首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb1. Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits2. During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel''s molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight3. The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along4. The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation5; 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: 1. Understand the mechanism by which DNA fragments are separated within a gel matrix 2. Understand how conformation of the DNA molecule will determine its mobility through a gel matrix 3. Identify an agarose solution of appropriate concentration for their needs 4. Prepare an agarose gel for electrophoresis of DNA samples 5. Set up the gel electrophoresis apparatus and power supply 6. Select an appropriate voltage for the separation of DNA fragments 7. Understand the mechanism by which ethidium bromide allows for the visualization of DNA bands 8. Determine the sizes of separated DNA fragments    相似文献   

2.
Unidirectional pulsed-field electrophoresis improves the separation of single-stranded DNA molecules longer than 20 kilobases (kb) in alkaline agarose gels compared to static-field electrophoresis. The greatest improvement in separation is for molecules longer than 100 kb. The improved resolution of long molecules with unidirectional pulsed-field electrophoresis makes possible the measurement of lower frequencies of single-strand breaks. The analytical function that relates the length and mobility of single-stranded DNA electrophoresed with a static field also applies to unidirectional pulsed field separations. Thus, the computer programs used to measure single-strand breaks are applicable to both undirectional pulsed- and static-field separations. Unidirectional pulsed-field electrophoresis also improves the separation of double-stranded DNA in neutral agarose gels. The function relating molecular length and mobility for double-stranded DNA separated by unidirectional pulsed-field electrophoresis is a superset of the function for single-stranded DNA. The coefficients of this function can be determined by iterative procedures.  相似文献   

3.
Oriented agarose gels were prepared by applying an electric field to molten agarose while it was solidifying. Immediately afterwards, DNA samples were applied to the gel and electrophoresed in a constant unidirectional electric field. Regardless of whether the orienting field was applied parallel or perpendicular to the eventual direction of electrophoresis, the mobilities of linear and supercoiled DNA molecules were either faster (80% of the time) or slower (20% of the time) than observed in control, unoriented gels run simultaneously. The difference in mobility in the oriented gel (whether faster or slower) usually increased with increasing DNA molecular weight and increasing voltage applied to orient the agarose matrix. In perpendicularly oriented gels linear DNA fragments traveled in lanes skewed toward the side of the gel; supercoiled DNA molecules traveled in straight lanes. If the orienting voltage was applied parallel to the direction of electrophoresis, both linear and supercoiled DNA molecules migrated in straight lanes. These effects were observed in gels cast from different types of agarose, using various agarose concentrations and two different running buffers, and were observed both with and without ethidium bromide incorporated in the gel. Similar results were observed if the agarose was allowed to solidify first, and the orienting electric field was then applied to the gel for several hours before the DNA samples were added and electrophoresed. The results suggest that the agarose matrix can be oriented by electric fields applied to the gel before and probably during electrophoresis, and that orientation of the matrix affects the mobility and direction of migration of DNA molecules. The skewed lanes observed in the perpendicularly oriented gels suggest that pores or channels can be created in the matrix by application of an electric field. The oriented matrix becomes randomized with time, because DNA fragments in oriented and unoriented gels migrated in straight lanes with identical velocities 24 hours later.  相似文献   

4.
The electrophoretic mobility of double helical DNA in agarose and polyacrylamide gels increases as a function of time after the electric field is applied to the gel and decreases after the field is terminated. The changes are large for long (more than 10 kb) molecules. The effects of other variables are indicated.  相似文献   

5.
An electrophoretic karyotype of Neurospora crassa.   总被引:41,自引:5,他引:36       下载免费PDF全文
A molecular karyotype of Neurospora crassa was obtained by using an alternating-field gel electrophoresis system which employs contour-clamped homogeneous electric fields. The migration of all seven N. crassa chromosomal DNAs was defined, and five of the seven molecules were separated from one another. The estimated sizes of these molecules, based on their migration relative to Schizosaccharomyces pombe chromosomal DNA molecules, are 4 to 12.6 megabases. The seven linkage groups were correlated with specific chromosomal DNA bands by hybridizing transfers of contour-clamped homogeneous electric field gels with radioactive probes specific to each linkage group. The mobilities of minichromosomal DNAs generated from translocation strains were also examined. The methods used for preparation of chromosomal DNA molecules and the conditions for their separation should be applicable to other filamentous fungi.  相似文献   

6.
Conventional agarose gel electrophoresis separates DNA using a static electric field. The maximum size limit for separation of DNA by this method is about 20 kilobase pairs (kb). A number of new electrophoretic techniques which employ periodic reorientation of electric fields permit separation of DNA well beyond this size limit. We sought to determine whether the use of very fast (millisecond) field switching could improve separation of DNA in the size range of 1 to 50 kb. Additionally, we have compared the resolution obtained with each of the different field switching regimens for DNA in this size range. Switching intervals of from 0.2 to 900 ms were used with unidirectional pulsing of a single electric field, with pulsed field gels, and with field inversion gel electrophoresis. Plotting the mobility of DNA as a function of size demonstrates that under the conditions used, each of these techniques offers comparable resolution. We also have examined the separation obtained when field inversion gels are run with forward and reverse fields of equal voltage and different durations, versus using fields of equal duration and different voltages. Field inversion which uses forward and reverse fields of different voltages yields resolution which is superior to the other methods examined.  相似文献   

7.
A polymer (PDMS: poly(dimethylsiloxane)) microchip for capillary gel electrophoresis that can separate different sizes of DNA molecules in a small experimental scale is presented. This microchip can be easily produced by a simple PDMS molding method against a microfabricated master without the use of elaborate bonding processes. This PDMS microchip could be used as a single use device unlike conventional microchips made of glass, quartz or silicon. The capillary channel on the chip was partially filled with agarose gel that can enhance separation resolution of different sizes of DNA molecules and can shorten the channel length required for the separation of the sample compared to capillary electrophoresis in free-flow or polymer solution format. We discuss the optimal conditions for the gel preparation that could be used in the microchannel. DNA molecules were successfully driven by an electric field and separated to form bands in the range of 100 bp to 1 kbp in a 2.0% agarose-filled microchannel with 8 mm of effective separation length.  相似文献   

8.
Poly-N-acryloyl-tris(hydroxymethyl)aminomethane (NAT) gels were evaluated as a matrix for DNA electrophoresis. The resolution of DNA restriction fragments in three poly(NAT)-N,N'-methylenebisacrylamide (Bis) gels (4, 5, and 6%) was compared with the resolution in polyacrylamide (AA)-Bis gels of the same percentage. Poly(NAT) gels were found to give a substantially improved separation of DNA fragments larger than 200 bp. In contrast to poly(AA) gels, DNA fragments of up to 4 kbp were well resolved in the new matrix. By pulse-field electrophoresis the useful separation range of poly(NAT) gels was expanded to at least 23 kbp. For DNA fragments below 10 kbp, the resolution was better than that in a 0.7% agarose gel. Thus poly(NAT) gels are most suitable for the electrophoretic separation of DNA molecules whose size is out of the optimal fractionation range of poly(AA) or agarose gels.  相似文献   

9.
H W White 《BioTechniques》1992,12(4):574-579
This report describes the use of a new type of agarose (FastLane agarose) for faster separation of DNA by agarose gel electrophoresis. DNA molecules separated in this agarose exhibited electrophoretic mobilities up to 30% higher than similar separations in standard analytical grade agarose. DNA molecules of all sizes examined showed higher mobilities in FastLane agarose. The mobility increase was predominantly due to the low electroendosmosis of FastLane agarose and was most pronounced in pulsed field gel electrophoresis separations. The magnitude of mobility increase varied depending on the conditions used for electrophoresis.  相似文献   

10.
Orientation of DNA molecules in agarose gels by pulsed electric fields   总被引:5,自引:0,他引:5  
The electric birefringence of DNA restriction fragments of three different sizes, 622, 1426, and 2936 base pairs, imbedded in agarose gels of different concentrations, was measured. The birefringence relaxation times observed in the gels are equal to the values observed in free solution, if the median pore diameter of the gel is larger than the effective hydrodynamic length of the DNA molecule in solution. However, if the median pore diameter is smaller than the apparent hydrodynamic length, the birefringence relaxation times increase markedly, becoming equal to the values expected for the birefringence relaxation of fully stretched DNA molecules. This apparent elongation indicates that end-on migration, or reptation is a likely mechanism for the electrophoresis of large DNA molecules in agarose gels. The relaxation times of the stretched DNA molecules scale with molecular weight (or contour length) as N2.8, in reasonable agreement with reptation theories.  相似文献   

11.
N C Stellwagen 《Biochemistry》1988,27(17):6417-6424
When linear or supercoiled DNA molecules are imbedded in agarose gels and subjected to electric fields, they become oriented in the gel matrix and give rise to an electric birefringence signal. The sign of the birefringence is negative, indicating that the DNA molecules are oriented parallel to the electric field lines. If the DNA molecules are larger than about 1.5 kilobase pairs, a delay is observed before the birefringence signal appears. This time lag, which is roughly independent of DNA molecular weight, decreases with increasing electric field strength. The field-free decay of the birefringence is much slower for the DNA molecules imbedded in agarose gels than observed in free solution, indicating that orientation in the gel is accompanied by stretching. Both linear and supercoiled molecules become stretched, although the apparent change in conformation is much less pronounced for supercoiled molecules. When the electric field is rapidly reversed in polarity, very little change in the birefringence signal is observed for linear or supercoiled DNAs if the equilibrium orientation (i.e., birefringence) had been reached before field reversal. Apparently, completely stretched, oriented DNA molecules are able to reverse their direction of migration with little or no loss of orientation. If the steady-state birefringence had not been reached before the field reversal, complicated orientation patterns are observed after field reversal. Very large, partially stretched DNA molecules exhibit a rapid decrease in orientation at field reversal. The rate of decrease of the birefringence signal in the reversing field is faster than the field-free decay of the birefringence and is approximately equal to the rate of orientation in the field (after the lag period).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Separation of very large DNA molecules by gel electrophoresis.   总被引:18,自引:6,他引:12       下载免费PDF全文
Very large DNA molecules were separated by electrophoresis in horizontal slab gels of dilute agarose. Conditions of electrophoresis were developed using intact DNA molecules from the bacterial viruses lambda, T4 and G. Their DNAs have molecular weights (M) of 32 million, 120 million, and 500 million, respectively. Several electrophoresis conditions were found which give sufficiently high mobilities and large differences that these DNAs are separated in a short time. Electrophoresis in 0.1% agarose at 2.5 V/cm of gel length separates T4 and lambda DNAs by 2.0 cm, and G and T4 DNAs by 1.0 cm in only 10 hr. With some conditions DNA mobilities are directly proportional to log M for M values from 10 to 500 million. The procedures used will allow rapid molecular weight determination and separation of very large DNA molecules.  相似文献   

13.
Abstract

The electric birefringence of DNA restriction fragments of three different sizes, 622,1426, and 2936 base pairs, imbedded in agarose gels of different concentrations, was measured. The birefringence relaxation times observed in the gels are equal to the values observed in free solution, if the median pore diameter of the gel is larger than the effective hydrodynamic length of the DNA molecule in solution. However, if the median pore diameter is smaller than the apparent hydrodynamic length, the birefringence relaxation times increase markedly, becoming equal to the values expected for the birefringence relaxation of fully stretched DNA molecules. This apparent elongation indicates that end-on migration, or reptation is a likely mechanism for the electrophoresis of large DNA molecules in agarose gels. The relaxation times of the stretched DNA molecules scale with molecular weight (or contour length) as N2.8, in reasonable agreement with reptation theories.  相似文献   

14.
The orientation of agarose gels in pulsed electric fields has been studied by the technique of transient electric birefringence. The unidirectional electric fields ranged from 2 to 20 V/cm in amplitude and 1 to 100 s in duration, values within the range typically used for pulsed field gel electrophoresis (PFGE). Agarose gels varying in concentration from 0.3 to 2.0% agarose were studied. The sign of the birefringence varied randomly from one gel to another, as described previously [J. Stellwagen & N. C. Stellwagen (1989), Nucleic Acids Research, Vol. 17, 1537–1548]. The sign and amplitude of the birefringence also varied randomly at different locations within each gel, indicating that agarose gels contain multiple subdomains that orient independently in the electric field. Three or four relaxation times of alternating sign were observed during the decay of the birefringence. The various relaxation times, which range from 1 to ~ 120 s, can be attributed to hierarchies of aggregates that orient in different directions in the applied electric field. The orienting domains range up to ~ 22 μm in size, depending on the pulsing conditions. The absolute amplitude of the birefringence of the agarose gels increased approximately as the square of the electric field strength. The measured Ker constants are ~ 5 orders of magnitude larger than those observed when short, high-voltage pulses are applied to agarose gels. The increase in the Kerr constants in the low-voltage regime parallels the increase in the relaxation times in low-voltage electric fields. Birefringence saturation saturation curves in both the low- and high-voltage regimes can be fitted by theoretical curves for permanent dipole orientation. The apparent permanent dipole moment increase approximately as the 1.6 power of fiber length, consistent with the presence of overlapping agarose helices in the large fiber bundles orienting in low-voltage electric fields, the optical factor is approximately independent of fiber length. Therefore, the marked increase in the Kerr constants observed in the low-voltage regime is due to the large increase in the electrical orientation factor, which is due in turn to the increased length of the fiber bundles and domains orienting in low-voltage electric fields. Since the size of the fiber bundles and domains approximates the size of the DNA molecules being separated by PFGE, the orientation of the agarose matrix in the applied electric field may facilitate the migration of large DNA molecules during PFGE. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
B Akerman 《Biophysical journal》1998,74(6):3140-3151
Electrophoretic velocity and orientation have been used to study the electric-field-induced trapping of supercoiled and relaxed circular DNA (2926 and 5386 bp) in polyacrylamide gels (5% T, 3.3% C) at 7.5-22.5 V/cm, using as controls linear molecules of either the same contour length or the same radius of gyration. The circle-specific trapping is reversible. From the duration of the reverse pulse needed to detrap the molecules, the average trap depth is estimated to be 90 A, which is consistent with the molecular charge and the field strengths needed to keep molecules trapped. Trapped circles exhibit a strong field alignment compared to the linear form, and there is a good correlation between the enhanced field alignment for the circles and the onset of trapping in both constant and pulsed fields. The circles do not exhibit the orientation overshoot response to a field pulse seen with linear DNA, and the rate of orientation growth scales as E(-2+/-0.1) with the field, as opposed to E(-1.1+/-0.1) for the linear form. These results show that the linear form migrates by cyclic reptation, whereas the circles most likely are trapped by impalement on gel fibers. This proposal is supported by very similar velocity and orientation behavior of circular DNA in agarose gels, where impalement has been deemed more likely because of stiffer gel fibers. The trapping efficiency is sensitive to DNA topology, as expected for impalement. In polyacrylamide the supercoiled form (superhelical density sigma = -0.05) has a two- to fourfold lower probability of trapping than the corresponding relaxed species, whereas in agarose gels the supercoiled form is not trapped at all. These results are consistent with existing data on the average holes in the plectonemic supercoiled structures and the fiber thicknesses in the two gel types. On the basis of the topology effect, it is argued that impalement during pulsed-field electrophoresis in polyacrylamide gels may be useful for the separation of more intricate DNA structures such as knots. The results also indicate that linear dichroism on field-aligned molecules can be used to measure the supercoiling angle, if relaxed DNA circles are used as controls for the global degree of orientation.  相似文献   

16.
Urea PAGE or denaturing urea polyacrylamide gel electrophoresis employs 6-8 M urea, which denatures secondary DNA or RNA structures and is used for their separation in a polyacrylamide gel matrix based on the molecular weight. Fragments between 2 to 500 bases, with length differences as small as a single nucleotide, can be separated using this method1. The migration of the sample is dependent on the chosen acrylamide concentration. A higher percentage of polyacrylamide resolves lower molecular weight fragments. The combination of urea and temperatures of 45-55 °C during the gel run allows for the separation of unstructured DNA or RNA molecules.In general this method is required to analyze or purify single stranded DNA or RNA fragments, such as synthesized or labeled oligonucleotides or products from enzymatic cleavage reactions.In this video article we show how to prepare and run the denaturing urea polyacrylamide gels. Technical tips are included, in addition to the original protocol 1,2.  相似文献   

17.
Resolving power is a quantitative measure of the ability of an electrophoretic system to separate DNA (and other) molecules of similar size. It is a dimensionless quantity, and hence facilitates comparison of the performance of electrophoretic systems that operate very differently. Resolving power can be determined as a function of molecular length from experimental data consisting of a series of completely resolved bands on a gel or blot; closely spaced bands are not required. We discuss factors such as the mass of DNA in a particular band and the spatial resolution of the system used to image the distribution of DNA on a gel or blot that, while not an intrinsic part of the electrophoretic system, may influence the observed resolving power. We derive an empirical global dispersion function that applies both to images of gels obtained after a fixed time of electrophoresis of all the samples and to images obtained as each species reaches a detector located at a fixed distance from the starting well. We use this dispersion function to show that the improvement in resolving power produced by extending the time or distance of electrophoresis in a static, uniform electric field asymptotically approaches a limiting value that is a function of the length of the DNA. When plotted as a function of molecular length, this limiting value defines an envelope that characterizes the intrinsic limits of performance of a particular electrophoretic system (e.g., electric field strength, gel type and concentration, buffer, temperature). Comparing the resolving power of static field agarose gel electrophoresis as routinely practiced for separating DNA molecules from 103 to 105 bp long with other electrophoretic schemes suggests that significant improvements should be achievable.  相似文献   

18.
Human factor VIII-related protein precipitates with specific heterologous anti-bodies directed against purified factor VIII and supports ristocetin-induced aggregation of washed platelets. We purified human factor VIII from cryoprecipitate by subsequent gel filtration on crosslinked large-pore agarose. Factor VIII-related protein appeared as a large aggregate following electrophoresis on 3% polyacrylamide gels in the presence of sodium dodecyl sulfate (SDS). The same material was separated into multiple bands (molecular weight in excess of several millions) following electrophoresis on SDS-1% agarose gels. After complete disulfide reduction of factor VIII-related protein and electrophoresis on SDS-5% polyacrylamide gels a single subunit chain (Mr approximately equal to 200 000) was revealed. Analysis of this protein, in its non-reduced state, by negative contrast electron microscopy showed filaments of markedly variable size. The calculated molecular weight of such filaments ranged from about 0.6.10(6) to 20.10(6). We conclude that size heterogeneity is an essential feature of human factor VIII-related protein.  相似文献   

19.
M Ugozzoli  A Chiu 《BioTechniques》1992,12(2):187-8, 190
Several components of the extracellular matrix in the molecular weight range of 220 kDa to 150 kDa were purified by preparative electrophoresis on 2.5% Pro-Sieve agarose gels. These high molecular weight glycoproteins, separated under reducing conditions, were recovered in solution by extraction of individual agarose gel slices and analyzed on sodium dodecyl sulfate polyacrylamide gels and Western blots. This simple method permitted the separation and recovery of the laminin B chains (220 kDa and 205 kDa) and entactin (150 kDa) and may prove useful for the purification of other high molecular weight species.  相似文献   

20.
Contour-clamped homogeneous electric field (CHEF) electrophoresis is a technique of pulsed-field gel electrophoresis that enables the resolution of large fragments of DNA that cannot be resolved by conventional gel electrophoresis. The procedure involves the application of controlled electric fields that change direction at a predetermined angle to samples of DNA that have been embedded in an agarose gel matrix and digested with a restriction endonuclease. Adjustment of the electrophoresis conditions enables the separation of DNA fragments with lengths from 10 kilobases up to 9 megabases in a size-dependent manner in agarose gels. The banding patterns can be used for epidemiological typing, the separated DNA can be immobilized onto a membrane and used for genetic mapping, or individual fragments can be extracted and used for downstream genetic manipulations. The protocol requires specialized equipment and can be completed in a maximum of 7 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号