首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monoclonal antibody (Jel 318) was produced by immunizing mice with poly[d(TmC)].poly[d(GA)].poly[d(mCT) which forms a stable triplex at neutral pH. Jel 318 did not bind to calf thymus DNA or other non pyrimidine.purine DNAs such as poly[d(TG)].poly[d(CA)]. In addition the antibody did not recognize pyrimidine.purine DNAs containing mA (e.g. poly[d(TC)].poly[d(GmA)]) which cannot form a triplex since the methyl group blocks Hoogsteen base-pairing. The binding of Jel 318 to chromosomes was assessed by immunofluorescent microscopy of mouse myeloma cells which had been fixed in methanol/acetic acid. An antibody specific for duplex DNA (Jel 239) served as a control. The fluorescence due to Jel 318 was much weaker than that of Jel 239 but binding to metaphase chromosomes and interphase nuclei was observed. The staining by Jel 318 was unaffected by addition of E. coli DNA but it was obliterated in the presence of triplex. Since an acid pH favours triplex formation, nuclei were also prepared from mouse melanoma cells by fixation in cold acetone. Again Jel 318 showed weak but consistent staining of the nuclei. Therefore it seems likely that triplexes are an inherent feature of the structure of eucaryotic DNA.  相似文献   

2.
More than twenty repeating sequence DNAs containing phosphorothioates were prepared from the appropriate dXTPs with DNA polymerase I. The Tms of the modified DNAs were all lower than the parent polymers. A phosphorothioate group 5' to a pyrimidine gave rise to a large decrease than 5' to a purine, e.g., poly(dA).poly(dT) = 50 degrees; poly(dsA).poly(dT) = 44 degrees; poly(dA).poly(dsT) = 33 degrees; and poly(dsA).poly(dsT) = 26 degrees. The presence of phosphorothioate groups had a dramatic effect on triplex formation; poly[d(TC)].poly[d(sGsA)] spontaneously dismutases to a triplex at pH 8 whereas triplex formation in poly[d(sTsC)].poly[d(GA)] was inhibited. Surprisingly poly(dsG).poly(dC) had a Tm which initially decreased with increasing ionic strength. Resistance to digestion with pancreatic DNAse I did not correlate with phosphorothioate content. Poly[d(AsT)], poly[d(TsC)].poly[d(sGA)] and poly[d(sTG)].poly[d(sCA)] were resistant whereas poly[d(sAT)] and poly[d(sTsTG)].poly[d(CsAsA)] were rapidly degraded. Thus phosphorothioate groups cause small conformational changes and may reveal new families of conformational polymorphisms.  相似文献   

3.
(Pyrimidine)n . (purine)n DNAs of repeating sequences form a distinctive complex on lowering the pH below 6. Previously this complex was thought to be tetra-stranded. The present work is inconsistent with this view, and four lines of evidence show that the complex consists of a triplex together with a poly d(purine) possessing secondary structure. Formula: (see text). (a) S1 nuclease digestion leads to degradation of 50% of the poly d(purine) content of the pH 5-induced complex. (b) Buoyant density studies demonstrate that there is no interaction between the triplex and added free poly d(purine) and also that the complex formed from duplex DNA contained poly d(purine) which is free to form a triplex on addition of an appropriate poly d(pyrimidine) in the correct stoichiometry. (c) The hyperchromic shifts of the triplex and poly d(purine), upon melting, are mutually independent. (d) The circular dichroism spectrum of the complex is simply the weighted average of a triplex together with a free poly d(purine). The triplexes have tm's approximately 20 degrees higher than the corresponding duplexes under comparable conditions and they are extremely resistant to various deoxyribonucleases; properties which may prove useful for their isolation from natural sources.  相似文献   

4.
Polyamines favor DNA triplex formation at neutral pH   总被引:15,自引:0,他引:15  
K J Hampel  P Crosson  J S Lee 《Biochemistry》1991,30(18):4455-4459
The stability of triplex DNA was investigated in the presence of the polyamines spermine and spermidine by four different techniques. First, thermal-denaturation analysis of poly[d(TC)].poly[d(GA)] showed that at low ionic strength and pH 7, 3 microM spermine was sufficient to cause dismutation of all of the duplex to the triplex conformation. A 10-fold higher concentration of spermidine produced a similar effect. Second, the kinetics of the dismutation were measured at pH 5 in 0.2 M NaCl. The addition of 500 microM spermine increased the rate by at least 2-fold. Third, in 0.2 M NaCl, the mid-point of the duplex-to-triplex dismutation occurred at a pH of 5.8, but this was increased by nearly one pH unit in the presence of 500 microM spermine. Fourth, intermolecular triplexes can also form in plasmids that contain purine.pyrimidine inserts by the addition of a single-stranded pyrimidine. This was readily demonstrated at pH 7.2 and 25 mM ionic strength in the presence of 100 microM spermine or spermidine. In 0.2 M NaCl, however, 1 mM polyamine is required. Since, in the eucaryotic nucleus, the polyamine concentration is in the millimolar range, then appropriate purine-pyrimidine DNA sequences may favor the triplex conformation in vivo.  相似文献   

5.
Although most duplex DNAs are not immunogenic some synthetic DNAs such as poly[d(Tm5C)].poly[d(GA)] are weakly immunogenic allowing the production of monoclonal antibodies. The specificity of one of these antibodies, Jel 172, was investigated in detail by a competitive solid-phase radioimmune assay. Jel 172 bound well to poly[d(TC)].poly[d(GA)] but not to other duplex DNAs such as poly[d(TTC)].poly[d(GAA)] and poly[d(TCC)].poly[d(GGA)]. The binding to poly[d(Br5UC)].poly[d(GA)] was enhanced while that to poly[d(TC)].poly[d(IA)] was decreased compared to poly[d(TC)].poly[D(GA)]. Thus, not only is the antibody very specific for a sequence of duplex DNA but it also appears to recognize functional groups in both grooves of the helix.  相似文献   

6.
Vacuum UV circular dichroism (CD) spectra were measured down to 174 nm for five homopolymers, five duplexes, and four triplexes containing adenine, uracil, and thymine. Near 190 nm, the CD bands of poly[d(A)] and poly[r(A)] were larger than the CD bands of the polypyrimidines, poly[d(T)], poly[d(U)], and poly[r(U)]. Little change was observed in the 190 nm region upon formation of the duplexes (poly[d(A).d(T)], poly[d(A).d(U)], poly[r(A).d(T)], poly[r(A).d(U)], and poly[r(A).r(U)]) or upon formation of two of the triplexes (poly[d(T).d(A).d(T)] and poly[d(U).d(A).d(U)]). This showed that the purine strand had the same or a similar structure in these duplexes and triplexes as when free in solution. Both A.U and A.T base pairing induced positive bands at 177 and 202 nm. For three triplexes containing poly[d(A)], the formation of a triplex from a duplex and a free pyrimidine strand induced a negative band centered between 210 and 215 nm. The induction of a band between 210 and 215 nm indicated that these triplexes had aspects of the A conformation.  相似文献   

7.
P Rajagopal  J Feigon 《Biochemistry》1989,28(19):7859-7870
The complexes formed by the homopurine and homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4 have been investigated by one- and two-dimensional 1H NMR. Under appropriate conditions [low pH, excess d(TC)4 strand] the oligonucleotides form a triplex containing one d(GA)4 and two d(TC)4 strands. The homopurine and one of the homopyrimidine strands are Watson-Crick base paired, and the second homopyrimidine strand is Hoogsteen base paired in the major groove to the d(GA)4 strand. Hoogsteen base pairing in GC base pairs requires hemiprotonation of C; we report direct observation of the C+ imino proton in these base pairs. Both homopyrimidine strands have C3'-endo sugar conformations, but the purine strand does not. The major triplex formed appears to have four TAT and three CGC+ triplets formed by binding of the second d(TC)4 strand parallel to the d(GA)4 strand with a 3' dangling end. In addition to the triplexes formed, at least one other heterocomplex is observed under some conditions.  相似文献   

8.
Most duplex DNAs that are in the "B" conformation are not immunogenic. One important exception is poly(dG) X poly(dC), which produces a good immune response even though, by many criteria, it adopts a conventional right-handed helix. In order to investigate what features are being recognized, monoclonal antibodies were prepared against poly(dG) X poly(dC) and the related polymer poly(dG) X poly(dm5C). Jel 72, which is an immunoglobulin G, binds only to poly(dG) X poly(dC), while Jel 68, which is an immunoglobulin M, binds approximately 10-fold more strongly to poly(dG) X poly(dm5C) than to poly(dG) X poly(dC). For both antibodies, no significant interaction could be detected with any other synthetic DNA duplexes including poly[d(Gm5C)] X poly[d(Gm5C)] in both the "B" and "Z" forms, poly[d(Tm5Cm5C)] X poly[d(GGA)], and poly[d(TCC)] X poly[d(GGA)], poly(dI) X poly(dC), or poly(dI) X poly(dm5C). The binding to poly(dG) X poly(dC) was inhibited by ethidium and by disruption of the DNA duplex, confirming that the antibodies were not recognizing single-stranded or multistranded structures. Furthermore, Jel 68 binds significantly to phage XP-12 DNA, which contains only m5C residues and will precipitate this DNA in the absence of a second antibody. The results suggest that (dG)n X (dm5C)n sequences in natural DNA exist in recognizably distinct conformations.  相似文献   

9.
Fluorescence-determined preferential binding of quinacrine to DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
Quinacrine complexes with native DNA (Calf thymus, Micrococcus lysodeikticus, Escherichia coli, Bacillus subtilis, and Colstridium perfringens) and synthetic polynucleotides (poly(dA) . poly(dT), poly[d(A-T)] . poly[d(A-T)], poly(dG) . poly(dC) and poly[d(G-C)] . poly[d(G-C)]) has been investigated in solution at 0.1 M NaCl, 0.05 M Tris HCl, 0.001 M EDTA, pH 7.5, at 20 degrees C. Fluorescence excitation spectra of complexes with dye concentration D = 5-30 microM and DNA phosphate concentration P = 400 microM have been examined from 300 to 500 nm, while collecting the emission above 520 nm. The amounts of free and bound quinacrine in the dye-DNA complexes have been determined by means of equilibrium dialysis experiments. Different affinities have been found for the various DNAs and their values have been examined with a model that assumes that the binding constants associated with alternating purine and pyrimidine sequences are larger than those relative to nonalternating ones. Among the alternating nearest neighbor base sequences, the Pyr(3'-5')Pur sequences, i.e., C-G, T-G, C-A and T-A seem to bind quinacrine stronger than the remaining sequences. In particular the three sites, where a G . C base pair is involved, are found to display higher affinities. Good agreement is found with recent calculations on the energetics of intercalation sites in DNA. The analysis of the equilibrium shows also that the strength of the excitation spectrum of bound dye depends strongly upon the ratio of bound quinacrine to DNA. This effect can be attributed to dye-dye energy transfer along DNA.  相似文献   

10.
Triplex DNA in plasmids and chromosomes   总被引:2,自引:0,他引:2  
Circular plasmids containing pyrimidine purine tracts can form both inter-and intramolecular triplexes. Addition of poly(dTC) to plasmid pTC45, which contains a (TC)45.(GA)45 insert, results in intermolecular triplex formation. Agarose-gel electrophoresis gives rise to many well-resolved bands, which correspond to 1, 2, 3, 4... plasmid molecules attached to the added pyrimidine strand. In the electron microscope these complexes appear as a rosette of petals. The mobility of these triplex-containing complexes can be retarded by the addition of a triplex-specific monoclonal antibody, Jel318. Intramolecular triplex formation can be demonstrated at pH 5 in pTC45 and also in pT463-I, a plasmid containing a segment of a crab satellite DNA with both (G)n.(C)n and (TCC)n.(GGA)n inserts. However, although the intermolecular triplex remains stable for some time at pH 8, intramolecular triplex formation only occurs at low pH. Triplexes can also be detected by an immunoblotting procedure with Jel318. This unfamiliar structure is readily demonstrated in eukaryotic extracts, but not in cell extracts from Escherichia coli. Triplexes may thus be an inherent feature of eukaryotic chromosome structure.  相似文献   

11.
Alternating d(GA.TC)(n)DNA sequences, which are abundant in eukaryotic genomes, can form altered DNA structures. Depending on the environmental conditions, the formation of (GA.GA) hairpins or [C+T(GA.TC)] and [GA(GA.TC)] intramolecular triplexes was observed in vitro. In vivo, the formation of these non-B-DNA structures would likely require the contribution of specific stabilizing factors. Here, we show that Friend's nuclear extracts are rich in proteins which bind the pyrimidine d(TC)(n)strand but not the purine d(GA)n strand (NOGA proteins). Upon chromatographic fractionation, four major proteins were detected (NOGA1-4) that have been purified and characterized. Purified NOGAs bind single-stranded d(TC)n with high affinity and specificity, showing no significant affinity for either d(GA)n or d(GA.TC)nDNA sequences. We also show that NOGA1, -2 and -3, which constitute the three most abundant and specific NOGA proteins, correspond to the single-stranded nucleic acid binding proteins hnRNP-L, -K and -I, respectively. These results are discussed in the context of the possible contribution of the NOGA proteins to the stabilization of the (GA.GA) and [GA(GA.TC)] conformers of the d(GA.TC)n DNA sequences.  相似文献   

12.
Several synthetic DNAs were prepared containing the unusual bases 7-deazaadenine (c7A) and 7-deazaguanine (c7G). As judged from changes in melting temperatures these modified DNAs bound ethidium to a similar extent as the parent polymers. However, duplexes such as poly [d(Tc7G)].poly[d(CA)] and poly[d-(TC)].poly[d(c7GA]) gave no enhancement of ethidium fluorescence in a standard ethidium fluorescence assay. Fluorescence spectra in the range 400-650 nm showed that ethidium bound to poly[d(TC)].poly[d(Gc7A)] gave 70% of the fluorescence of the parent polymer poly[d(TC)].poly[d(GA)], whereas the fluorescence of poly[d(TC)].poly[d(c7GA)] was essentially 0%. Even the intrinsic fluorescence of ethidium in solution was quenched in the presence of poly[d(TC)].poly[d(c7GA)]. Binding constants were estimated from Scatchard analysis and were 4.8, 3.4, and 2.0 x 10(6) M-1 for poly[d(TC)].poly[d(GA)], poly[d(TC)].poly[d(Gc7A)], and poly[d(TC)].poly[d(c7GA)], respectively. This reduction in binding constant cannot account for the loss of fluorescence. The UV spectrum of ethidium was measured in the presence of these DNAs, and some significant differences were noted. Presumably the presence of 7-deazaguanine alters the electronic structure of bound ethidium so that it can no longer fluoresce.  相似文献   

13.
On the basis of circular dichroism (CD) data, we have now identified six different conformational states (other than the duplex) of poly[d(A-G).d(C-T)] at pH values between 8 and 2.5 (at 0.01M Na+; 20 degrees C). Three of these structural rearrangements were observed as the pH was lowered from 8 to 2.5, and three additional rearrangements were observed as the pH was raised from 2.5 back to neutral pH. The major components of the six conformational states were defined using appropriate combinations of the CD spectra of the duplex, triplex, and denatured forms of this polymer, as well as the CD spectra of the individual single strands and their respective acid-induced self-complexes. Our results show that the acid-induced rearrangements of poly[d(A-G).d(C-T)] include not only the poly[d(C+-T).d(A-G).d(C-T)] triplex, but also include the poly[d(C-T)] loop-out structure and a self-complexed form of the poly[d(A-G)] strand that is pH-dependent.  相似文献   

14.
15.
16.
DNA triple helices offer exciting new perspectives toward oligonucleotide-directed inhibition of gene expression. Purine and GT triplexes appear to be the most promising motifs for stable binding under physiological conditions compared to the pyrimidine motif, which forms at relatively low pH. There are, however, very little data available for comparison of the relative stabilities of the different classes of triplexes under identical conditions. We, therefore, designed a model system which allowed us to set up a competition between the oligonucleotides of the purine and pyrimidine motifs targeting the same Watson-Crick duplex. Several conclusions may be drawn: (i) a weak hypochromism at 260 nm is associated with purine triplex formation; (ii) delta H degree of GA, GT and TC triplex formation (at pH 7.0) was calculated as -0.1, -2.5 and -6.1 kcal/mol per base triplet, respectively. This unexpectedly low delta H degree for the purine triple helix formation implies that its delta G degree is nearly temperature-independent and it explains why these triplexes may still be observed at high temperatures. In contrast, the pyrimidine triplex is strongly favoured at lower temperatures; (iii) as a consequence, in a system where two third-strands compete for triplex formation, displacement of the GA or GT strand by a pyrimidine strand may be observed at neutral pH upon lowering the temperature. This original purine-to-pyrimidine triplex conversion shows a significant hypochromism at 260 nm and a hyperchromism at 295 nm which is similar to the duplex-to-triplex conversion in the pyrimidine motif. Further evidence for this triplex-to-triplex conversion is provided by mung bean-nuclease foot-printing assay.  相似文献   

17.
H T Steely  Jr  D M Gray    R L Ratliff 《Nucleic acids research》1986,14(24):10071-10090
CD spectra and difference-CD spectra of (a) two DNA X RNA hybrid duplexes (poly[r(A) X d(U)] and poly[r(A) X d(T)]) and (b) three hybrid triplexes (poly-[d(T) X r(A) X d(T)], poly[r(U) X d(A) X r(U)], and poly[r(T) X d(A) X r(T)]) were obtained and compared with CD spectra of six A X U- and A X T-containing duplex and triplex RNAs and DNAs. We found that the CD spectra of the homopolymer duplexes above 260 nm were correlated with the type of base pair present (A-U or A-T) and could be interpreted as the sum of the CD contributions of the single strands plus a contribution due to base pairing. The spectra of the duplexes below 235 nm were related to the polypurine strands present (poly-[r(A)] or poly[d(A)]). We interpret the CD intensity in the intermediate 255-235 nm region of these spectra to be mainly due to stacking of the constituent polypurine strands. Three of the five hybrids (poly[r(A) X d(U)], poly[r(A) X d(T)], and poly[d(T) X r(A) X d(T)]) were found to have heteronomous conformations, while poly[r(U) X d(A) X r(U)] was found to be the most A-like and poly[r(T) X d(A) X r(T)], the least A-like.  相似文献   

18.
Synthetic DNAs were prepared containing 6-methyl adenine (m6A) in place of adenine and 5-ethyl uracil (Et5U) or 5-methoxymethyl uracil (Mm5U) in place of thymine. All three modifications destabilized duplex DNAs to varying degrees. The binding of ethidium was studied to analogues of poly[d(AT)]. There was no evidence of cooperative binding and the "neighbour exclusion rule" was obeyed in all cases although the binding constant to poly[d(m6AT)] was approximately 6 fold higher than to poly[d(AT)]. 31P NMR spectra were recorded in increasing concentrations of CsF. Poly[d(AEt5U)] showed two well-resolved signals separated by 0.55 ppm in 1 M CsF compared to 0.32 ppm for poly[d(AT)] under identical conditions. In contrast, poly[d(AMm5U)] and poly[d(m6AT)] showed two signals separated by 0.28 ppm and 0.15 ppm respectively, only when the concentration of CsF was raised to 2 M. The signals for poly[d(AT)] in 2 M CsF were better resolved and were separated by 0.41 ppm. These results suggest that minor modifications to the bases may have conformational effects which could be recognized by DNA-binding proteins.  相似文献   

19.
The interaction of daunomycin with ctDNA and six purine–pyrimidine alternating poly-deoxynucleotides has been studied using fluorometric and uv-visible absorption methods. In the explored binding range of r > 0.05, the intercalation of the drug into the DNAs proved to be anticooperative, as indicated by the pronounced upward curvature of all the Scatchard plots obtained. The experimental data have been analyzed according to the recent theory of Friedman and Manning, which describes the polyelectrolyte effects on the site binding equilibria, drug intercalation included. We found that, accounting for the polyelectrolyte effects in the neighbor site exclusion model, the experimental data were nearly equally well described, in a wide range of binding ratios, by assuming the presence of sequence specificity effects (site size = 2 base pairs, exclusion parameter n = 1) or its absence (site size = 1 base pair, n = 1.7). The relevant results are as follows: (a) Daunomycin binds to all the DNAs considered with a stoichiometry of approximately 1 drug for every two base pairs. (b) The anticooperative nature of the interaction is essentially polyelectrolytic in origin. (c) The binding affinity shown by the drug for the different sites considered decreases in the order of Gm5C > AT > AC-GT > IC > GC > AU, indicating a stabilizing effect of the —CH3 group in position 5 of the pyrimidines. (d) The extent of quenching of the intrinsic fluorescence of daunomycin in the presence of DNA is bound to the presence, at the intercalation site, of a guanine residue, since GC, Gm5C, and AC-GT sites induce a nearly total quenching, whereas AT, AU, and IC sites act only partially in this respect. The structural results obtained from the daunomycin-d[(CGTACG)]2 crystal suggest that the 2-NH2 group of guanine might be responsible for such a phenomenon. The influence of both the temperature and the ionic strength on the free energy of drug intercalation into ctDNA, poly[d(G-C)] : poly[d(G-C)], and poly[d(A-C)] : poly[d(G-T)] is examined and discussed.  相似文献   

20.
DNA triple helices offer exciting perspectives toward oligonucleotide-directed control of gene expression. Oligonucleotide analogues are routinely used with modifications in either the backbone or the bases to form more stable triple-helical structures or to prevent their degradation in cells. In this article, different chemical modifications are tested in a model system, which sets up a competition between the purine and pyrimidine motifs. For most modifications, the DeltaH degrees of purine triplex formation is close to zero, implying a nearly temperature-independent affinity constant. In contrast, the pyrimidine triplex is strongly favored at lower temperatures. The stabilization induced by modifications previously known to be favorable to the pyrimidine motif was quantified. Interestingly, modifications favorable to the GT motif (propynyl-U and dU replacing T) were also discovered. In a system where two third strands compete for triplex formation, replacement of the GA or GT strand by a pyrimidine strand may be observed at neutral pH upon lowering the temperature. This purine-to-pyrimidine triplex conversion depends on the chemical nature of the triplex-forming strands and the stability of the corresponding triplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号