首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
A new method for the quantification of cidofovir (CDV), an acyclic nucleotide analogue of cytosine with antiviral activity against a broad-spectrum of DNA viruses, in human serum, using high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has been developed. A strong anion exchange (SAX) solid-phase extraction procedure was applied for the sample preparation. The tandem mass spectrometer was tuned in the multiple reaction monitoring mode to monitor the m/z 278.1-->234.9 and the m/z 288.1-->133.1 transitions for CDV and the internal standard 9-(2-phosphonylmethoxyethyl)guanine (PMEG), respectively, using negative electrospray ionization. The MS/MS response was linear over the concentration range from 78.125 ng/ml to 10,000 ng/ml, with a lower limit of quantification of 78.125 ng/ml. The intra- and inter-day precisions (relative standard deviation (%)) for CDV were less than 7.8% and the accuracies (% of deviation from nominal level) were within +/-12.1% for quality controls. The novel LC-MS/MS method allowed a specific, sensitive and reliable determination of CDV in human serum and was applied to investigate the yet unknown pharmacokinetic properties of CDV in a paediatric cancer patient.  相似文献   

2.
A sensitive, selective, specific and rapid liquid chromatographic-electrospray ionization tandem mass spectrometric assay was developed and validated for the simultaneous determination in skeletal muscle of the Michael adducts between 4-hydroxy-trans-2-nonenal (HNE), one of the most reactive lipid peroxidation-driven unsaturated aldehyde, and glutathione (GSH) and the endogenous histidine-containing dipeptides carnosine (CAR) and anserine (ANS), with the final aim to use conjugated adducts as specific and unequivocal markers of lipid peroxidation. Samples (skeletal muscle homogenates from male rats) were prepared by protein precipitation with 1 vol. of a HClO(4) solution (4.2%; w/v) containing H-Tyr-His-OH as internal standard. The supernatant, diluted (1:1, v/v) in mobile phase, was separated on a Phenomenex Sinergy polar-RP column with a mobile phase of water-acetonitrile-heptafluorobutyric acid (9:1:0.01, v/v/v) at a flow rate of 0.2 ml/min, with a run time of 12 min. Detection was on a triple quadrupole mass spectrometer equipped with an ESI interface operating in positive ionization mode. The acquisitions were in multiple reaction monitoring (MRM) mode using the following precursor-->product ion combinations: H-Tyr-His-OH (IS): m/z 319.2--> 156.5+301.6; GS-HNE: m/z 464.3--> 179.1+308.0; CAR-HNE: m/z 383.1--> 110.1+266.6; ANS-HNE: m/z 397.2--> 109.1+126.1. The method was validated over the concentration ranges 1.5-90 (GS-HNE) and 0.4-40 (CAR-HNE, ANS-HNE) nmoles/g wet tissue, and the LLOQ were 1.25 and 0.33 pmoles injected respectively. The intra- and inter-day precisions (CV%) were <7.38% (相似文献   

3.
2-Amino-6-fluoro-9-(4-hydroxy-3-hydroxymethylbut-1-yl)purine (7), and its mono- and diesters 8-15 were prepared and evaluated for their potential as prodrugs of penciclovir. Treatment of 2-amino-6-chloro-9-(4-hydroxy-3-hydroxymethylbut-1-yl)purine (5) with trimethylamine in THF followed by a reaction of the resulting trimethylammonium chloride salt 6 with KF in DMF afforded 2-amino-6-fluoro-9-(4-hydroxy-3-hydroxymethylbut-1-yl)purine (7) in 80% yield. Esterification of 7 with an appropriate acid anhydride [Ac2O, (EtCO)2O, (n-PrCO)2O, or (i-PrCO)2O] in DMF in the presence of a catalytic amount of DMAP produced the mono-esters 8-11 in 42-45% yields and diesters 12-15 in 87-99% yields. Of the prodrugs tested in rats, the monoisobutyrate 11 was the most efficiently absorbed and metabolized to 7, showing the mean maximum total concentration of penciclovir (5.5 microg/mL) and 7 (10.8 microg/mL) in the blood was much higher than the mean maximum concentration of penciclovir (11.5 microg/mL) from famciclovir. However, the mean concentrations of penciclovir from 11 were lower than those from famciclovir because of the limited conversion of a major metabolite 7 to penciclovir by adenosine deaminase.  相似文献   

4.
An analytical method based upon liquid chromatography coupled to ion trap mass spectrometry (MS) detection with electrospray ionization interface has been developed for the simultaneous identification and quantification of droperidol and ondansetron in human plasma. The two drugs were isolated from 0.5 mL of plasma using a basic liquid-liquid extraction with diethyl ether/heptane (90/10, v/v) and tropisetron and haloperidol as internal standards, with satisfactory extraction recoveries. They were separated on a 5-μm C(18) Highpurity column (150 mm×2.1 mm I.D.) maintained at 30°C. The elution was achieved isocratically with a mobile phase of 2 mM HCOONH(4) pH 3.8 buffer/acetonitrile (60/40, v/v) at a flow rate of 200 μL/min. Data were collected either in full-scan MS mode at m/z 100-450 or in full-scan MS-MS mode, selecting the [M+H] (+) ion at m/z=294.0 for ondansetron, m/z=285.2 for tropisetron, m/z=380.0 for droperidol and m/z=376.0 for haloperidol. The most intense daughter ion of ondansetron (m/z=212.0) and droperidol (m/z=194.0) were used for quantification. Retention times for tropisetron, ondansetron, droperidol and haloperidol were 2.50, 2.61, 3.10 and 4.68 min, respectively. Calibration curves were linear for both compounds in the 0.50-500 ng/mL range. The limits of detection and quantification were 0.10 ng/mL and 0.50 ng/mL, respectively. The intra- and inter-assay precisions were lower than 6.4% and intra- and inter-assay recoveries were in the 97.6-101.9% range for the three 3, 30 and 300 ng/mL concentrations. This method allows simultaneous and rapid measurement of droperidol and ondansetron, which are frequently co-administrated for the prevention of postoperative nausea and vomiting.  相似文献   

5.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for simultaneous quantitation of dexamethasone palmitate and dexamethasone in human plasma was developed. After sample preparation by protein precipitation and liquid-liquid extraction, the analytes and internal standard (IS) were separated on a Venusil XBP-C8 column using gradient elution. Multiple reaction monitoring of dexamethasone palmitate, dexamethasone and IS used the precursor to product ion transitions at m/z 631.8-->373.1, m/z 393.2-->147.1 and m/z 264.2-->58.1, respectively. The method was linear over the ranges 1.5-1000ng/mL for dexamethasone palmitate and 2.5-250ng/mL for dexamethasone with intra- and inter-day precisions of <10% and accuracies of 100+/-7%. The assay was applied to a clinical pharmacokinetic study involving the injection of dexamethasone palmitate to healthy volunteers.  相似文献   

6.
A simple, sensitive and reliable HPLC ion-pairing method with fluorescence detection, was developed for penciclovir determination in plasma and aqueous humor, with a Zorbax SB-aq C18 (100 mmx2.1 mm) column. Plasma samples were treated by solid-phase extraction with Oasis MCX (30 mg) cartridges. Ganciclovir, an antiviral drug structurally related to penciclovir, was used as internal standard (I.S.). Aqueous humor samples were directly injected into the chromatographic system. Separation was performed by a gradient elution with a mobile phase consisting of a mixture of acetonitrile and phosphate buffer 50mM containing 5mM of sodium octanesulfonate, pH 2.0, at a flow rate of 0.3 ml/min. The method was validated and showed good performances in terms of linearity, sensitivity, precision and trueness. Quantification limit was obtained at 0.05 microg/ml for aqueous humor and at 0.1 microg/ml for plasma. Finally, the proposed analytical method was used to measure penciclovir in clinical samples for a pharmacokinetic study, after oral administration of famciclovir.  相似文献   

7.
Rhodamine 123 (R123), as a typical of P-gp substrate, was widely used to quantify P-glycoprotein (P-gp) functional efflux activity in vivo. A new, rapid and sensitive method was developed for quantifying R123 in rat plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). R123 and Rhodamine 6G (R6G, the internal standard, IS) were extracted from aliquots of plasma with ethyl acetate and dichloromethane (4:1) as the solvent and chromatographic separation was performed using a Zorbax Eclipse Plus C18 column. The mobile phase was composed of A: ammonium formate-formic acid buffer containing 5 mM ammonium formate and 0.1% formic acid and B: methanol (A:B, 5:95, v/v). To quantify R123 and IS respectively, multiple reaction monitoring (MRM) transition of m/z 345.2→285.2 and m/z 443.3→415.2 was performed. The analysis time was 4 min in positive mode; the calibration curve was linear in the concentration range of 1-200 ng/ml. The lowest limit of quantification (LLOQ) reached 1 ng/ml. The intra and inter-day precision were less than 9.2% for the low quality control (QC) level, and 3.4% for other QC levels, respectively, while the intra and inter-day relative errors ranged between -7.4% and 9.1% for three QC concentration levels. The LC-MS/MS method proved to be simple, accurate, reliable and with a shorter running time and has been successfully applied to evaluate the functional activity of P-glycoprotein in an absorption experiment in the rat.  相似文献   

8.
Voriconazole is a widely used triazole antifungal agent with a broad spectrum including Aspergillus species. A simple, sensitive and selective high-performance liquid chromatography method for the determination of voriconazole in human plasma and saliva was developed. Drug and internal standard (UK-115 794) were extracted from alkaline plasma and saliva with n-hexane-ethyl acetate (3:1, v/v) and analyzed on a Luna C 18 column with fluorimetric detection set at excitation and emission wavelengths of 254 and 372 nm, respectively. The calibration curve was linear through the range of 0.1-10 microg/ml using a 0.3 ml sample volume. The intra- and inter-day precisions were all below 6.1% for plasma and below 9.1% for saliva. Accuracies ranged from 94 to 109% for both matrices. Mean recovery was 86+/-4% for voriconazole. The method showed acceptable values for precision, recovery and sensitivity and is well suited for routine analysis work and for pharmacokinetic studies.  相似文献   

9.
A liquid chromatographic-tandem mass spectrometric method (LC-MS/MS) for the determination of ulifloxacin, the active metabolite of prulifloxacin, in human plasma is described. After sample preparation by protein precipitation with methanol, ulifloxacin and ofloxacin (internal standard) were chromatographically separated on a C(18) column using a mobile phase consisting of methanol, water and formic acid (70:30:0.2, v/v/v) at a flow rate of 0.5 ml/min and then were detected using MS/MS by monitoring their precursor-to-product ion transitions, m/z 350-->m/z 248 for ulifloxacin and m/z 362-->m/z 261 for ofloxacin, in selected reaction monitoring (SRM) mode. Positive electrospray ionization was used for the ionization process. The linear range was 0.025-5.0 microg/ml for ulifloxacin with a lower limit of quantitation of 0.025 microg/ml. Within- and between-run precision was less than 6.6 and 7.8%, respectively, and accuracy was within 2.0%. The recovery ranged from 92.1 to 98.2% at the concentrations of 0.025, 0.50 and 5.0 microg/ml. Compared with the reported LC method, the present LC-MS/MS method can directly determine the ulifloxacin in human plasma without any need of derivatization. The present method has been successfully used for the pharmacokinetic studies of a prulifloxacin formulation product after oral administration to healthy volunteers.  相似文献   

10.
High-performance liquid chromatographic assays for the O- and N-demethylated oxidative metabolites of hydrocodone and oxycodone formed in human liver microsomes are described. A solvent-solvent extraction/re-extraction procedure followed by reversed-phase HPLC with UV detection at 210 nm allows for the quantification of hydromorphone, norhydrocodone, oxymorphone and noroxycodone. Calibration curve concentration ranges were 0.63-400 microM (0.18-114 microg/ml) and 1.25-400 microM (0.36-114 microg/ml) for hydromorphone and norhydrocodone, respectively and 0.13-20 microM (0.04-6.03 microg/ml) and 1-200 microM (0.30-60 microg/ml) for oxymorphone and noroxycodone, respectively. Assay performance was determined by intra- and inter-assay precision and inaccuracies for quality control samples and was <15% for all metabolites at each quality control concentration. These methods provide good precision, accuracy and sensitivity for use in in vitro kinetic studies investigating the oxidative metabolism of hydrocodone and oxycodone in human liver microsomes.  相似文献   

11.
An HPLC/MS/MS method for determination of butenafine hydrochloride in human plasma with testosterone propionate as the internal standard (IS) was developed and validated. Plasma samples were extracted with an n-hexane/diethyl ether (1:2, v/v) mixture and separated using a C(18) column by a gradient elution with the mobile phase containing acetonitrile and 5mM ammonium acetate buffer. Quantification was performed using multiple reaction monitoring (MRM) mode with transition of m/z 318.4→141.0 for butenafine hydrochloride and m/z 345.5→97.0 for testosterone propionate (IS). This method was validated in terms of specificity, linearity, precision, accuracy, and stability. The lower limit of quantification (LLOQ) of this method was 0.0182 ng/ml and the calibration curve was linear over the 0.0182-1.82 ng/ml. The intra- and inter-run coefficient of variance was less than 11.53% and 10.07%, respectively. The samples were stable under all the tested conditions. The method was successfully applied to study the pharmacokinetics of butenafine hydrochloride in healthy Chinese volunteers following its topical administration.  相似文献   

12.
A simple and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method using an atmospheric pressure chemical ionization source (APCI) for the quantification of fenretinide (4-HPR) in mouse plasma was developed and validated. After a simple protein precipitation of plasma sample by acetonitrile, 4-HPR was analyzed by LC-APCI-MS/MS. High-performance liquid chromatography (HPLC) separation was conducted on a Hypurity C18 column (50mmx2.1mm, 5microm) with a flow rate 0.60mL/min using a gradient mobile phase comprised of 0.05% formic acid in water (A) and methanol (B), and a run time of 4.5min. The elimination of a tedious sample preparation process and a shorter run time substantially reduced total analysis time. The method was linear over the range 0.5-100ng/mL, with r>0.998. The intra- and inter-assay precisions were 1.4-9.2% and 5.1-8.2%, respectively, and the intra- and inter-assay accuracies were 93.9-98.6% and 92.7-95.3%, respectively. The absolute recoveries were 90.3% (1.5ng/mL), 97.0% (7.5ng/mL) and 92.1% (75.0ng/mL) for 4-HPR, and 99.1% for the internal standard (150ng/mL). The analytical method had excellent sensitivity using a small sample volume (30microL) with the lower limit of quantification (LLOQ) 0.5ng/mL. This method is robust and has been successfully employed in a pharmacokinetic study of 4-HPR in a mouse xenograft model of neuroblastoma.  相似文献   

13.
A high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS) method was established for the determination of gambogic acid (GA) in human plasma using ursolic acid as the internal standard (I.S.). Plasma samples were extracted with ethyl acetate and separated on a Hanbon Lichrospher 5-C18 column with a mobile phase of acetonitrile-tetrahydrofuran-water (70:23:7, v/v). Gambogic acid was determined by using atmospheric pressure chemical ionization (APCI) in a single quadrupole mass spectrometer. HPLC-APCI-MS was performed in the selected ion monitoring (SIM) mode using target ions at [M-H](-)m/z 627.4 for gambogic acid and [M-H](-)m/z 455.4 for the I.S. Calibration curve was linear over the range of 3.108-4144 microg/L. The lower limit of quantification was 3.108 microg/L. The intra- and inter-run precisions were less than 12.3 and 14.1%, respectively. The method has been successfully applied to study the pharmacokinetics of gambogic acid in patients with malignant tumour.  相似文献   

14.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

15.
A simple, rapid and sensitive method was developed for the simultaneous quantification of four active schisandra lignans (schisandrin, schisantherin A, deoxyshisandrin and gamma-schisandrin) from a traditional Chinese medicine Schisandra chinensis(Wuweizi) in rat plasma using a high-performance liquid chromatography system coupled to a positive ion electrospray mass spectrometric analysis. The plasma sample preparation was a simple deproteinization by the addition of three volumes of methanol followed by centrifugation. The analytes and internal standard (IS) bicyclol were separated on a Zorbax SB-C18 column (3.5 microm, 2.1 mm x 100 mm) with mobile phase of methanol/water (70:30, v/v) containing 0.1% formic acid at a flow rate of 0.2 mL/min with an operating temperature of 25 degrees C. Detection was performed on a Trap XCT mass spectrometer equipped with an electrospray ionization (ESI) source operated in selected ion monitoring (SIM) mode. Positive ion ESI was used to form sodium adduct molecular ions at m/z 455 for schisandrin, m/z 559 for schisantherin A, m/z 439 for deoxyshisandrin, m/z 423 for gamma-schisandrin, and m/z 413 for the internal standard bicyclol. Linear detection responses were obtained for the four test compounds ranging from 0.010 to 2.0 microg/mL and the lower limits of quantitation (LLOQs) for four lignans were 0.010 microg/mL. The intra- and inter-day precisions (R.S.D.%) were within 12.5% for all analytes, while the deviation of assay accuracies was within +/-13.0%. The average recoveries of analytes were greater than 80.0%. All analytes were proved to be stable during all sample storage, preparation and analytic procedures. The method was successfully applied to the pharmacokinetic study of the four lignans after oral administration of Schisandra chinensis extraction to rats.  相似文献   

16.
A liquid chromatography/mass spectrometry (LC-MS) method has been developed and validated for the determination of the anticancer agent gemcitabine (dFdC) and its metabolite 2',2'-difluoro-2'-deoxyuridine (dFdU) in human plasma. An Oasis((R)) HLB solid phase extraction cartridge was used for plasma sample preparation. Separation of the analytes was achieved with a YMC ODS-AQ (5 microm, 120A, [Formula: see text] mm) column. The initial composition of the mobile phase was 2% methanol/98% 5mM ammonium acetate at pH 6.8 (v/v), and the flow rate was 0.2 ml/min. An isocratic gradient was used for 3min, followed by a linear gradient over 4 min to 30% methanol/70% 5mM ammonium acetate at pH 6.8. The gradient returned to the initial conditions over 2 min and remained there for 6 min. The retention times of dFdC, dFdU, and the internal standard 5'-deoxy-5-fluorouridine (5'-DFUR) were 11.46, 12.63, and 13.58 min. The mass spectrometer was operated under negative electrospray ionization conditions. Single-ion-monitoring (SIM) mode was used for analyte quantitation at m/z 262 for [dFdC-H](-), m/z 263 for [dFdU-H](-), and m/z 245 for [5'-DFUR-H](-). The average recoveries for dFdC, dFdU, and 5'-DFUR were 88.4, 84.6, and 99.3%, respectively. The linear calibration ranges were 5-1000 ng/ml for dFdC, and 5-5000 ng/ml for dFdU. The intra- and inter-assay precisions (%CV) were 相似文献   

17.
A rapid and highly sensitive liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for simultaneous determination of cefoperazone sodium and sulbactam sodium in human plasma was developed. The analytes and internal standard (IS), cefuroxime sodium, were extracted from human plasma via liquid-liquid extraction with ethyl acetate and separated on a Waters Xterra C18 column within 3.5 min. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique, operating in selected reaction monitoring (SRM) and negative ion mode. The precursor to product ion transitions monitored for cefoperazone, sulbactam and IS were m/z 644.1→528.0, 232.1→140.0, and 423.0→362.0, respectively. The assay was validated in the linear range of 0.1-20 μg/mL for cefoperazone and 0.02-4 μg/mL for sulbactam. The intra- and inter-day precisions (CV%) were within 8.39% for each analyte. The recoveries were greater than 87.3% for cefoperazone and 87.2% for sulbactam. Each analyte was found to be stable during all sample storage, preparation and analytical procedures. The method was successfully applied in a pharmacokinetic study of Sulperazon injection in six hospital-acquired pneumonia (HAP) patients.  相似文献   

18.
Lee S  Kwon S  Shin HJ  Park J  Lim HS  Lee KR  Kim YJ 《BMB reports》2010,43(11):761-765
Salivary testosterone levels in Korean adults were quantitatively measured for the first time by liquid chromatography-electrospray-tandem mass spectrometry (LC ESI MS/MS). Salivary testosterone was separated on a multiple reaction monitoring (MRM) chromatogram within 7 min. The LC ESI MS/MS assay was validated over the linearity range of 0.01-2.00 ng/ml (r=0.99987) using testosterone-d(3) as an internal standard. The lower limit of quantification (LOQ) was 0.01 ng/ml. The intra- and inter-assay precisions were 1.54% to 4.09% and 0.96% to 4.29%, respectively. The mean recovery was 93.32% (range 88.43-98.05%). The validated assay was then applied to measure the salivary testosterone levels of Korean adults. In men, the salivary testosterone level collected between 9:00-11:00 am was approximately 2.8 times higher than that in women (P < 0.0001). Salivary testosterone levels in both sexes negatively correlated with age. The present assay would also be useful in measuring salivary testosterone levels in clinical laboratories.  相似文献   

19.
A simple detection system with a high-performance liquid chromatography (HPLC) with positive ionisation-tandem mass spectrometry (ESI-MS/MS) for determining diphemanil methylsulphate (DMS) levels in human plasma using 4-diphemanylmethylene,1-methylpiperidine as an internal standard (I.S.), is proposed. The acquisition was performed with the multiple reactional monitoring (MRM) mode, by monitoring the transitions: m/z 278>262 for DMS and m/z 263>247 for the I.S. The method involved a simple single-step deproteinisation with acetonitrile. The analyte was chromatographed on a Zorbax C18 reversed-phase chromatographic column by isocratic elution with 10(-3)M ammonium acetate and 10(-3)M hexafluorobutyric acid, adjusted to pH 7.0 with ammoniac/acetonitrile (40/60, v/v). The results were linear over the studied range (0.5-50.0 ng mL(-1)) and the total analysis time for each run was 10 min. The mean extraction apparent recoveries expressed at the 95% intervals of confidence were 94-104% for DMS and 92-106% for the I.S. The intra- and inter-assay precisions were 4.6-8.4% and 2.9-10.6%, respectively. The limit of quantification was 0.15 ng mL(-1). The devised assay was successfully applied to the residual concentrations monitoring in infant.  相似文献   

20.
A sensitive high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) assay was developed to determine raltitrexed in human plasma. After addition of benazeprilat as the internal standard (IS), methanol was used to produce a protein-free extract. Chromatographic separation was achieved with a Zorbax SB-C18 column (Narrow-Bore 2.1 mmx150 mm, 5-microm) using a mobile phase of acetonitrile-water containing 0.1% formic acid and 2% methanol (21.9:78.1, v/v). Raltitrexed was determined with electrospray ionization-mass spectrometry. HPLC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at [M+H]+ m/z 459.1 for raltitrexed and [M+H]+ m/z 397.1 for IS. Calibration curves were linear over the range of 2.0-3000 ng/ml. The lower limit of quantification was 2.0 ng/ml. The intra- and inter-batch variability values were less than 6.7% and 10.3%, respectively. The mean plasma extraction recovery of raltitrexed was in the range of 85.2-91.1%. The method was successfully applied to determine the plasma concentrations of raltitrexed in eight Chinese colorectal cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号