首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract Micrococcus luteus starved for 2–7 months in spent medium following growth to stationary phase in batch culture exhibited a culturability (as estimated by direct plating on nutrient agar plates) of < 0.001%. However, following a lag, some 70% of the cells could be lysed upon inoculation into and cultivation in fresh lactate minimal medium containing penicillin, showing the capability of a significant portion of the cells at least to enlarge (and thus potentially to resuscitate). When the viable cell count was estimated using the most probable number method, by incubation of high dilutions of starved cells in liquid growth media, the number of culturable or resuscitable cells was very low, and little different from the viable cell count as assessed by plating on solid media. However, the apparent viability of these populations evidenced with the most probable number method was 1000–100 000-fold greater when samples were diluted into liquid media containing supernatants taken from the stationary phase of batch cultures of the organism, suggesting that viable cells can produce a factor which stimulates the resuscitation of dormant cells. Both approaches show, under conditions in which the growth of a limited number of viable cells during resuscitation is excluded, that a significant portion of the apparently non-viable cell population in an extended stationary phase is dormant, and not dead.  相似文献   

2.
Autophagy in the protozoan parasite, Trypanosoma brucei, may be involved in differentiation between different life cycle forms and during growth in culture. We have generated multiple parasite cell lines stably expressing green fluorescent protein- or hemagglutinin-tagged forms of the autophagy marker proteins, TbAtg8.1 and TbAtg8.2, in T. brucei procyclic forms to establish a trypanosome system for quick and reliable determination of autophagy under different culture conditions using flow cytometry. We found that starvation-induced autophagy in T. brucei can be inhibited by addition of a single amino acid, histidine, to the incubation buffer. In addition, we show that autophagy is induced when parasites enter stationary growth phase in culture and that their capacity to undergo starvation-induced autophagy decreases with increasing cell density.  相似文献   

3.
Bacteria such as Escherichia coli are frequently grown to high density to produce biomolecules for study in the laboratory. To achieve this, cells can be incubated in extremely rich media that increase overall cell yield. In these various media, bacteria may have different metabolic profiles, leading to changes in the amounts of toxic metabolites produced. We have previously shown that stresses experienced during short-term growth can affect the survival of cells during the long-term stationary phase (LTSP). Here, we incubated cells in LB, 2× yeast extract-tryptone (YT), Terrific Broth, or Super Broth medium and monitored survival during the LTSP, as well as other reporters of genetic and physiological change. We observe differential cell yield and survival in all media studied. We propose that differences in long-term survival are the result of changes in the metabolism of components of the media that may lead to increased levels of protein and/or DNA damage. We also show that culture pH and levels of protein glycation, a covalent modification that causes protein damage, affect long-term survival. Further, we measured mutation frequency after overnight incubation and observed a correlation between high mutation frequencies at the end of the log phase and loss of viability after 4 days of LTSP incubation, indicating that mutation frequency is potentially predictive of long-term survival. Since glycation and mutation can be caused by oxidative stress, we measured expression of the oxyR oxidative stress regulator during log-phase growth and found that higher levels of oxyR expression during the log phase are consistent with high mutation frequency and lower cell density during the LTSP. Since these complex rich media are often used when producing large quantities of biomolecules in the laboratory, the observed increase in damage resulting in glycation or mutation may lead to production of a heterogeneous population of plasmids or proteins, which could affect the quality of the end products yielded in some laboratory experiments.  相似文献   

4.
The ciliate Tetrahymena thermophila was starved for orthophosphate in a synthetic medium at pH 7.5. These cells did not utilize phosphorylcholine, final concentration 1 mM, as a phosphate source for cell growth and multiplication. If the phosphorylcholine solution, however, was incubated for 24 h at pH 5.5 with extracellular, "spent" medium from a culture in early stationary phase of growth, then it promoted culture growth readily at pH 7.5. It was shown that the spent medium in the same concentration did not stimulate growth in itself. It is concluded that extracellular digestion of phosphorylcholine enabled the cells to grow and multiply in a nutrient medium having organic phosphate compounds as the only phosphate source. It is argued that the phosphatases in the spent medium are of lysosomal origin.  相似文献   

5.
Aims: To investigate the effect of pH on the viability and the acid tolerance response (ATR) of bifidobacteria. Methods and Results: The impact of low pH on the viability of five species of bifidobacteria was examined under conditions of strict anaerobiosis. Although differences in the ability to resist the lethal effects of low pH were apparent among the species, cell viability could be improved by the provision of fermentable substrate during an acidic pH stress or through the use of stationary phase cells. While a stationary phase ATR was found to occur in two species of bifidobacteria, there was no adaptive response in exponential phase cells. Proteomic analysis of exponential phase Bifidobacterium longum subjected to a mild acid pre‐exposure (pH 4·5, 2 h) prior to an acid challenge revealed a substantial loss in the total number of cellular proteins. In contrast, proteomic analysis of stationary phase cells revealed an increased abundance of proteins associated with the general stress response as well as the β‐subunit of the F0F1‐ATPase, known to be important in bifidobacteria acid tolerance. Conclusion: Neither Bif. longum or Bifidobacterium breve possesses an inducible exponential phase ATR. Significance and Impact of the Study: These findings provide further insights into the impact of pH on the viability of bifidobacteria and may partially explain the loss in viability associated with their storage in acid foods.  相似文献   

6.
The resistance to stresses as starvation, the presence of ethanol, sulfite and low pH, is a fundamental prerequisite for starter cultures used to induce malolactic fermentation in wine. In order to evaluate stress resistance of cells undergone starvation, cells viability in laboratory cultures of Oenococcus oeni VP01 strain was monitored during prolonged stationary growth phase. Once entered the stationary phase, strain VP01 showed 99% reduction of cell viability within 4 days. The remaining cells population maintained viability over 70 days and, when plated on agar medium, generated small colonies. The occurrence of this phenomenon was associated to stress resistance, since 10-day-old cells resulted more resistant than 3-day-old cells to ethanol and low pH conditions. No genomic mutations were revealed by pulse-field gel electrophoresis (PFGE) analysis in aged cultures. Total protein analysis by bidimensional electrophoresis highlighted differential protein expression in cultures differentially aged. It was demonstrated that O. oeni starving cultures at the stationary phase are constituted by dynamic cell populations. These results offer interesting perspective for a better understanding of cells behavior when inoculated in wine.  相似文献   

7.
Sustained metabolic activity in non-growing, quiescent cells can increase the operational life-span of bio-processes and improve process economics by decoupling production from cell growth. Because of the ill-defined molecular nature of this phenotype, we developed selection protocols for the evolution of quiescent Escherichia coli mutants that exhibit high metabolic activity in ammonium starvation-induced stationary phase. The best enrichment procedures were continuously or discontinuously fed ammonium-limited chemostat cultures with a very low dilution rate of 0.03 h(-1). After 40 generations of selection, improved mutants with up to doubled catabolic rates in stationary phase were isolated. The metabolically most active clones were identified by screening for high specific glucose uptake rates during ammonium starvation-induced stationary phase in deep-well microtiter plates.  相似文献   

8.
Summary This research was designed to: a) characterize the normal pH changes that occur when cotton cell are grown in culture; b) determine if cotton cells can regulate the pH of their extracellular medium; and c) explore the effects of starting pH on cellular differentiation in culture, including formation of somatic embryos. When an aliquot of cotton cell suspension culture (Gossypium hirsutum L. cv Coker 312) was inoculated into fresh Murashige and Skoog (MS) medium at pH 4.5, the pH stabilized near 5.5 during the log phase of growth and then rose to pH 7.25. Cotton cells actively adjust medium with initial pH between 3 and 8 to near pH 5.5 in the early culture period. By acid/base titration, it has been shown that living cotton cells increase the buffer capacity of water and MS medium. Therefore, the metabolic activity of living cells accounts for the adjustment and stabilization of pH during the log phase of growth. The starting pH of the culture medium affects longterm viability, growth, and differentiation of the cells; pH 3 to 5 is best for cell viability, pH 3 to 4 enhances cell elongation; and pH 4, 7, or 8 stimulates somatic embryogenesis. Cultured cotton cells and the pH of their extracellular medium are in a complex, interactive relationship. This study was supported by the Texas Advanced Technology Program and the USDA-ARS. The journal no. for this paper is T-4-280, The College of Agriculture, Texas Tech University.  相似文献   

9.
Pseudomonas fluorescens ATCC 13525 was found to grow in a minimal mineral medium supplemented with millimolar amounts of aluminum, a known environmental toxicant. During the stationary phase of growth, the trivalent metal was localized in a phosphatidylethanolamine (PE)-containing residue. The concentration of PE in pellets ranged from 1.7 to 13.9 mg ml of culture(sup-1) in media supplemented with 1 to 30 mM aluminum. Although the gelatinous residue was observed during the stationary phase of growth, ultracentrifugation and dialysis experiments revealed that PE was produced from earlier stages of incubation and was associated with aluminum. A sharp diminution in the levels of PE and aluminum in the spent fluid was concomitant with the formation of the insoluble deposit. The aluminum content of the soluble cellular fraction increased during growth and reached an optimum of 1.85 mM of test metal at 45 h in cultures with 15 mM aluminum. Further incubation, however, led to a marked decrease in the cellular aluminum content, and during the stationary phase of growth, only trace amounts of the trivalent metal were detected in this fraction. When 45-h cells were incubated in fresh citrate medium, most of the intracellular aluminum was secreted in the spent fluid and citrate was rapidly consumed. Aluminum efflux was also observed in cultures in which d-glucose was substituted for citrate. However, no efflux of this trivalent metal was evident in media devoid of either citrate or d-glucose. Scanning electron microscopic studies and X-ray energy-dispersive analyses of the dialyzed supernatant aided in the visualization of nodule-like aluminum- and phosphorus-rich bodies associated with thread-like carbon-, oxygen-, and phosphorus-containing structures. Transmission electron microscopic and electron energy loss spectroscopic analyses revealed the presence of aluminum within bacteria after 45 h of incubation. Cells harvested after aluminum insolubilization did not shown aluminum inclusions. This aluminum-tolerant microbe may have potential application in bioremediation processes.  相似文献   

10.
In the present study, the protective effects of Bcl-2 over-expression in a suspension culture (without any adaptation) and spent medium (low nutrient and high toxic metabolite conditions) were investigated. In the suspension culture without prior adaptation, the viability of the control cell line fall to 0% by day 7, whereas the Bcl-2 cell line had a viability of 65%. The difference in the viability and viable cell density between the Bcl-2 and control cell lines was more apparent in the suspension culture than the static culture, and became even more apparent on day 6. Fluorescence microscopic counting revealed that the major mechanism of cell death in the control cell line in both the static and suspension cultures was apoptosis. For the Bcl-2 cell lines, necrosis was the major mode of cell death in the static culture, but apoptosis became equally important in the suspension culture. When the NSO 6A1 cell line was cultured in spent medium taken from a 14 day batch culture, the control cell line almost completely lost its viability by day 5, whereas, the Bcl-2 still had a viability of 73%. The viable cell density and viability of the Bcl-2 cell line cultivated in fresh medium were 2.2 and 2.7 fold higher, respectively, than those of the control cultures. However, the viable cell density and viability of the Bcl-2 cultivated in the spent medium were 8.7 and 7.8 fold higher, respectively, than those of the control cultures. Most of the dead cells in the control cell line were apoptotic; whereas, the major cell death mechanisms in the Bcl-2 cell line were necrotic.  相似文献   

11.
It has been found that Dictyostelium discoideum cells from the exponential growth phase of axenically grown cultures are cohesive, whereas those from stationary phase are not. These differences in cohesiveness are seen in phosphate buffer and in axenic medium. Stationary phase medium inhibits the aggregation of log phase cells; stationary phase cells inoculated into freshly prepared medium regain their cohesiveness. Stationary phase medium may contain an inhibitor of cell cohesion. pH differences between the two types of medium are not entirely responsible for loss of cohesiveness.  相似文献   

12.
The radiation sensitivity and potentially lethal damage recovery (PLDR) capacity of A549 human lung carcinoma cells have been studied. For unfed monolayer cultures, radiation sensitivity was greater in plateau phase than in log phase of growth. PLDR was observed when plateau-phase cells were held in their own spent medium postirradiation, such that the dose-response curve with 24 h holding was similar to that for log-phase cells plated immediately after irradiation. The high PLDR capacity of A549 plateau-phase cells (recovery factor between 40 and 70 for 24 h holding after 10 Gy) was reduced 10-fold or more by alkalinizing the pH of the spent medium immediately after irradiation from a value of 6.5 +/- 0.1 to a value of 7.6. Medium alkalinization resulted in an increase in the rate of glycolysis, with subsequent reacidification to a pH of 7.3 within 2 h of the pH adjustment. No change in cell cycle distribution was observed in the plateau-phase cultures up to 32 h after change of medium pH, and no increase in cell density was found after 48 h. A slight increase in the rate of incorporation of radiolabeled thymidine into acid-precipitable material was observed at 4 and 24 h after alkalinization of the medium. While it is not possible at present to define a mechanism for this pH effect, our results demonstrate that, at least for this cell line, variables such as medium pH and glucose concentration can profoundly influence the observation of PLDR.  相似文献   

13.
The ciliate Tetrahymena pyriformis was grown in a peptone medium without added glucose. The interrelationship between increasing cell density and pH of the growth medium was studied from mid-log to the stationary phase, i.e. from 50,000 to 1,000,000 cells/ml, by continuous registration of the pH of the growth medium. The present findings correlate with the known physiological, biochemical, and structural changes occurring in Tetrahymena as it passes through the culture cycle. The ammonia production of the cells and the buffer capacity of the growth medium were determined throughout the growth cycle. The results revealed that the ammonia excreted by the cells can explain the increase in pH of the medium from 6.8 to about 8.3 normally seen during the culture cycle. Moreover, neither the increased pH nor the raised level of ammonia were found to be the responsible factor for cessation of cell proliferation in the stationary growth phase although these factors may affect cell proliferation in concentrations well beyond the range found in normal cultures.  相似文献   

14.
Decreases in cell division at the stationary phase in bacterial cultures are often due to the depletion of nutrients and/or accumulation of toxic waste products. Yet, during the stationary phase, the highly radiation-resistant bacterium Deinococcus radiodurans undergoes new rounds of cell division when Mn(II) is added to the medium in a phenomenon known as manganese-induced cell division (MnCD). When cells were cultured in medium without Mn(II)-enrichment, a heat-resistant, proteinase K-resistant factor (or factors) with a molecular mass less than 10 kD accumulated in the spent medium. Inclusion of the concentrated spent medium in fresh medium could inhibit the growth of D. radiodurans significantly, and the degree of inhibition was dose dependent. However, the relative stimulatory effect of MnCD was also dose dependent—the higher the inhibition, the stronger was the MnCD response. Previous studies have shown that nutrients were not limiting and deinococcal cells would continue metabolizing its nutrients at stationary phase. Cells became more sensitive to radiation when nutrients in the medium eventually became depleted. We speculated that D. radiodurans might produce this factor in the medium to control its population density. The reduction in cell population would conserve the nutrients that in turn might enhance the survival of the species.  相似文献   

15.
The distribution of Chinese hamster cells with respect to the compartments of the cell generation cycle was studied in cultures in the stationary phase of growth in two different media. A measure of the state of depletion of the nutrient medium was formulated by defining a quantity termed the nutritive capacity of the medium. This quantity was used to verify that the cessation of cell proliferation is due to nutrient deficiencies and not to density dependent growth inhibition. Cell cultures in stationary phase were diluted into fresh medium and as growth resumed, mitotic index, cumulative mitotic index, label index and viability were measured as a function of time. The distribution of cells with respect to compartments of the cell generation cycle in stationary phase populations was reconstructed from these data. Stationary phase populations of Chinese hamster cells that retained the capacity for renewed growth when diluted into fresh medium were found to be arrested in the G1 and G2 portions of the cycle; the relative proportion of these cells in G1 increased with time in the stationary phase, but the sequence differs in the two media. In early stationary phase, in the less rich medium, more cells are in G2 than in G1. Also in this medium a fraction of the population was observed to be synthesizing DNA during stationary phase, but this fraction was not stimulated to renewed growth by dilution into fresh medium.  相似文献   

16.
The effect of high molecular weight water-soluble chitosan (WSC) on serum starvation-induced apoptosis in human astrocytes (CCF-STTG1 Cells) was investigated. WSC, having an average molecular weight of 300 kDa and a degree of deacetylation over 90%, can be produced using a simple multi-step membrane separation process. Serum starvation led to growth arrest, rounding up of cells and appearance of p53 bands. Prolonged (48 h) incubation in serum starved medium led to cell detachment and death. WSC significantly protected the serum starvation-induced cellular rounding up and protected the serum starvation-induced cell death as tested by flow cytometry. WSC also protected serum starvation-induced p53 activation as determined by Western blot. These results suggest that WSC may prevent serum starvation-induced apoptosis of CCF-STTG1 cells via p53 inactivation.  相似文献   

17.
SurA is a periplasmic peptidyl-prolyl isomerase required for the efficient folding of extracytoplasmic proteins. Although the surA gene had been identified in a screen for mutants that failed to survive in stationary phase, the role played by SurA in stationary-phase survival remained unknown. The results presented here demonstrate that the survival defect of surA mutants is due to their inability to grow at elevated pH in the absence of ςS. When cultures of Escherichia coli were grown in peptide-rich Luria-Bertani medium, the majority of the cells lost viability during the first two to three days of incubation in stationary phase as the pH rose to pH 9. At this time the surviving cells resumed growth. In cultures of surA rpoS double mutants the survivors lysed as they attempted to resume growth at the elevated pH. Cells lacking penicillin binding protein 3 and ςS had a survival defect similar to that of surA rpoS double mutants, suggesting that SurA foldase activity is important for the proper assembly of the cell wall-synthesizing apparatus.  相似文献   

18.
19.
Summary The viable count in fructose-grown cultures of Acetobacterium woodii fell to undetectable levels 186 h after the stationary phase was reached. The loss of viability was due to accumulation of undissociated acetic acid, since loss of viability could be induced artificially in cultures grown at pH 6.8 by adjusting the pH to 5.0 or by adding high concentrations of acetate. Survival was greatly improved when cultures were grown at low initial fructose concentrations ( 2 g/l) to limit acetate production, since viable cells could still be detected after 73d.  相似文献   

20.
Yang Y  Balcarcel RR 《BioTechniques》2004,36(2):286-90, 292, 294-5
In this report, we describe a method for the quantitative determination of carbon dioxide production rates of mammalian cells. Custom-made, reusable, optically clear plugs are used to seal the wells of a 24-well plate. These plugs prevent the loss of CO2 produced by the mammalian cells cultured in bicarbonate-free medium. Measurements of pH, total liquid phase CO2, and viable cell density are used to estimate the average CO2 production rate during a 6-h incubation period. Using this method, four chemicals well-characterized in regards to toxicity, 2,4-dinitrophenol, antimycin A, rotenone, and cyanide, were found to elicit significant changes in CO2 production for given concentrations within 6 h, without inducing a decline in culture viability. Over longer exposure times, similar concentrations caused growth inhibition but not cell death. An assay based on metabolic change corresponding to growth inhibition that is more sensitive than traditional measures of cell death is a feasible complement to existing methods in drug discovery and toxicity testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号