.
Marine organisms are an immense source of new biologically active compounds. These compounds are unique because the aqueous environment requires a high demand of specific and potent bioactive molecules. Diverse peptides with a wide range of biological activities have been discovered, including antimicrobial, antitumoral, and antiviral activities and toxins amongst others. These proteins have been isolated from different phyla such as Porifera, Cnidaria, Nemertina, Crustacea, Mollusca, Echinodermata and Craniata. Purification techniques used to isolate these peptides include classical chromatographic methods such as gel filtration, ionic exchange and reverse-phase HPLC. Multiple in vivo and in vitro bioassays are coupled to the purification process to search for the biological activity of interest. The growing interest to study marine natural products results from the discovery of novel pharmacological tools including potent anticancer drugs now in clinical trials. This review presents examples of interesting peptides obtained from different marine organisms that have medical relevance. It also presents some of the common methods used to isolate and characterize them.  相似文献   

13.
Nine phenolic compounds, such as cis-/trans-p-coumaric acid, cis-/trans-p-coumaric acid methyl ester, glucose ester of cis-/trans-p-coumaric acid, caffeic acid methyl ester, kaempferol 7-O-beta-D-glucoside and kaempferol 3-O-beta-D-glucoside, were isolated from Lavatera trimestris flowers by chromatographic techniques and their structures were elucidated by spectral means (NMR). All compounds were tested for their antioxidant activity, while the methanolic extract was tested also for its antimicrobial activity. Also several non-polar constituents have been identified using GC and GC/MS methods. This is the first time that phenolic esters and non-polar constituents were identified in the flowers of L. trimestris L.  相似文献   

14.
比较不同提取方法对黔产水香薷挥发性成分影响。采用固相微萃取法、水蒸气蒸馏法提取水香薷挥发性成分,用GC-MS联用仪进行测定,结合NIST05和WILEY275谱库鉴定各化合物,峰面积归一化法测定各成分相对含量。利用两种提取方法供从水香薷中鉴别出67个化合物。从固相微萃取法提取物中检测并鉴定了45个化合物,而从水蒸气蒸馏法提取物种检测并鉴定了55个化合物。其中挥发性相同的化合物有33种,两种不同提取方法得到的挥发性成分虽有差异,但主要成分变化不大。体外抗菌试验表明,水香薷挥发性成分具有抑菌作用。这些研究结果为香料植物水香薷的开发提供了科学依据。  相似文献   

15.
Analytical methods to determine phytoestrogenic compounds   总被引:1,自引:0,他引:1  
The analytical methods for the determination of phytoestrogenic compounds in edible plants, plant products and biological matrices are reviewed. The detection, qualitative and quantitative methods based on different chromatographic separations of gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) coupled with various detections by ultraviolet absorption (UV), electrochemical detection (ED), fluorescence detection, mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), as well as non-chromatographic immunoassay are each extensively examined and compared. An overview on phytoestrogen chemistry, bioactivities and health effects, plant precursors, metabolism and sample preparation is also presented.  相似文献   

16.
This paper reviews procedures for the determination of amphetamine, methamphetamine and amphetamine-derived designer drugs or medicaments in blood and urine. Papers published from 1991 to early 1997 were taken into consideration. Gas chromatographic and liquid chromatographic procedures with different detectors (e.g., mass spectrometer or diode array) were considered as well as the seldom used thin-layer chromatography and capillary electrophoresis. Enantioselective procedures are also discussed. A chapter deals with amphetamine-derived medicaments, e.g. anoretics, antiparkinsonians or vasodilators, which are metabolized to amphetamine or methamphetamine. Differentiation of an intake of such medicaments from amphetamine or methamphetamine intake is discussed. Basic information about the biosample assayed, internal standard, work-up, GC column or LC column and mobile phase, detection mode, reference data and validation data of each procedure is summarized in Tables. Examples of typical applications are presented.  相似文献   

17.
The field of metabolomics is getting more and more popular and a wide range of different sample preparation procedures are in use by different laboratories. Chemical extraction methods using one or more organic solvents as the extraction agent are the most commonly used approach to extract intracellular metabolites and generate metabolite profiles. Metabolite profiles are the scaffold supporting the biological interpretation in metabolomics. Therefore, we aimed to address the following fundamental question: can we obtain similar metabolomic results and, consequently, reach the same biological interpretation by using different protocols for extraction of intracellular metabolites? We have used four different methods for extraction of intracellular metabolites using four different microbial cell types (Gram negative bacterium, Gram positive bacterium, yeast, and a filamentous fungus). All the quenched samples were pooled together before extraction, and, therefore, they were identical. After extraction and GC?CMS analysis of metabolites, we did not only detect different numbers of compounds depending on the extraction method used and regardless of the cell type tested, but we also obtained distinct metabolite levels for the compounds commonly detected by all methods (P-value?<?0.001). These differences between methods resulted in contradictory biological interpretation regarding the activity of different metabolic pathways. Therefore, our results show that different solvent-based extraction methods can yield significantly different metabolite profiles, which impact substantially in the biological interpretation of metabolomics data. Thus, development of alternative extraction protocols and, most importantly, standardization of sample preparation methods for metabolomics should be seriously pursued by the scientific community.  相似文献   

18.
In the present work, the Brassica rapa var. rapifera parts essential oils and their antioxidant and antimicrobial activities were investigated for the first time depending on geographic origin and extraction technique. Gas‐chromatography (GC) and GC/mass spectrometry (MS) analyses showed several constituents, including alcohols, aldehydes, esters, ketones, norisoprenoids, terpenic, nitrogen and sulphur compounds, totalizing 38 and 41 compounds in leaves and root essential oils, respectively. Nitrogen compounds were the main volatiles in leaves essential oils and sulphur compounds were the main volatiles in root essential oils. Qualitative and quantitative differences were found among B. rapa var. rapifera parts essential oils collected from different locations and extracted by hydrodistillation and microwave‐assisted hydrodistillation techniques. Furthermore, our findings showed a high variability for both antioxidant and antimicrobial activities. The highlighted variability reflects the high impact of plant part, geographic variation and extraction technique on chemical composition and biological activities, which led to conclude that we should select essential oils to be investigated carefully depending on these factors, in order to isolate the bioactive components or to have the best quality of essential oil in terms of biological activities and preventive effects in food.  相似文献   

19.
Modern chromatographic techniques and their application in the determination of toxic compounds in faeces are reviewed. Faecal analysis may be of importance in toxicokinetic studies of xenobiotics in order to determine factors such as metabolism, body burden and major routes of elimination. Compounds of interest include various food constituents, drugs and occupational or environmental factors. Further, various mutagenic or carcinogenic compounds which are excreted by faeces have been indicated to represent risk factors for colorectal cancer. In this context, the chromatographic determination of the endogenously generated fecapentaenes and bile acids, both postulated etiological factors in colorectal carcinogenesis, is reviewed. For fecapentaene determination, several high-performance liquid chromatographic (HPLC) methods are available; however, the applicability of some of these methods is limited owing to insufficient separation of various isomeric forms or discrimination between fecapentaenes and their precursors. For the determination of bile acids in faeces, many chromatographic procedures have been reported, and the characteristics of the most relevant methods are compared and discussed. It is concluded that separation by gas chromatography (GC) in combination with mass spectrometry provides the highest selectivity and sensitivity. A relatively rapid alternative analysis for the determination of total and aqueous faecal bile acids is proposed. Further, methods for the determination of polycyclic aromatic hydrocarbons (PAHs) are reviewed. Although the use of radiolabelled PAHs in animal studies has many advantages, it cannot be applied for human biological monitoring and HPLC and GC provide sensitive alternatives. An HPLC method for the determination of non-metabolized PAHs in faeces is described.  相似文献   

20.
Natural product's properties are related to certain classes of compounds such as alkaloids, flavonoids, essential oils and others. Traditionally, separation techniques including thin layer chromatography (TLC), liquid chromatography (LC), gas chromatography (GC) and capillary electrophoresis (CE) even hyphenated to mass spectrometry (MS) were used for the elucidation, qualitative and quantitative analysis of individual compounds.In food industry, spectroscopic investigations using infrared radiation have been used to monitor and evaluate the composition and quality already since the early sixties. During the last four decades near-infrared spectroscopy (NIR; 800–2500 nm; 12,500–4000 cm−1) has become one of the most attractive and used methods for analysis for the following reasons: it represents a non-invasive analytical tool allowing a fast and simultaneous qualitative and quantitative characterization of natural products and their constituents. Additionally, the development of custom-made hand-held instruments enables in-field measurement for determining the optimum harvest time.Attenuated total reflection (ATR) and Fourier transform infrared (FTIR) spectroscopic imaging are suitable not only for the differentiation of different plant species, but also to distinct various ingredients within a plant. FTIR spectroscopic microscopy enables molecular imaging of complex botanical samples and therefore the detection and characterization of the molecular components of biological tissue.In the present contribution, the principle, technique and methodology of the different infrared spectroscopic methods are described followed by a discussion of quantitative and qualitative application possibilities in the field of natural product analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号