首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial complex I genes were sequenced in seven Leber hereditary optic neuroretinopathy (LHON) families without the ND4/11778 and ND1/3460 mutations. Four replacement mutations restricted only to LHON families were found, one in the ND1 gene at nt 4025, and three in the ND5 gene at nt 12811, 13637, and 13967. The mutations did not change evolutionarily conserved amino acids suggesting that they are not primary LHON mutations in these families. They may be considered as secondary LHON mutations serving as exacerbating factors in an appropriate genetic background. A complex III mutation, cyt b/15257, has been suggested to be one of the primary mutations causing LHON. Its presence was determined for 23 Finnish LHON families, and it was detected in two families harboring the ND4/11778 mutation. Similarly, complex IV mutation COI/7444 was screened in Finnish LHON families, and it was found in one family carrying the ND1/3460 mutation.  相似文献   

2.
Leber's hereditary optic neuropathy (LHON), a maternally inherited form of central vision loss, is associated with mitochondrial DNA pathogenic point mutations affecting different subunits of complex I. We here report that osteosarcoma-derived cytoplasmic hybrids (cybrid) cell lines harboring one of the three most frequent LHON pathogenic mutations, at positions 11778/ND4, 3460/ND1, and 14484/ND6, undergo cell death when galactose replaces glucose in the medium, contrary to control cybrids that maintain some growth capabilities. This is a well known way to produce a metabolic stress, forcing the cells to rely on the mitochondrial respiratory chain to produce ATP. We demonstrate that LHON cybrid cell death is apoptotic, showing chromatin condensation and nuclear DNA laddering. Moreover, we also document the mitochondrial involvement in the activation of the apoptotic cascade, as shown by the increased release of cytochrome c into the cytosol in LHON cybrid cells as compared with controls. Cybrids bearing the 3460/ND1 and 14484/ND6 mutations seemed more readily prone to undergo apoptosis as compared with the 11778/ND4 mutation. In conclusion, LHON cybrid cells forced by the reduced rate of glycolytic flux to utilize oxidative metabolism are sensitized to an apoptotic death through a mechanism involving mitochondria.  相似文献   

3.
A single base mutation at nucleotide position 3460 (nt 3460) in the ND1 gene in human mtDNA was found to be associated with Leber hereditary optic neuroretinopathy (LHON). The G-to-A mutation converts an alanine to a threonine at the 52d codon of the gene. The mutation also abolishes an AhaII restriction site and thus can be detected easily by RFLP analysis. The mutation was found in three independent Finnish LHON families but in none of the 60 controls. None of the families with the nt 3460 mutation in ND1 had the previously reported nt 11778 mutation in the ND4 gene. The G-to-A change at nt 3460 is the second mutation so far detected in LHON.  相似文献   

4.
Oxidative stress and imbalance between free radical generation and detoxification may play a pivotal role in the pathogenesis of Leber's hereditary optic neuropathy (LHON). Mitochondria, carrying the homoplasmic 11778/ND4, 3460/ND1 and 14484/ND6 mtDNA point mutations associated with LHON, were used to generate osteosarcoma-derived cybrids. Enhanced mitochondrial production of reactive oxygen species has recently been demonstrated in these cybrids [Beretta S, Mattavelli L, Sala G, Tremolizzo L, Schapira AHV, Martinuzzi A, Carelli V & Ferrarese C (2004) Brain 127, 2183-2192]. The aim of this study was to characterize the antioxidant defences of these LHON-affected cells. The activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutases (SOD) and catalase, and the amounts of glutathione (GSH) and oxidized glutathione (GSSG) were measured in cybrids cultured both in glucose-rich medium and galactose-rich medium. The latter is known to cause oxidative stress and to trigger apoptotic death in these cells. In spite of reduced SOD activities in all LHON cybrids, and of low GPx and GR activities in cells with the most severe 3460/ND1 and 11778/ND4 mutations, GSH and GSSG content were not significantly modified in LHON cybrids cultured in glucose medium. In contrast, in galactose, GSSG concentrations increased significantly in all cells, indicating severe oxidative stress, whereas GR and MnSOD activities further decreased in all LHON cybrids. These data suggest that, in cells carrying LHON mutations, there is a decrease in antioxidant defences, which is especially evident in cells with mutations associated with the most severe clinical phenotype. This is magnified by stressful conditions such as exposure to galactose.  相似文献   

5.
Leber’s hereditary optic neuropathy (LHON) is associated with mitochondrial DNA point mutations affecting different subunits of complex I. By replacing glucose with galactose in the medium, cybrids harboring each of the three LHON pathogenic mutations (11778/ND4, 3460/ND1, 14484/ND6) suffered a profound ATP depletion over a few hours and underwent apoptotic cell death, which was caspase-independent. Control cybrids were unaffected. In addition to cytochrome c, apoptosis inducing factor (AIF) and endonuclease G (EndoG) were also released from the mitochondria into the cytosol in LHON cybrids, but not in control cells. Exposure of isolated nuclei to cytosolic fractions from LHON cybrids maintained in galactose medium caused nuclear fragmentation, which was strongly reduced by immuno-depletion with anti-AIF and anti-EndoG antibodies. In conclusion, the caspase-independent death of LHON cybrids incubated in galactose medium is triggered by rapid ATP depletion and mediated by AIF and EndoG.  相似文献   

6.
Leber hereditary optic neuropathy (LHON) is a type of blindness caused by mtDNA mutations. Three LHON mtDNA mutations at nucleotide positions 3460, 11778, and 14484 are specific for LHON and account for 90% of worldwide cases and are thus designated as "primary" LHON mutations. Fifteen other "secondary" LHON mtDNA mutations have been identified, but their pathogenicity is unclear. mtDNA haplotype and phylogenetic analysis of the primary LHON mutations in North American Caucasian patients and controls has shown that, unlike the 3460 and 11778 mutations, which are distributed throughout the European-derived (Caucasian) mtDNA phylogeny, patients containing the 14484 mutation tended to be associated with European mtDNA haplotype J. To investigate this apparent clustering, we performed chi2-based statistical analyses to compare the distribution of LHON patients on the Caucasian phylogenetic tree. Our results indicate that, unlike the 3460 and 11778 mutations, the 14484 mutation was not distributed on the phylogeny in proportion to the frequencies of the major Caucasian mtDNA haplogroups found in North America. The 14484 mutation was next shown to occur on the haplogroup J background more frequently that expected, consistent with the observation that approximately 75% of worldwide 14484-positive LHON patients occur in association with haplogroup J. The 11778 mutation also exhibited a moderate clustering on haplogroup J. These observations were supported by statistical analysis using all available mutation frequencies reported in the literature. This paper thus illustrates the potential importance of genetic background in certain mtDNA-based diseases, speculates on a pathogenic role for a subset of LHON secondary mutations and their interaction with primary mutations, and provides support for a polygenic model for LHON expression in some cases.  相似文献   

7.
mtDNAs from 37 Italian subjects affected by Leber hereditary optic neuropathy (LHON) (28 were 11778 positive, 7 were 3460 positive, and 2 were 14484 positive) and from 99 Italian controls were screened for most of the mutations that currently are associated with LHON. High-resolution restriction-endonuclease analysis also was performed on all subjects, in order to define the phylogenetic relationships between the mtDNA haplotypes and the LHON mutations observed in patients and in controls. This analysis shows that the putative secondary/intermediate LHON mutations 4216, 4917, 13708, 15257, and 15812 are ancient polymorphisms, are associated in specific combinations, and define two common Caucasoid-specific haplotype groupings (haplogroups J and T). On the contrary, the same analysis shows that the primary mutations 11778, 3460, and 14484 are recent and are due to multiple mutational events. However, phylogenetic analysis also reveals a different evolutionary pattern for the three primary mutations. The 3460 mutations are distributed randomly along the phylogenetic trees, without any preferential association with the nine haplogroups (H, I, J, K, T, U, V, W, and X) that characterize European populations, whereas the 11778 and 14484 mutations show a strong preferential association with haplogroup J. This finding suggests that one ancient combination of haplogroup J-specific mutations increases both the penetrance of the two primary mutations 11778 and 14484 and the risk of disease expression.  相似文献   

8.
Leber''s hereditary optic neuropathy (LHON) is a maternally inherited blinding disease due to mitochondrial DNA (mtDNA) point mutations in complex I subunit genes, whose incomplete penetrance has been attributed to both genetic and environmental factors. Indeed, the mtDNA background defined as haplogroup J is known to increase the penetrance of the 11778/ND4 and 14484/ND6 mutations. Recently it was also documented that the professional exposure to n-hexane might act as an exogenous trigger for LHON. Therefore, we here investigate the effect of the n-hexane neurotoxic metabolite 2,5-hexanedione (2,5-HD) on cell viability and mitochondrial function of different cell models (cybrids and fibroblasts) carrying the LHON mutations on different mtDNA haplogroups. The viability of control and LHON cybrids and fibroblasts, whose mtDNAs were completely sequenced, was assessed using the MTT assay. Mitochondrial ATP synthesis rate driven by complex I substrates was determined with the luciferine/luciferase method. Incubation with 2,5-HD caused the maximal loss of viability in control and LHON cells. The toxic effect of this compound was similar in control cells irrespective of the mtDNA background. On the contrary, sensitivity to 2,5-HD induced cell death was greatly increased in LHON cells carrying the 11778/ND4 or the 14484/ND6 mutation on haplogroup J, whereas the 11778/ND4 mutation in association with haplogroups U and H significantly improved cell survival. The 11778/ND4 mutation on haplogroup U was also more resistant to inhibition of complex I dependent ATP synthesis by 2,5-HD. In conclusion, this study shows that mtDNA haplogroups modulate the response of LHON cells to 2,5-HD. In particular, haplogroup J makes cells more sensitive to its toxic effect. This is the first evidence that an mtDNA background plays a role by interacting with an environmental factor and that 2,5-HD may be a risk element for visual loss in LHON. This proof of principle has broad implications for other neurodegenerative disorders such as Parkinson''s disease.  相似文献   

9.
Leber's hereditary optic neuropathy (LHON) is a form of blindness caused by mitochondrial DNA (mtDNA) mutations in complex I genes. We report an extensive biochemical analysis of the mitochondrial defects in lymphoblasts and transmitochondrial cybrids harboring the three most common LHON mutations: 3460A, 11778A, and 14484C. Respiration studies revealed that the 3460A mutation reduced the maximal respiration rate 20-28%, the 11778A mutation 30-36%, and the 14484C mutation 10-15%. The respiration defects of the 3460A and 11778A mutations transferred in cybrid experiments linking these defects to the mtDNA. Complex I enzymatic assays revealed that the 3460A mutation resulted in a 79% reduction in specific activity and the 11778A mutation resulted in a 20% reduction, while the 14484C mutation did not affect the complex I activity. The enzyme defect of the 3460A mutation transferred with the mtDNA in cybrids. Overall, these data support the conclusion that the 3460A and 11778A mutants result in complex I defects and that the 14484C mutation causes a much milder biochemical defect. These studies represent the first direct comparison of oxidative phosphorylation defects among all of the primary LHON mtDNA mutations, thus permitting insight into the underlying pathophysiological mechanism of the disease.  相似文献   

10.
Three prevalent mitochondrial DNA pathogenic mutations at positions 11778, 3460, and 14484, which affect different subunits of Complex I, cause retinal ganglion cell death and optic nerve atrophy in Leber's hereditary optic neuropathy (LHON). The cell death is painless and without inflammation, consistent with an apoptotic mechanism. We have investigated the possibility that the LHON mutation confers a pro-apoptotic stimulus and have tested the sensitivity of osteosarcoma-derived cybrid cells carrying the most common and severe mutations (11778 and 3460) to cell death induced by Fas. We observed that LHON cybrids were sensitized to Fas-dependent death. Control cells that bear the same mitochondrial genetic background (the J haplogroup) without the pathogenic 11778 mutation are no more sensitive than other controls, indicating that increased Fas-dependent death in LHON cybrids was induced by the LHON pathogenic mutations. The type of death was apoptotic by several criteria, including induction by Fas, inhibition by the caspase inhibitor zVAD-fmk (zVal-Ala-Asp-fluoro-methyl ketone), activation of DEVDase activity (Asp-Glu-Val-Asp protease), specific cleavage of caspase-3, DNA fragmentation, and increased Annexin-V labeling. These data indicate that the most common and severe LHON pathogenic mutations 11778 and 3460 predispose cells to apoptosis, which may be relevant for the pathophysiology of cell death in LHON, and potential therapy.  相似文献   

11.
The Tas2 and Vic2 Australian families are affected with a variant of Leber hereditary optic neuropathy (LHON). The risk of developing the optic neuropathy shows strict maternal inheritance, and the ophthalmological changes in affected family members are characteristic of LHON. However, in contrast to the common form of the disease, members of these two families show a high frequency of vision recovery. To ascertain the mitochondrial genetic etiology of the LHON in these families, both (a) the the nucleotide sequences of the seven mitochondrial genes encoding subunits of respiratory-chain complex I and (b) the mitochondrial cytochrome b gene were determined for representatives of both families. Neither family carries any of the previously identified primary mitochondrial LHON mutations: ND4/11778, ND1/3460, or ND1/4160. Instead, both LHON families carry multiple nucleotide changes in the mitochondrial complex I genes, which produce conservative amino acid changes. From the available sequence data, it is inferred that the Vic2 and Tas2 LHON families are phylogenetically related to each other and to a cluster of LHON families in which mutations in the mitochondrial cytochrome b gene have been hypothesized to play a primary etiological role. However, sequencing analysis establishes that the Vic2 and Tas2 LHON families do not carry these cytochrome b mutations. There are two hypotheses to account for the unusual mitochondrial genetic etiology of the LHON in the Tas2 and Vic2 LHON families. One possibility is that there is a primary LHON mutation within the mitochondrial genome but that it is at a site that was not included in the sequencing analyses. Alternatively, the disease in these families may result from the cumulative effects of multiple secondary LHON mutations that have less severe phenotypic consequences.  相似文献   

12.
We report the electron transfer properties of the NADH:ubiquinone oxidoreductase complex of the respiratory chain (Complex I) in mitochondria of cells derived from LHON patients with two different mutations in mitochondrial DNA (mtDNA). The mutations occur in the mtDNA genes coding for the ND1 and ND4 subunits of Complex I. The ND1/3460 mutation exhibits 80% reduction in rotenone-sensitive and ubiquinone-dependent electron transfer activity, whereas the proximal NADH dehydrogenase activity of the Complex is unaffected. This is in accordance with the proposal that the ND1 subunit interacts with rotenone and ubiquinone. In contrast, the ND4/11778 mutation had no effect on electron transfer activity of the Complex in inner mitochondrial membrane preparations; also Km for NADH and NADH dehydrogenase activity were unaffected. However, in isolated mitochondria with the ND4 mutation, the rate of oxidation of NAD-linked substrates, but not of succinate, was significantly decreased. This suggests that the ND4 subunit might be involved in specific aggregation of NADH-dependent dehydrogenases and Complex I, which may result in fast ('solid state') electron transfer from the former to the latter.  相似文献   

13.
Leber's hereditary optic neuropathy (LHON) is a maternally inherited disease of the optic nerves associated with various mitochondrial DNA (mtDNA) mutations. Four of these mutations, at nucleotide positions (np) 3460, 11778, 14484 and 15257, have been postulated to be of primary pathogenetical importance. Previously, we described the molecular and clinical findings in patients with the 11778 and 14484 mutations. Here we describe the molecular and clinical findings of patients in eight pedigrees with the 3460 mutation and in three pedigrees with the 15 257 mutation. In all three 15257 positive pedigrees the 3460, the 11778 or the 14484 mutation was also found. The first combination has not been reported before. We compared the clinical findings in these pedigrees with those of the 3460, 11778 and 14484 positive pedigrees that lack the 15257 mutation. No significant differences were found with respect to the age of onset, visual outcome or the probability of developing LHON. We conclude that there is no evidence that the 15257 mutation, which has been reported in normal controls, has primary causal significance, because it may coincide with the 3460, 11778 and 14484 mutations. We presume that the 15257 mutation has no secondary pathogenic importance, since it has no clear contribution to the degree or the probability of phenotypic expression.  相似文献   

14.
LHON (Leber hereditary optic neuropathy) is a maternally inherited disease that leads to sudden loss of central vision at a young age. There are three common primary LHON mutations, occurring at positions 3460, 11778 and 14484 in the human mtDNA (mitochondrial DNA), leading to amino acid substitutions in mitochondrial complex I subunits ND1, ND4 and ND6 respectively. We have now examined the effects of ND6 mutations on the function of complex I using the homologous NuoJ subunit of Escherichia coli NDH-1 (NADH:quinone oxidoreductase) as a model system. The assembly level of the NDH-1 mutants was assessed using electron transfer from deamino-NADH to the 'shortcut' electron acceptor HAR (hexammine ruthenium), whereas ubiquinone reductase activity was determined using DB (decylubiquinone) as a substrate. Mutant growth in minimal medium with malate as the main carbon source was used for initial screening of the efficiency of energy conservation by NDH-1. The results indicated that NuoJ-M64V, the equivalent of the common LHON mutation in ND6, had a mild effect on E. coli NDH-1 activity, while nearby mutations, particularly NuoJ-Y59F, NuoJ-V65G and NuoJ-M72V, severely impaired the DB reduction rate and cell growth on malate. NuoJ-Met64 and NuoJ-Met72 position mutants lowered the affinity of NDH-1 for DB and explicit C-type inhibitors, whereas NuoJ-Y59C displayed substrate inhibition by oxidized DB. The results are compatible with the notion that the ND6 subunit delineates the binding cavity of ubiquinone substrate, but does not directly take part in the catalytic reaction. How these changes in the enzyme's catalytic properties contribute to LHON pathogenesis is discussed.  相似文献   

15.
Leber's hereditary optic neuropathy (LHON) has traditionally been considered a disease causing severe and permanent visual loss in young adult males. In nearly all families with LHON it is associated with one of three pathogenic mitochondrial DNA (mtDNA) mutations, at bp 11778, 3460 or 14484. The availability of mtDNA confirmation of a diagnosis of LHON has demonstrated that LHON occurs with a wider range of age at onset and more commonly in females than previously recognised. In addition, analysis of patients grouped according to mtDNA mutation has demonstrated differences both in the clinical features of visual failure and in recurrence risks to relatives associated with each of the pathogenic mtDNA mutations. Whilst pathogenic mtDNA mutations are required for the development of LHON, other factors must be reponsible for the variable penetrance and male predominance of this condition. Available data on a number of hypotheses including the role of an additional X-linked visual loss susceptibility locus, impaired mitochondrial respiratory chain activity, mtDNA heteroplasmy, environmental factors and autoimmunity are discussed. Subacute visual failure is seen in association with all three pathogenic LHON mutations. However, the clinical and experimental data reviewed suggest differences in the phenotype associated with each of the three mutations which may reflect variation in the disease mechanisms resulting in this common end-point.  相似文献   

16.
The results of clinical, genealogical and molecular investigation of eighteen families with Leber hereditary optic neuropathy (LHON), identified on the territory of Siberia during the period from 1997 to 2005, are presented. Comprehensive analysis of mitochondrial genome variations in probands and their matrilineal relatives revealed the presence of relatively frequent (G11778A, G3460A, and T14484C), as well as rare and new mutations with the established or presumptive pathological effect (T10663C, G363A, C4640T, and A14619G). The G11778A mutation was detected in nine pedigrees (50%), mostly in the families of ethnic Russians. In eight of these families G11778A was found in preferred association with the coding-region substitutions, typical of western Eurasian mtDNA lineage (haplogroup) TJ. On the contrary, the G3460A mutation was detected in the three families belonging to the indigenous Siberian populations (Tuvinians, Altaians, and Buryats). It was associated with clearly different haplotypes of eastern Eurasian haplogroups, C3, D5, and D8. Unexpectedly, the G3460A de novo mutation was found in a large Tuvinian pedigree. At the same time, in eleven out of fourteen families of Caucasoid origin pathogenic mutations in the ND genes were associated with the T4216C and C1542A coding-region mutations, marking the root motif of haplogoup TJ. It is suggested that phylogenetically ancient mutations could have provided their carriers with the adaptive advantages upon the development of Central and Northern Europe at the end of the last glaciation (10 000 to 9 000 years ago), thereby, contributing to the preservation of weekly pathogenic LHON mutations, appearing at specific genetic background.  相似文献   

17.
Leber's hereditary optic neuropathy (LHON) is a maternally transmitted form of blindness caused by mitochondrial DNA (mtDNA) mutations. Approximately 90% of LHON cases are caused by 3460A, 11778A, or 14484C mtDNA mutations. These are designated "primary" mutations because they impart a high risk for LHON expression. Although the 11778A and 14484C mutations unequivocally predispose carriers to LHON, they are preferentially associated with mtDNA haplogroup J, one of nine Western Eurasian mtDNA lineages, suggesting a synergistic and deleterious interaction between these LHON mutations and haplogroup J polymorphism(s). We report here the characterization of a new primary LHON mutation in the mtDNA ND4L gene at nucleotide pair 10663. The homoplasmic 10663C mutation has been found in three independent LHON patients who lack a known primary mutation and all of which belong to haplogroup J. This mutation has not been found in a large number of haplotype-matched or non-haplogroup-J control mtDNAs. Phylogenetic analysis with primarily complete mtDNA sequence data demonstrates that the 10663C mutation has arisen at least three independent times in haplogroup J, indicating that it is not a rare lineage-specific polymorphism. Analysis of complex I function in patient lymphoblasts and transmitochondrial cybrids has revealed a partial complex I defect similar in magnitude to the 14484C mutation. Thus, the 10663C mutation appears to be a new primary LHON mutation that is pathogenic when co-occurring with haplogroup J. These results strongly support a role for haplogroup J in the expression of certain LHON mutations.  相似文献   

18.
Leber hereditary optic neuropathy (LHON) is due primarily to one of three common point mutations of mitochondrial DNA (mtDNA), but the incomplete penetrance implicates additional genetic or environmental factors in the pathophysiology of the disorder. Both the 11778G-->A and 14484T-->C LHON mutations are preferentially found on a specific mtDNA genetic background, but 3460G-->A is not. However, there is no clear evidence that any background influences clinical penetrance in any of these mutations. By studying 3,613 subjects from 159 LHON-affected pedigrees, we show that the risk of visual failure is greater when the 11778G-->A or 14484T-->C mutations are present in specific subgroups of haplogroup J (J2 for 11778G-->A and J1 for 14484T-->C) and when the 3460G-->A mutation is present in haplogroup K. By contrast, the risk of visual failure is significantly less when 11778G-->A occurs in haplogroup H. Substitutions on MTCYB provide an explanation for these findings, which demonstrate that common genetic variants have a marked effect on the expression of an ostensibly monogenic mtDNA disorder.  相似文献   

19.
The results of clinical, genealogical and molecular investigation of eighteen families with Leber’s hereditary optic neuropathy (LHON), identified on the territory of Siberia during the period from 1997 to 2005, are presented. Comprehensive analysis of mitochondrial genome variations in probands and their matrilineal relatives revealed the presence of relatively frequent (G11778A, G3460A, and T14484C), as well as rare and new mutations with the established or presumptive pathological effect (T10663C, G3535A, C4640A, and A14619G). The G11778A mutation was detected in nine pedigrees (50%), mostly in the families of ethnic Russians. In eight of these families G11778A was found in preferred association with the coding-region substitutions, typical of western Eurasian mtDNA lineage (haplogroup) TJ. On the contrary, the G3460A mutation was detected in the three families belonging to the indigenous Siberian populations (Tuvinians, Altaians, and Buryats). It was associated with clearly different haplotypes of eastern Eurasian haplogroups, C3, D5, and D8. Unexpectedly, the G3460A de novo mutation was found in a large Tuvinian pedigree. At the same time, in eleven out of fourteen families of Caucasoid origin pathogenic mutations in the ND genes were associated with the T4216C and C15445A coding-region mutations, marking the root motif of haplogoup TJ. It is suggested that phylogenetically ancient mutations could have provided their carriers with the adaptive advantages upon the development of Central and Northern Europe at the end of the last glaciation (10 000 to 9000 years ago), thereby, contributing to the preservation of weekly pathogenic LHON mutations, appearing at specific genetic background.  相似文献   

20.
Disease-causing mutations in mitochondrial DNA (mtDNA) are typically heteroplasmic and therefore interpretation of genetic tests for mitochondrial disorders can be problematic. Detection of low level heteroplasmy is technically demanding and it is often difficult to discriminate between the absence of a mutation or the failure of a technique to detect the mutation in a particular tissue. The reliable measurement of heteroplasmy in different tissues may help identify individuals who are at risk of developing specific complications and allow improved prognostic advice for patients and family members. We have evaluated Pyrosequencing technology for the detection and estimation of heteroplasmy for six mitochondrial point mutations associated with the following diseases: Leber's hereditary optical neuropathy (LHON), G3460A, G11778A, and T14484C; mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS), A3243G; myoclonus epilepsy with ragged red fibers (MERRF), A8344G, and neurogenic muscle weakness, ataxia, and retinitis pigmentosa (NARP)/Leighs: T8993G/C. Results obtained from the Pyrosequencing assays for 50 patients with presumptive mitochondrial disease were compared to those obtained using the commonly used diagnostic technique of polymerase chain reaction (PCR) and restriction enzyme digestion. The Pyrosequencing assays provided accurate genotyping and quantitative determination of mutational load with a sensitivity and specificity of 100%. The MELAS A3243G mutation was detected reliably at a level of 1% heteroplasmy. We conclude that Pyrosequencing is a rapid and robust method for detecting heteroplasmic mitochondrial point mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号