首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of vasopressin to rat hepatocytes prelabeled with myo-[2-3H]inositol resulted in a very rapid decrease [3H]phosphatidylinositol 4,5-bisphosphate (Ptd-Ins-4,5-P2) which was paralleled by increases of up to 3-fold in the levels of [3H]inositol trisphosphate (Ins-P3) and [3H]inositol bisphosphate (Ins-P2). Increases of [3H]inositol phosphate (Ins-P) were not detected until about 5 min after hormone addition. These data indicate that the major pathway for hormone-induced lipid breakdown in liver is through a phosphodiesterase for PtdIns-4,5-P2 and that decreases of phosphatidylinositol are a secondary result of increased PtdIns-4,5-P2 resynthesis. Using the fluorescent Ca2+ indicator Quin 2, cytosolic free Ca2+ increased from 160 nM to about 400 nM after vasopressin addition to hepatocytes and preceded the conversion of phosphorylase b to a. Half-maximal and maximal increases of cytosolic free Ca2+ and phosphorylase a activity were observed at 0.2 and 1 nM vasopressin, respectively. The dose-response curve for the initial rate of cytosolic free Ca2+ increase was very similar to those obtained for the initial rates of Ins-P3 production and PtdIns-4,5-P2 breakdown. Pretreatment of hepatocytes with Li+ caused a 3--4-fold potentiation of vasopressin-induced elevations of Ins-P, Ins-P2, and Ins-P3, with half-maximal effects at 0.5, 1, and 5 mM, respectively. The calculated maximal concentrations of Ins-P3 in cells treated with 20 nM vasopressin were 10 and 30 microM, respectively, without and with Li+. Lithium did not affect the initial rate of inositol polyphosphate production or Ca2+ mobilization. The increase of Ins-P3 which correlated with peak cytosolic free Ca2+ elevation was about 0.6 microM. In a saponin-permeabilized hepatocyte preparation, Ins-P3 (1 microM) caused Ca2+ release from a vesicular, ATP-dependent Ca2+ pool. The data presented here suggest that Ins-P3 may be a second messenger for the mobilization of intracellular Ca2+ by hormones in liver.  相似文献   

2.
Adult rat hepatocytes in primary culture were examined to determine if Na+-dependent transmembrane Ca2+ fluxes precede reinitiation of DNA synthesis. Studies with 45Ca2+ and atomic absorption measurements of 40Ca2+ showed that hepatocytes lack plasma membrane Na+-Ca2+ exchange activity. Under chemically defined conditions, combinations of mitogens - EGF, insulin, and glucagon - failed to induce transmembrane Ca2+ fluxes early in the prereplicative phase. In addition, a Ca2+ ionophore, A23187, was non-mitogenic. Thus, plasma membrane Na+-Ca2+ exchange is not a mitogenic signal for hepatocytes. Elevated intracellular Ca2+ levels are thought to mediate early prereplicative events required for animal cell proliferation. These conclusions stem partly from findings that A23187, a Ca2+ ionophore, stimulates transmembrane Ca2+ fluxes and proliferation in several cell systems (reviewed in Boynton et al., 1982). Sodium ion fluxes also are implicated as "initiating" mitogenic signals (Koch and Leffert, 1979). In particular, amiloride-sensitive Na+ influxes, stimulated by growth factors, may be necessary to initiate DNA synthesis in rat hepatocytes, mouse and human fibroblasts, rat liver derived cell lines, mouse sympathetic neurons, human lymphocytes, and monkey kidney epithelial cells (reviewed in Leffert, 1982). Several investigators, using cells from electrically excitable tissues (Schellenberg and Swanson, 1981; Eckert and Grosse, 1982), have reported that plasma membrane Na+-Ca2+ exchange carriers regulate intracellular Na+ and Ca2+ concentration. It is unclear if this exchange system exists in non-electrically excitable membranes, especially with regard to hepatocytes (Judah and Ahmed, 1964; van Rossum, 1970). We have here investigated the possible association of Na+ influxes with transmembrane Ca2+ movement following reinitiation of hepatocyte growth.  相似文献   

3.
1. A parallel dose-dependent activation of histone kinase, phosphorylase kinase and phosphorylase was observed in isolated hepatocytes incubated in the presence of glucagon; the effect of suboptimal concentrations of glucagon was antagonized by insulin. 2. An activation of phosphorylase which was not accompanied by a stable change in the activity of phosphorylase kinase was observed in hepatocytes incubated with phenylephrine, isoproterenol or vasopressin as well as on decapitation of unanesthetized animals. A dissociation of the two enzymic activities was also observed in hepatocytes incubated in the presence of a high concentration of glucose, in which phosphorylase was strongly inactivated with no change in the activity of phosphorylase kinase. 3. The activation of phosphorylase by phenylephrine in isolated hepatocytes was counteracted by insulin, greatly decreased by the absence of Ca2+ from the incubation medium, and completely suppressed by the replacement of Na+ by K+. 4. In a liver extract, phosphorylase kinase could also be activated by trypsin. Control, glucagon-activated or trypsin-activated phosphorylase kinase was inhibited by about 70% by EGTA and the activity was restored by the addition of Ca2+. 5. The mechanisms that control the activity of phosphorylase kinase and of phosphorylase are discussed.  相似文献   

4.
Arachidonic acid (AA) is reported to be metabolized by three major pathways, i.e., cyclooxygenase (CO), lipoxygenase (LO), and NADPH-dependent cytochrome P450 monooxygenase (MO) pathways. Monooxygenase metabolites of AA have been proposed to play an important role in hormone action in various cells. Recently it was reported that the MO pathway may exist in rat liver. The present study was carried out to investigate the role of MO metabolites in vasopressin-induced glycogenolysis in isolated rat hepatocytes. The pretreatment of isolated rat hepatocytes with eicosatetraynoic acid (ETYA), an inhibitor of CO, LO, and MO pathways, and ketoconazole and SKF 525A, inhibitors of the MO pathway, dose-dependently reduced vasopressin-induced phosphorylase activation, while the pretreatment with indomethacin, an inhibitor of the CO pathway, had no effect. The increment of cytosolic calcium concentration in vasopressin-stimulated hepatocytes was also dose-dependently decreased by ETYA, ketoconazole, and SKF 525A. In vitro addition of epoxyeicosatrienoic acid (EET) dose-dependently increased both phosphorylase a activity and cytosolic calcium concentration. 14,15-EET was the most potent among four regioisomeric EETs. These results suggest that MO metabolites of AA, most likely EETs, may be involved in vasopressin-induced glycogenolysis probably via the activation of phosphorylase by increasing the cytosolic calcium concentration.  相似文献   

5.
The constitutively active Gqalpha mutant construct (GqalphaQ-L) in Xenopus early embryos was overexpressed and the effects on dorsoventral patterning examined. It was found that prolonged stimulation of inositol 1,4,5-trisphosphate (IP3)-Ca2+ signaling by overexpression of GqalphaQ-L led to desensitization of IP3-induced Ca2+ release (IICR). Desensitization of IICR on the ventral side specifically induced an ectopic dorsal axis due to the conversion of ventral marginal mesoderm to adopt a dorsal fate. This effect of desensitization resembles that of inhibitory antibodies against the IP3 receptor, as reported previously. These results strengthen the earlier finding that active IP3-Ca2+ signaling functions in ventral signaling during the early embryonic development of Xenopus. Furthermore, the nature of downregulation of the Xenopus IP3 receptor through continuous stimulation of IP3-Ca2+ signaling might play a role in regulating endogenous IP3-Ca2+ signaling in Xenopus early development.  相似文献   

6.
Stimulation of P2-purinergic receptors by ATP resulted in activation of phosphorylase, which was associated with marked production of inositol trisphosphate (Ins-P3), in rat hepatocytes. ATP also inhibited forskolin-induced accumulation of cAMP in the presence of a phosphodiesterase inhibitor. On the contrary, adenosine or AMP never inhibited the cAMP accumulation, but increased hepatocyte cAMP; the stimulation was antagonized by a methylxanthine. Thus, P1-purinergic receptors are linked to adenylate cyclase in a stimulatory fashion in hepatocytes. Various kinds of purine nucleotides stimulating P2-receptors can be divided into two groups on the basis of their relative abilities to stimulate Ins-P3 production and to inhibit cAMP accumulation; the first group including adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), ADP, 5-adenylyl imidodiphosphate, GTP, and guanosine 5'-O-(3-thiotriphosphate) has an efficacy similar to that of ATP, and the second group of nucleotides including alpha, beta-methyleneadenosine 5'-triphosphate, beta, gamma-methyleneadenosine 5'-triphosphate (App(CH)2)p), and GDP exerts considerable inhibitory effects on cAMP accumulation, but only slight effects on inositol lipid metabolism. Treatment of hepatocytes with islet-activating protein, pertussis toxin, blocked the nucleotide-induced inhibition of cAMP accumulation, but exerted only a small effect on Ins-P3 production. In membranes prepared from hepatocytes, forskolin-stimulated adenylate cyclase was inhibited by GTP. This GTP-induced inhibition of the enzyme was susceptible to islet-activating protein and dependent on the concentration of ATP (or its derivatives, ATP gamma S or App(CH2)p). It is concluded that there are two types of P2-purinergic receptors: one is linked to adenylate cyclase via an inhibitory guanine nucleotide regulatory protein (Gi) and the other is linked to phospholipase C.  相似文献   

7.
To pursue our studies of the effects of adrenalectomy on the adrenergic regulation of phosphorylase a, cAMP, cell calcium, and Ca2+ signaling in rat hepatocytes (Studer, R.K., and Borle, A.B. (1984) Biochim. Biophys. Acta 804, 377-385; Freudenrich, C.C., and Borle, A.B. (1988) J. Biol. Chem. 263, 8604-8610), we have further examined the alpha 1-adrenergic pathway in adrenalectomized and sham-operated male rats. We measured the number and affinity of alpha 1-adrenergic receptors, the cytosolic free Ca2+ concentration [(Ca2+]i) of hepatocytes with aequorin, inositol triphosphate (IP3) accumulation, and Ca2+ influx and efflux across the plasma membrane. We also compared the effects of vasopressin with those obtained with epinephrine. We found that the number of alpha 1-adrenergic receptors was slightly depressed (-23%), but that their affinity was unchanged. However, IP3 accumulation evoked by epinephrine was decreased 50%. This is probably the main cause for the depressed peak rise in [Ca2+]i we previously observed and reported. We also found that the basal resting Ca2+ influx was increased after adrenalectomy. Experiments with the beta-blocker propranolol, which abolished the epinephrine-evoked increase in Ca2+ influx, suggest that this effect may be mediated by cAMP, at least in adrenalectomized animals. The effects of vasopressin on IP3 [Ca2+]i and Ca2+ influx and efflux were also significantly decreased after adrenalectomy, indicating that alpha 1-adrenergic-mediated and other IP3-dependent Ca2+ signaling pathways are depressed after adrenalectomy.  相似文献   

8.
The tissue/medium distribution of the nonmetabolized glucose analog 3-O-methyl-D-glucose was measured in mouse diaphragm muscle and related to changes in 45Ca influx, Na+ content and Na+-pump activity. In the presence of external Ca2+ the sodium ionophore monensin greatly increased cellular Na+ content (and decreased K+ content) although 86Rb uptake, reflecting Na+-pump activity was increased. Concomitantly, 45Ca influx was stimulated, presumably through activation of Na+-Ca2+ exchange. In parallel to the rise in Ca2+ influx sugar transport was also increased. Sugar transport was also increased by monensin in the nominal absence of external Ca2+, when Ca2+ influx was minimal. To test if monensin releases Ca2+ from intracellular storage sites in the absence of external Ca2+, the ionophore was added to medium perfusing rat hind limb preparations and the total Ca content of muscle mitochondria was determined. When Ca2+ was present in the perfusate, monensin increased the mitochondrial Ca content. In the absence of Ca2+, the mitochondrial Ca content was lower and was further depressed by monensin, suggesting that elevation of internal Na+ by monensin may increase mitochondrial Ca2+ loss via activation of Na+-Ca2+ exchange across the mitochondrial membrane. The above results are consistent with the effect of monensin on sugar transport being due to alterations in Ca2+ distribution. They support the earlier conclusion that regulation of sugar transport in muscle is Ca2+ dependent.  相似文献   

9.
The influence of extracellular Ca2+ on hormone-mediated increases of cytosolic free Ca2+ [( Ca2+]i) and phosphorylase activity was studied in isolated hepatocytes. In the presence of 1.3 mM extracellular Ca2+, the stimulation of phosphorylase activity produced by vasopressin or phenylephrine was maintained for 20-30 min. In contrast, the change in [Ca2+]i under these conditions was more transient and declined within 3-4 min to steady state values only 70 +/- 8 nM above the resting [Ca2+]i. Removal of the hormone from its receptor with specific antagonists caused a decline in [Ca2+]i back to the original resting values. Subsequent addition of a second hormone elicited a further Ca2+ transient. If the antagonist was omitted, the second hormone addition did not increase [Ca2+]i indicating that the labile intracellular Ca2+ pool remains depleted during receptor occupation. When extracellular Ca2+ was omitted, both the changes of [Ca2+]i and phosphorylase a caused by vasopressin were transient and returned exactly to resting values within 3-4 min. The subsequent readdition of Ca2+ to these cells produced a further increase of [Ca2+]i and phosphorylase activity which was larger than the changes observed upon Ca2+ addition to untreated cells. This reactivation of phosphorylase showed saturation kinetics with respect to extracellular [Ca2+], was maximally stimulated within 1 min of vasopressin addition and was inhibited by high concentration of diltiazem. We conclude that entry of extracellular Ca2+ into the cell is required in order to obtain a sustained hormonal stimulation of phosphorylase activity and is responsible for the maintenance of a small steady state elevation of [Ca2+]i.  相似文献   

10.
Activation of glycogen phosphorylase by hormones was examined in hepatocytes isolated from euthyroid and hypothyroid female rats and incubated by Ca2+-free buffer containing 1 mM-EGTA. Basal glycogen phosphorylase activity was decreased in Ca2+-free buffer. However, the activation of hepatocyte glycogen phosphorylase, in the absence of extracellular Ca2+, in response to adrenaline, glucagon or phenylephrine was slightly lower, whereas that by vasopressin was abolished. The activation of glycogen phosphorylase by phenylephrine, adrenaline or isoproterenol (isoprenaline) in hepatocytes from euthyroid rats incubated in the absence of Ca2+ was not accompanied by any detectable increase in total cyclic AMP. The log-dose/response curves for activation of phosphorylase by phenylephrine or low concentrations of adrenaline were the same in hepatocytes from hypothyroid as compared wit euthyroid rats, whereas the response to isoproterenol was greater in hepatocytes from hypothyroid rats. However, the increases in total cyclic AMP accumulation caused by adrenaline or isoproterenol were greater in hepatocytes from hypothyroid rats than in hepatocytes from euthyroid rats. The increases in cyclic AMP accumulation caused by adrenaline or isoproterenol in Ca2+-depleted hepatocytes from hypothyroid rats were blocked by propranolol, a beta-adrenergic antagonist. In contrast, propranolol was only partially effective asan inhibitor of the activation of glycogen phosphorylase by phenylephrine or adrenaline in hepatocytes from hypothyroid rats and ineffective on phosphorylase activation in cells from euthyroid rats. These data indicate that the alpha-adrenergic activation of glycogen phosphorylase is not affected by the absence of extracellular Ca2+, and the extent to which total cyclic AMP was increased by adrenergic amines did not correlate with glycogen phosphorylase activation.  相似文献   

11.
Receptor-mediated breakdown of PtdIns(4,5)P2 produces two cellular signals, Ins(1,4,5)P3, which can release intracellular Ca2+, and diacylglycerol, which activates a Ca2+- and phospholipid-dependent protein kinase (protein kinase C). This study assesses the significance of protein kinase C in relation to phenylephrine- and vasopressin-induced Ca2+ mobilization in hepatocytes. Phorbol ester (4 beta-phorbol-12-myristate-13-acetate), which can directly activate protein kinase C, had no effect either on Ca2+ efflux from the cell (measured with arsenazo III) or on Ca2+ influx (measured with Quin-2), processes which are inhibited and stimulated, respectively, by both phenylephrine and vasopressin. No evidence of synergism between phorbol ester pretreatment of hepatocytes and the Ca2+ ionophore (ionomycin)-mediated effects on the increase of cytosolic free Ca2+ and phosphorylase activation could be obtained. These findings suggest that protein kinase C is not obligatorily involved in the regulation of hepatocyte Ca2+ fluxes. Pretreatment of hepatocytes with phorbol ester (PMA) or 1-oleoyl-2-acetylglycerol totally inhibited the effects of phenylephrine in elevating the cytosolic free Ca2+; half-maximal inhibitory effects occurred at PMA and 1-oleoyl-2-acetylglycerol concentrations of 1 ng/ml and 12 micrograms/ml, respectively. In contrast, pretreatment with PMA had a much smaller effect on Ca2+ mobilization induced by vasopressin. These observations suggest that protein kinase C may be involved in "down-regulation" of the alpha 1-receptor in hepatocytes and may thus exert a negative influence on the Ca2+-signalling pathway.  相似文献   

12.
Release of Ca2+ from intracellular stores was studied in the parent PC12 cell line and in recently isolated clones sensitive or insensitive to caffeine. In the caffeine-sensitive cells the cytosolic free Ca2+ concentration ([Ca2+]i) responses by the xanthine drug and by stimulants of receptors coupled to inositol 1,4,5-trisphosphate (Ins-P3) generation (bradykinin, ATP) depend on separate pathways because 1) caffeine does not stimulate the hydrolysis of phosphatidylinositol 4,5-bisphosphate and 2) Ca(2+)-induced Ca2+ release, the process activated by caffeine, plays no major role in the Ins-P3-induced Ca2+ mobilization. Although distinct, these two mechanisms converge onto the same Ca2+ store. In fact 1) the [Ca2+]i responses by receptor agonists and caffeine were not additive; 2) either type of agent reduced (up to complete inhibition) the response to a subsequent administration of the same or the other agent; 3) all these responses were prevented by selective Ca2+ ATPase blockers; 4) ryanodine, which affects the intracellular Ca2+ channel sensitive to caffeine, also induced depletion of the receptor-sensitive Ca2+ pool; 5) in the 10 PC12 clones tested, sensitivity to caffeine paralleled ryanodine sensitivity. Therefore, PC12 cells, similar to some smooth muscle fibers but at variance with neurons and other secretory cells, express a single, rapidly exchanging Ca2+ store in which two distinct intracellular Ca2+ channels, i.e. the receptors for caffeine-ryanodine and Ins-P3, appear to be colocalized.  相似文献   

13.
1. In hepatocytes, epidermal growth factor (EFG) (a) increased the rate of 45Ca2+ exchange in cells incubated at 1.3 mM extracellular Ca2+, (b) increased the activity of glycogen phosphorylase a and the intracellular free Ca2+ concentration (measured with quin2) in a process dependent on the concentration of extracellular Ca2+, and (c) enhanced the increase in glycogen phosphorylase activity which follows the addition of Ca2+ to cells previously incubated in the absence of Ca2+. It is concluded that EGF stimulates plasma-membrane Ca2+ inflow. 2. The effects of the combination of EGF and vasopressin on the rate of 45Ca2+ exchange and on the rate of increase in glycogen phosphorylase activity were the same as those of vasopressin alone. 3. The amount of 45Ca2+ released by EGF from internal stores was about 30% of that released by vasopressin. No detectable increase in [3H]inositol mono-, bis- or tris-phosphate was observed after the addition of EGF to cells labelled with myo-[3H]inositol. 4. In hepatocytes isolated from rats treated with pertussis toxin, the effects of EGF and vasopressin on phosphorylase activity (measured at 1.3 mM-Ca2+) and on the rate of Ca2+ inflow (measured with quin2) were markedly decreased compared with those in normal cells. 5. Treatment with pertussis toxin did not impair the ability of vasopressin to release Ca2+ from internal stores, but decreased vasopressin-stimulated [3H]inositol polyphosphate formation by 50%. 6. It is concluded that the mechanism(s) by which vasopressin and EGF stimulate plasma-membrane Ca2+-inflow transporters in hepatocytes involves a GTP-binding regulatory protein sensitive to pertussis toxin, and does not require an increase in the concentration of inositol trisphosphate comparable with that which induces the release of Ca2+ from the endoplasmic reticulum.  相似文献   

14.
Adrenergic regulation of glycogen phosphorylase and synthase was studied with adult rat hepatocytes either immediately after isolation (fresh hepatocytes) or after 24-h maintenance in culture (cultured hepatocytes). In fresh hepatocytes, an α-adrenergic agonist caused stronger activation of phosphorylase than a β agonist, and the effect of epinephrine to activate phosphorylase and to inactivate synthase was suppressed by an α antagonist more efficiently than by a β antagonist. In cultured hepatocytes, however, the relative activities of α- and β adrenergic agents were reversed; a β agonist was much more effective than an α-agonist in activating phosphorylase, and the action of epinephrine on phosphorylase, synthase, and cyclic AMP generation was almost totally blocked by a β antagonist but not by an α antagonist. Such a reciprocal change in hepatic α- and β-adrenergic responses occurred progressively during culture; the change was interfered with by cycloheximide, an inhibitor of protein synthesis, added to the culture medium. Thus, β-adrenergic functions became predominant over α functions when hepatocytes were maintained in primary culture. Physiological significance of this phenomenon is discussed.  相似文献   

15.
Inositol 1,4,5-trisphosphate (IP3) binding to, and Ca2+ uptake and release by plasma membrane- and endoplasmic reticulum-enriched fractions of rat liver were measured after continuous Escherichia coli endotoxin (ET) administration in vivo. IP3 binding to both fractions was significantly reduced by ET treatment. This was associated with decreased Ca2+ uptake and impaired IP3-dependent Ca2+ release. A decrease of 5'-nucleotidase specific activity of plasma membrane-enriched fraction was also observed in ET treated rats. The results suggest that previously observed impairments in the ability of hepatocytes to mobilize Ca2+, to activate glycogen phosphorylase and to respond--when saponin permeabilized--by Ca2+ release upon IP3 addition during chronic endotoxemia are due to alterations in both IP3 binding to the subcellular fractions that are imputed to be targets of IP3, and a decrease in the size of IP3-sensitive pool of releasable Ca2+.  相似文献   

16.
The relation between Ca2+ efflux, Ca2+ mobilization from mitochondria and glycogenolysis was studied in perfused euthyroid and hypothyroid rat livers stimulated by Ca2+-mobilizing hormones. Ca2+ efflux, induced by noradrenaline (1 microM) in the absence or presence of DL-propranolol (10 microM) from livers perfused with medium containing a low concentration of Ca2+ (approx. 24 microM), was decreased by more than 50% in hypothyroidism. This correlated with an equal decrease of the fractional mobilization of mitochondrial Ca2+, which could account for 65% of the difference between the net amounts of Ca2+ expelled from the euthyroid and hypothyroid livers. With vasopressin (10 nM) similar results were found, suggesting that hypothyroidism has a general effect on mobilization of internal Ca2+. In normal Ca2+ medium (1300 microM), however, the effect of vasopressin on net Ca2+ fluxes and phosphorylase activation was not impaired in hypothyroidism, indicating that Ca2+ mobilization from the mitochondria in this case plays a minor role in phosphorylase activation. The alpha 1-adrenergic responses of Ca2+ efflux, phosphorylase activation and glucose output, glucose-6-phosphatase activity and oxygen consumption in hypothyroid rat liver were completely restored by in vivo T3 injections (0.5 micrograms per 100 g body weight, daily during 3 days). Perfusion with T3 (100 pM) during 19 min did not influence hypothyroid rat liver oxygen consumption and alpha 1-receptor-mediated Ca2+ efflux. However, this in vitro T3 treatment showed a completely recovered alpha 1-adrenergic response of phosphorylase and a partly restored glucose-6-phosphatase activity and glucose output. The results indicate that thyroid hormones may control alpha 1-adrenergic stimulation of glycogenolysis by at least two mechanisms, i.e., a long-term action on Ca2+ mobilization, and a short-term action on separate stages of the glycogenolytic process.  相似文献   

17.
At maximally effective concentrations, vasopressin (10(-7) M) increased myo-inositol trisphosphate (IP3) in isolated rat hepatocytes by 100% at 3 s and 150% at 6 s, while adrenaline (epinephrine) (10(-5) M) produced a 17% increase at 3 s and a 30% increase at 6 s. These increases were maintained for at least 10 min. Both agents increased cytosolic free Ca2+ [( Ca2+]i) maximally by 5 s. Increases in IP3 were also observed with angiotensin II and ATP, but not with glucagon or platelet-activating factor. The dose-responses of vasopressin and adrenaline on phosphorylase and [Ca2+]i showed a close correspondence, whereas IP3 accumulation was 20-30-fold less sensitive. However, significant (20%) increases in IP3 could be observed with 10(-9) M-vasopressin and 10(-7) M-adrenaline, which induce near-maximal phosphorylase activation. Vasopressin-induced accumulation of IP3 was potentiated by 10mM-Li+, after a lag of approx. 1 min. However the rise in [Ca2+]i and phosphorylase activation were not potentiated at any time examined. Similar data were obtained with adrenaline as agonist. Lowering the extracellular Ca2+ to 30 microM or 250 microM did not affect the initial rise in [Ca2+]i with vasopressin but resulted in a rapid decline in [Ca2+]i. Brief chelation of extracellular Ca2+ for times up to 4 min also did not impair the rate or magnitude of the increase in [Ca2+]i or phosphorylase a induced by vasopressin. The following conclusions are drawn from these studies. IP3 is increased in rat hepatocytes by vasopressin, adrenaline, angiotensin II and ATP. The temporal relationships of its accumulation to the increases in [Ca2+]i and phosphorylase a are consistent with it playing a second message role. Influx of extracellular Ca2+ is not required for the initial rise in [Ca2+]i induced by these agonists, but is required for the maintenance of the elevated [Ca2+]i.  相似文献   

18.
Addition of gonadotropin releasing hormone (GnRH) to pituitary cells prelabeled with [32P]Pi or with myo-[2-3H]inositol, resulted in a rapid decrease in the level of [32P]phosphatidylinositol 4,5-bisphosphate (approximately 10 s), and in [32P]phosphatidylinositol 4-phosphate (approximately 1 min), followed by increased labeling of [32P]phosphatidylinositol and [32P]phosphatidic acid (1 min). GnRH stimulated the appearance of [3H]myo-inositol 1,4,5-trisphosphate (10 s), [3H]myo-inositol 1,4-bisphosphate (15 s), and [3H]myo-inositol 1-phosphate (1 min) in the presence of Li+ (10 mM). Li+ alone stimulated the accumulation of [3H]myo-inositol 1-phosphate and [3H]myo-inositol 1,4-bisphosphate but not [3H]myo-inositol 1,4,5-trisphosphate, but had no effect on luteinizing hormone release. The effect of GnRH on inositol phosphates (Ins-P) production was dose-related (ED50 = 1-5 nM), and was blocked by a potent antagonist [D-pGlu,pClPhe,D-Trp]GnRH. Elevation of cytosolic free Ca2+ levels ([Ca2+]i), by ionomycin and A23187 from intracellular or extracellular Ca2+ pools, respectively, had no significant effect on [3H]Ins-P production. GnRH-induced [3H]Ins-P production was not dependent on extracellular Ca2+ and was noticed also after extracellular or intracellular Ca2+ mobilization by A23187 or ionomycin, respectively. The effect of GnRH on [3H]Ins-P accumulation was not affected by prior treatment of the cells with the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate or with islet-activating protein pertussis toxin. These results indicate that GnRH stimulates a rapid phosphodiester hydrolysis of polyphosphoinositides. The stimulatory effect is not mediated via an islet-activating protein-substrate, is not dependent on elevation of [Ca2+]i, neither is it negatively regulated by 12-O-tetradecanoylphorbol-13-acetate which activates Ca2+/phospholipid-dependent protein C kinase. The results are consistent with the hypothesis that GnRH-induced phosphoinositide turnover is responsible for Ca2+ mobilization followed by gonadotropin release.  相似文献   

19.
The ability of angiotensin II to down-regulate its receptor was tested on rat hepatocytes in primary culture for 4 h. Angiotensin II treatment decreased [3H]angiotensin II specific binding in a concentration- and time-dependent manner. The effect was maximum with 1 microM angiotensin II and after 2 h. There was a decrease in the maximum number of binding sites (56% of control) with no significant effect on the apparent dissociation constant. The down-regulation was blocked by the angiotensin II antagonist [Val4,Ile7]angiotensin III and was not induced by other hormones (e.g. vasopressin, norepinephrine, or glucagon) or by 4 beta-phorbol 12 beta-myristate 13 alpha-acetate or A23187 ionophore. The decrease in angiotensin II receptors resulted in correlated decreases in the potency of angiotensin II to activate phosphorylase or lower glucagon-induced cAMP accumulation. However, high concentrations of the agonist were still able to elicit maximal responses in both parameters. Down-regulation of the receptor was not dependent upon active Gi, since it was still observed after ADP-ribosylation and inactivation of Gi by pertussis toxin. The above results indicate that the down-regulation of the hepatic angiotensin II receptor induced by its agonist is homologous and does not involve Gi, Ca2+, or protein kinase C. The correlation of receptor loss with decreases in the potency of angiotensin to activate phosphorylase and inhibit glucagon-induced cAMP accumulation is consistent with the idea that a single receptor population regulates two different messengers, i.e. calcium and cAMP.  相似文献   

20.
The effects of pronase and/or SDS pretreatment on Na+-Ca2+ exchange were studied in rat brain microsomal membranes. Pronase in concentrations that liberated 11% of the membrane proteins stimulated the Na+-Ca2+ exchange. When about 24% of the proteins were split off, the results did not differ from those in control experiments. When 40% or more of the proteins were solubilized, Na+-Ca2+ exchange was abolished. Pronase pretreatment did not change the Km value for Ca2+, it increased Vmax only. The effect of pronase was partially blocked by Trasylol. Neuraminidase had no effect on Na+-Ca2+ exchange. SDS pretreatment of the membranes inhibited Na+-Ca2+ exchange: when 25% of membrane proteins were solubilized with SDS, the Na+-Ca2+ exchange was abolished while the same amount of proteins split off with pronase did not change the rate of Na+-Ca2+ exchange as related to membrane proteins. Ischaemia lasting for 2-4 h or complete hypoxia which should stimulate endogenous proteinases due to the rise of free intracellular calcium did not influence the Na+-Ca2+ exchange. A decrease in Na+-Ca2+ exchange rate was observed when proteins with molecular weight between 45,000 and 20,000 were split off from the membranes. It is assumed that the Na+-Ca2+ antiporter is a polypeptide from the group of proteins within the above molecular weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号