首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneously cycling LT/Sv strain female mice were mated to hemizygous Rb(X.2)2Ad males in order to facilitate the distinction of the paternal X chromosome, and the pregnant females were autopsied at about midday on the tenth day of gestation. Out of a total of 222 analysable embryos recovered, 165 (74.3%) were diploid and 57 (25.7%) were triploid. Of the triploids, 26 had an XXY and 31 an XXX sex chromosome constitution. Both embryonic and extra-embryonic tissue samples from the triploids were analysed cytogenetically by G-banding and by the Kanda technique to investigate their X-inactivation pattern. The yolk sac samples were separated enzymatically into their endodermally-derived and mesodermally-derived components, and these were similarly analysed, as were similar samples from a selection of control XmXp diploid embryos. In the case of the XmXmY digynic triploid embryos, a single darkly-staining Xm chromosome was observed in 485 (82.9%) out of 585, 304 (73.3%) out of 415, and 165 (44.7%) out of 369 metaphases from the embryonic, yolk sac mesodermally-derived and yolk sac endodermally-derived tissues, respectively. The absence of a darkly staining X-chromosome in the other metaphase spreads could either indicate that both X-chromosomes present were active, or that the Kanda technique had failed to differentially stain the inactive X-chromosome(s) present. In the case of the XmXmXp digynic triploid embryos, virtually all of the tissues analysed comprised two distinct cell lineages, namely those with two darkly-staining X-chromosomes, and those with a single darkly staining X-chromosome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Diandric triploid mouse embryos were produced by standard micromanipulatory techniques, using eggs isolated from female mice with a normal chromosome constitution that had been mated to homozygous Rb(1.3)1Bnr males (which carry a large metacentric "marker" chromosome, viz., a Robertsonian translocation involving chromosomes 1 and 3). The tripronucleate embryos were transferred to the oviducts of pseudopregnant mice, which were subsequently autopsied at about midday on the 10th day of gestation. Although a relatively small number of the isolated conceptuses consisted of morphologically abnormal egg-cylinder-like structures or empty gestational sacs, most were at clearly distinguishable embryonic stages, from the primitive streak stage to embryos with about 20 pairs of somites present. These embryos all appeared to be morphologically normal but were substantially smaller than normal (diploid) fertilized embryos analyzed at similar stages of development. A total of 63 diandric triploid conceptuses were recovered and analyzed cytogenetically. They were G-banded to determine their sex-chromosome constitution and confirm their diandric triploid status. No obvious difference was observed in the developmental potential of the 58,XXX class of diandric triploids, compared to that of the 58,XXY class. The ratio of 58,XXX to 58,XXY embryos was close to the expected ratio of 1:2, assuming that unfertilized eggs have an equal chance of becoming fertilized by an X- or a Y-bearing spermatozoon and that the additional (i.e., "donor") male pronucleus also has an equal chance of having either an X or a Y sex chromosome present. However, the development of the 58,XYY class appeared to be restricted, even at the stage of gestation analyzed, in that no embryos with this genetic constitution were observed that had progressed beyond the early somite stage. The present findings are discussed in relation to the cytogenetic findings in human triploid conceptuses, the majority of which are spontaneously aborted during the first half of pregnancy. In man, the 69,XYY class (equivalent to the 58,XYY class in our study) is only rarely encountered, and it has been assumed that these triploid embryos are probably lost at a very early stage of gestation.  相似文献   

3.
Diandric and digynic triploid mouse embryos were isolated in the morning on day 10 of gestation. The embryos were separated from their extraembryonic membranes, and the latter were analysed cytogenetically by G-banding to establish the ploidy and sex chromosome constitution of these embryos. The diandric triploid embryos were produced by the technique of nuclear micromanipulation. Females were mated with male mice with a morphologically distinguishable "marker" chromosome to confirm the diandric status of these embryos. Digynic triploid and normal diploid embryos were isolated from LT/Sv strain females. These females spontaneously ovulate both primary and secondary oocytes, which are fertilisable and give rise to digynic triploid and normal diploid embryos, respectively. All the embryos were serially sectioned and processed in order to demonstrate the presence of alkaline phosphatase enzyme activity. This histochemical technique allowed primordial germ cells to be readily recognised, due to their characteristic location, cellular morphology, and staining appearance. Primordial germ cells were found in all the embryos studied, being located within the visceral yolk sac, at the base of the allantois, and/or in association with the wall or mesentery of the hindgut. The total number of germ cells present was established in nine diandric triploids and in five digynic triploids. The findings presented here represent the first demonstration that primordial germ cells can differentiate in either diandric or digynic triploid mammalian embryos.  相似文献   

4.
Triploidy is a lethal condition in mammals, with most dying at some stage between implantation and term. In humans, however, a very small proportion of triploids are liveborn but display a wide range of congenital abnormalities. In particular, the placentas of human diandric triploid embryos consistently display “partial” hydatidiform molar degeneration, while those of digynic triploids generally do not show these histopathological features. In mice, the postimplantation development of diandric and digynic triploid embryos also differs. While both classes are capable of developing to the forelimb bud stage, no specific degenerative features of their placentas have been reported. Diandric triploid mouse embryos are morphologically normal while digynic triploid mouse embryos consistently display neural tube and occasionally cardiac abnormalities. Previously it was shown that the preimplantation development of micromanipulated diandric triploid mouse embryos was similar to developmentally matched diploid control embryos. In this study, the preimplantation development of micromanipulated digynic triploid mouse embryos is analysed and compared with that of diandric triploid mouse embryos in order to determine whether there is any difference in cleavage rate between these two classes of triploids. Standard micromanipulatory procedures were used to insert a female or a male pronucleus into a recipient diploid 1-cell stage embryo. The karyoplast was fused to the cytoplasm of the embryo by electrofusion. These tripronucleate 1-cell stage embryos were then transferred to pseudopregnant recipients and, at specific times after the HCG injection to induce ovulation, the embryos were recovered and total cell counts made. These results were plotted and regression lines drawn. An additional control group of embryos was subjected to similar micromanipulatory procedures to those used in the experimental study. These embryos had a single pronucleus removed and this was then reinserted into the perivitelline space. Diploidy was immediately restored by electrofusion. These embryos were transferred to recipients and at specific times after the HCG injection the embryos were recovered and total cell counts made. These results were also plotted and regression lines drawn. The results show that the cell doubling time of the digynic triploid embryos was 14.84 h (± 1.19). This was not significantly different from that of the diandric triploid embryos (13.55 h ± 0.86; P > 0.05) or of the manipulated diploid controls (12.12 h ± 0.79; P > 0.05). © 1993 Wiley-Liss, Inc.  相似文献   

5.
When spontaneously ovulating LT/Sv female mice are mated with fertile males, between one third and one half of the zygotes analyzed at the first cleavage mitosis are found to be triploid. This is due to the fact that LT/Sv females ovulate both primary and secondary oocytes, all of which are capable of being fertilized. Fertilization of the former group results in the production of digynic triploid conceptuses, while their diploid littermates result from the fertilization of normal secondary oocytes. The present study was therefore carried out in order to investigate the 'spontaneous' level of triploidy in these mice, and to provide insight into the developmental fate of the LT/Sv triploid embryos, as previous studies had indicated that in this species triploids invariably fail to develop beyond the early postimplantation period. This study revealed that when autopsies were carried out on the 7th and 8th days of gestation, it was generally difficult to distinguish between the karyologically normal diploids and the digynic triploid conceptuses when only morphological criteria were used. However, by the 10th day of gestation, the triploid conceptuses could usually be readily distinguished from their diploid littermates by their smaller size and (occasionally) by their disorganized or abnormal morphological appearance.  相似文献   

6.
LT/Sv strain mice ovulate both primary and secondary oocytes. These are fertilizable and give rise to digynic triploid and normal diploid conceptuses, respectively. A previous study [Kaufman and Speirs, 1987] had indicated that just over 20% of embryos recovered on the 10th day of gestation from spontaneously ovulating females had a triploid chromosome constitution. This value was considerably lower than might have been expected by extrapolation from earlier studies in which LT/Sv mice had been given exogenous gonadotrophins. In the present study, therefore, cytogenetic analysis of fertilized eggs was performed at the first cleavage mitosis in (1) spontaneously ovulating females mated to F1 hybrid males, and (2) superovulated females mated to similar males. Additional females from group (1) were autopsied on the 10th day of gestation, and the ploidy of embryos isolated at this stage of gestation was determined. Exposure to exogenous gonadotrophins significantly increased the proportion of eggs that were ovulated as primary oocytes (34.4%), compared to the situation observed following spontaneous ovulation (24.4%). All the triploids encountered in both series were of the digynic type and characteristically (for LT/Sv mice) had an oocyte-derived set with 40 chromosomes present, and a sperm-derived set containing 20 chromosomes. Similar numbers of eggs were recovered from spontaneously ovulating females on the 1st and 10th days of gestation, and the incidence of triploidy observed on the 10th day was 22.1%. The influence of exogenous hormones in increasing the “spontaneous” level of triploidy in LT/Sv and in other strains of mice is briefly reviewed.  相似文献   

7.
Sex-chromosome constitution of postimplantation tetraploid mouse embryos   总被引:6,自引:0,他引:6  
Tetraploid mouse embryos were produced at the two-cell stage by blastomere fusion induced by inactivated Sendai virus. The embryos were from chromosomally normal female mice that had been fertilised by homozygous Rb(1.3)1Bnr males carrying a pair of large metacentric marker chromosomes in their karyotype. These "reconstructed" one-cell tetraploid embryos were then transferred to the oviducts of pseudopregnant recipients, which were subsequently autopsied early on the 10th day of gestation. Two-cell stage embryos that did not undergo blastomere fusion after 4-5 h were transferred to a second group of recipients, which were also autopsied early on the 10th day of gestation. From a total of 153 tetraploid embryos transferred to females that subsequently became pregnant, 135 implanted. Sixty-eight implantation sites were found to contain resorptions, whereas 67 contained mostly headfold presomite-stage embryos. Four embryos possessed four to six pairs of somites. All 57 embryos that could be analysed cytogenetically were found to be tetraploid. G-banding analysis revealed that 30 of these embryos had an XXYY and 27 and XXXX sex-chromosome constitution. The presence of two marker chromosomes in all mitotic preparations from each of these tetraploid embryos confirmed that they had all been produced by duplication of their original XY or XX diploid chromosome constitution, respectively. The XXYY:XXXX sex ratio observed was not significantly different from unity. In the control series of transfers, all of the embryos recovered were at the forelimb bud stage and had a diploid chromosome constitution. The results reported here differ from human clinical findings, in which the XXYY:XXXX sex ratio of 120 human tetraploid spontaneous abortions recovered over the last 20 years is 45:75. Possible explanations for these differences are briefly discussed.  相似文献   

8.
Standard micromanipulatory techniques were used to produce tripronucleate diandric and digynic triploid mouse conceptuses. When these were transferred to suitable recipients, most implanted. A wide range of embryonic stages from the primitive streak to the 15- to 25-somite stage were isolated in both triploid series in otherwise identical recipients. In the diandric triploid series, all of the embryos recovered appeared to be morphologically normal, but considerably smaller than fertilized embryos analysed at similar stages of development. This contrasts with the digynic triploid conceptuses which, though also ranging from the primitive-streak stage to about the 10- to 15-somite stage at the time of their isolation, generally showed poorer embryonic development than the diandric triploids, and were invariably morphologically abnormal. Unlike the situation observed in man, where the placentas of diandric triploid conceptuses commonly display widespread trophoblastic hyperplasia and form the characteristic 'partial' or 'incomplete' type of hydatidiform moles, the extraembryonic membranes of the diandric triploid mouse conceptuses (as well as the digynic triploids) did not appear to be grossly abnormal).  相似文献   

9.
Diploid and triploid rabbit embryos obtained by artificial fertilization were cultured. No Barr's body in XXY and only one Barr's body in XXX triploid fibroblasts was observed. Six enzymatic activities were also determined. Two X-chromosome-bound enzymatic activities, glucose-6-phosphate dehydrogenase and phosphoglycerate kinase, were significantly increased in triploid fibroblasts, while another X-chromosome-bound activity (hypoxanthine phosphoribosyl transferase) was not modified. Among the autosome-bound activities studied, pyruvate kinase and adenine phosphoribosyl transferase were not modified, whereas in the triploid cells the 6-phosphogluconate dehydrogenase activity was decreased. The relationship between these modifications of enzymatic activities in triploids and the X-chromosome inactivation is discussed.  相似文献   

10.
Diandric heterozygous diploid mouse embryos were produced by standard micromanipulatory techniques using eggs from female mice with a normal chromosome constitution and fertilised by homozygous Rb(1.3)1Bnr males containing a pair of large metacentric marker chromosomes in their karyotype. The constructed diandric eggs were transferred to the oviducts of pseudopregnant recipients and subsequently autopsied midday on the eighth day of gestation. From a total of 85 eggs transferred to females that subsequently became pregnant, 30 implanted. Eighteen implantation sites were found to contain resorptions, and 12 egg cylinder stage embryos were recovered. These were cytogenetically examined. In two cases, no mitoses were observed, and in a third embryo of normal size, only a single paternally-derived marker chromosome was present in its mitoses, indicating that this embryo had a normal chromosome constitution. This presumably resulted from a technical error during the micromanipulatory procedure. The remaining nine morphologically small but normal embryos were diploid, and each had two paternally-derived marker chromosomes, thus establishing their ploidy and confirming their diandric origin. G-banding analysis revealed that all of these embryos had an XY sex chromosome constitution. Since the expected XX:XY:YY ratio of 1:2:1 was not observed, it is clear that the XX class embryos were lost at some stage during the pre- or early post-implantation period, though whether they are represented by the resorption sites is not yet established. The YY class would not be expected to be recovered in any case, as these embryos are believed to be lost during early cleavage. The cytogenetic findings reported here are therefore similar to the results of the chromosomal analyses of the human complete hydatidiform moles of dispermic origin, all of which apparently have an XY karyotype. It is unclear why, both in the human and in the mouse, the XX diandric heterozygous diploid group should develop poorly compared to similar embryos with an XY karyotype.  相似文献   

11.
Hydatidiform moles (HMs) are abnormal human pregnancies with vesicular chorionic villi, imposing two clinical challenges; miscarriage and a risk of gestational trophoblastic neoplasia (GTN). The parental type of most HMs are either diandric diploid (PP) or diandric triploid (PPM). We consecutively collected 154 triploid or near-triploid samples from conceptuses with vesicular chorionic villi. We used analysis of DNA markers and/or methylation sensitive-MLPA and collected data from registries and patients records. We performed whole genome SNP analysis of one case of twinning (PP+PM).In all 154 triploids or near-triploids we found two different paternal contributions to the genome (P1P2M). The ratios between the sex chromosomal constitutions XXX, XXY, and XYY were 5.7: 6.9: 1.0. No cases of GTN were observed. Our results corroborate that all triploid human conceptuses with vesicular chorionic villi have the parental type P1P2M. The sex chromosomal ratios suggest approximately equal frequencies of meiosis I and meiosis II errors with selection against the XYY conceptuses or a combination of dispermy, non-disjunction in meiosis I and meiosis II and selection against XYY conceptuses. Although single cases of GTN after a triploid HM have been reported, the results of this study combined with data from previous prospective studies estimate the risk of GTN after a triploid mole to 0% (95% CI: 0–1,4%).  相似文献   

12.
The wood lemming displays certain peculiar features: (1) The sex ratio shows a prevalence of females (FRANK, 1966; KALELA and OKSALA, 1966), and some females produce only female offspring (KALELA and OKSALA, 1966). (2) In a considerable proportion (in the present material, slightly less than half) of the females, an XY chromosome complement is found in the somatic tissues, but the Y is absent in the germ line of those studied (Fredga et al., 1976). Therefore, (3) a mechanism of double nondisjunction in early fetal life of XY females has to be postulated, which replaces the Y in the germ line by duplication of the X. It is assumed (4) that the X of XY females bears a sex-reversal factor that affects the male determining action of the Y (Fredga et al., 1977). There is (5) a strong presumption that in most cases the XY females are those that produce daughters only, but (6) a few exceptions may occur (FRANK, unpublished observations), suggesting that the regulation according to assumption 3 (perhaps also to 4) is incomplete in XY females. In the present report, four females are described with a 31,XO karyotype, two females with 33,XYY or 32,XY/33,XYY, respectively, two males with a 33,XXY, and one male with a 32,XX/33,XXY karyotype, as observed in a consecutive series of 502 wood lemmings. The incidence of sex-chromosome anomalies in liveborn and adult animals was 2.3%; the overall incidence, including embryos, was 1.79%. Neither the somatic XO constitution nor the existence of an extra Y in females precludes fertility. However, the XXY condition in the male results in sterility. There is certain evidence that an instability of the proposed mechanism for double mitotic nondisjunction of the sex chromosomes in oogonia accounts for the high rate of sex-chromosome aberrations in wood lemmings, at least when the mother is XY.  相似文献   

13.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

14.
A 47,XXY/46,XY male was investigated for the incidence of aneuploidy in sperm sex chromosomes using a three-colour X/Y/18 fluorescence in situ hybridisation (FISH) protocol. A total of 1701 sperm nuclei were analysed. The ratio of X-bearing to Y-bearing sperm did not differ from the expected 1 : 1 ratio although there were more 23,Y sperm than 23,X sperm (844 vs 795). There was a significantly increased proportion of disomy XY and XX sperm compared with normal controls (0.41% vs 0.10%, P < 0.001 and 0.29% vs 0.04%, P < 0.01). However, the incidence of YY sperm was similar to the controls (0.06% vs 0.02%). The diploidy rate was also significantly increased (1.7% vs 0.13%, P < 0.0001), as was disomy 18 (0.71% vs 0.01%) and 25,XXY (0.47% vs 0%). The results support the hypothesis that some 47,XXY cells are able to undergo meiosis and produce mature spermatozoa. Patients with mosaic Klinefelter syndrome with severe oligozoospermia have significantly elevated incidences of disomy XY and XX sperm and may be at a slightly increased risk of producing 47,XXX and 47,XXY offspring. Additionally, they may be at risk of producing offspring with autosomal trisomies. Hence, patients with Klinefelter mosaicism scheduled for intracytoplasmic sperm injection intervention should first undergo FISH analysis of their sperm to determine their risk. Received: 16 November 1998 / Accepted: 16 February 1999  相似文献   

15.
Using BrdU-labeling and acridine orange staining, the behavior of X-chromosome replication was studied in 28 XXX and 19 XXY digynous mouse triploids. In some of these the paternal and maternal X chromosome could by cytologically distinguished. Such embryos were obtained by mating chromosomally normal females with males carrying Cattanach's X chromosome which contains an autosomal insertion that substantially increases the length of this chromosome. In the XXX triploids there were two distinct cell lines, one with two late-replicating X chromosomes, and the other with only one late-replicating X. The XXY triploids were also composed of two cell populations, one with a single late-replicating X and the other with no late replicating X chromosome. Assuming that the late-replicating X is genetically inactive, in both XXX and XXY triploids, cells from the embryonic region tended to have only one active X chromosome, whereas those from the extra-embryonic membranes tended to have two active X chromosomes. The single active X chromosome was either paternal or maternal in origin, but two active X chromosomes were overwhelmingly maternal in origin, suggesting paternal X-inactivation in extra-embryonic tissues.  相似文献   

16.
S Sen  G Talukder  A Sharma 《Cytobios》1985,42(166):87-91
Cytophotometric estimation of DNA values from human buccal mucosa and lymphocyte culture nuclei shows a difference related to different X chromosomal abnormalities, namely, del X, XO, XXX and XXY. The values in the buccal mucosa in all cases except XXX were similar to the normal XX and XY. In lymphocytes nuclei, however, a steady increase in the DNA content at a significant level could be related to an increase in the number of X chromosomes. The similarity in the DNA values of normal XX and XY controls may be attributed to asynchrony in the replication patterns of X and Y chromosomes.  相似文献   

17.
The extent of chromosomal mosaicism in human preimplantation embryos was examined using an improved procedure for the preparation and spreading of interphase nuclei for use in fluorescence in situ hybridisation, allowing the analysis of every nucleus within an embryo. One cell showed no hybridisation signals in only three of the 38 embryos that were included in this study, i.e. the hybridisation efficiency per successfully spread nucleus was 99% (197/200). Double-target in situ hybridisation analyses with X- and Y-chromosome-specific probes was performed to analyse nine embryos resulting from normal fertilisation, 22 polypronucleate embryos and seven cleavage-stage embryos where no (apronucleate) or only one pronucleus (monopronucleate) was observed. We also analysed autosomes 1 and 7 by double-target in situ hybridisation in the nuclei of two apronucleate, one monopronucleate and four polypronucleate embryos. All nine embryos that resulted from normal fertilisation were uniformly XY or XX. None of the apronucleate or monopronucleate embryos was haploid: three were diploid, one was triploid and three were mosaic. Fertilisation was detected by the presence of a Y-specific signal in four of these embryos. Of the polypronucleate embryos, two were diploid, two were triploid and 18 were mosaic for the sex chromosomes and/or autosomes 1 and 7. These results demonstrate that fertilisation sometimes occurs in monopronucleate embryos and that chromosomal mosaicism can be detected with high efficiency in apronucleate, monopronucleate and polypronucleate human embryos using fluorescence in situ hybridisation.  相似文献   

18.
Meiotic segregation of the sex chromosomes was analysed in sperm nuclei from a man with Klinefelter’s karyotype by three-colour FISH. The X- and Y-specific DNA probes were co-hybridized with a probe specific for chromosome 1, thus allowing diploid and hyperhaploid spermatozoa to be distinguished. A total of 2206 sperm nuclei was examined; 958 cells contained an X chromosome, 1077 a Y chromosome. The ratio of X : Y bearing sperm differed significantly from the expected 1 : 1 ratio (χ2 = 6.96; 0.001 < P < 0.01). Sex-chromosomal hyperhaploidy was detected in 2.67% of the cells (1.22% XX, 1.36% XY, 0.09% YY) and a diploid constitution in 0.23%. Although the frequency of 24,YY sperm was similar to that detected in fertile males, the frequencies of 24,XX, 24,XY and diploid cells were significantly increased. A sex-chromosomal signal was missing in 4.26% of the spermatozoa. This percentage appeared to be too high to be attributed merely to nullisomy for the sex chromosomes and was considered, at least partially, to be the result of superposition of sex-chromosomal hybridization signals by autosomal signals in a number of sperm nuclei. The results contribute additional evidence that 47,XXY cells are able to complete meiosis and produce mature sperm nuclei. Received: 6 November 1996  相似文献   

19.
Adult triploid zebrafish Danio rerio has previously been reported to be all male. This phenomenon has only been reported in one other gonochoristic fish species, the rosy bitterling Rhodeus ocellatus, despite the fact that triploidy is induced in numerous species. To investigate the mechanism responsible, we first produced triploid zebrafish and observed gonad development. Histological sections of juvenile triploid gonads showed that primary growth oocytes were able to develop in the juvenile ovary, but no cortical alveolus or more advanced oocytes were found. All adult triploids examined were male (n = 160). Male triploids were able to induce oviposition by diploid females during natural spawning trials, but fertilization rates were low (1.0 ± 3.1%) compared with diploid male siblings (67.4 ± 16.6%). The embryos produced by triploid sires were aneuploid with a mean ploidy of 2.4 ± 0.1n, demonstrating that triploid males produce aneuploid spermatozoa. After confirming that adult triploids are all male, we produced an additional batch of triploid zebrafish and exposed them (and a group of diploid siblings) to 100 ng/L estradiol (E2) from 5 to 28 dpf. The E2 treated triploids and nontreated triploids were all male. The nontreated diploids were also all male, but the E2 treated diploids were 89% female. This demonstrates that triploidy acts downstream of estrogen synthesis in the sex differentiation pathway to induce male development. Based on this and the observations of juvenile gonad development in triploids, we suggest that triploidy inhibits development of oocytes past the primary growth stage, and this causes female to male sex reversal.  相似文献   

20.

Background

Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual’s karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6).

Methods

We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations.

Results

Several subregional areas, local curvature, and BLDs differed between groups.Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups.

Conclusions

Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号