首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wetland plants create partly aerobic conditions in the rhizosphere by releasing oxygen to the waterlogged substrate. The present study was conducted to characterise the arrangement of rhizobacteria, especially those active in methane oxidation, in root-associated biofilms of wetland plants. Root cross sections sampled from Typha latifolia L. (broadleafed cattail) and Phragmites australis (Cav.) Trin. ex Steud. (common reed) were scanned using light and electron microscopy. Methane-oxidising bacteria were identified and quantified by immunological labelling of the α-subunit of the methanol dehydrogenase (α-MDH; encoded in mxaF). On roots of both species there was a diverse subset of bacteria arranged in a microbial biofilm around the roots’ exodermis. Similar bacterial densities in the root-associated biofilm were detected in more basal regions and closer to the root tip. Many microbes carried notable internal membrane systems that are characteristic of methanotrophic bacteria. This morpho-anatomical characterisation was confirmed by immunogold labelling with α-MDH antibodies. Quantification of labelled bacteria revealed that 34–43% of the biofilm bacteria were potentially capable of methane turnover. These findings confirm the presence of methane-oxidising bacteria in the root-associated biofilms of the two common macrophytes T. latifolia and P. australis. This implies that the methanotrophs participate essentially in the microbial processes related to oxygen-releasing roots of wetland plants.  相似文献   

2.
We examined how dominance (% canopy cover) and invasion history of common reed, Phragmites australis, affected benthic macroinvertebrate diversity and density in 8 marshes along Lake Erie’s southern shoreline. We also compared macroinvertebrate densities among patches (0.25 m2) of reed, cattail (Typha spp.), and native flora (e.g., Sagittaria, Sparganium) and epiphytic algal communities on submerged stems of reed and cattail. Narrow-leaf cattail (T. angustifolia) is also a common invasive plant to these wetlands, but does not greatly change plant community composition or ecosystem conditions like reed. Macroinvertebrate diversity (Shannon–Weaver H′) was positively related to reed cover and was highest (4.6) in two marshes with ~35- and 5-year invasion histories. Shading from high reed cover increased H′-diversity, in part, by reducing the abundance of floating duckweed, which harbored many Hyalella azteca amphipods. Percent Ephemeroptera, Odonata, and Trichoptera was low to moderate across marshes, regardless of reed cover and invasion history. Macroinvertebrate density was not affected by reed cover or average plant stem density, and did not differ among plant types. However, epiphyton densities and % diatoms were greater on reed than on cattail, suggesting reed provides a better feeding habitat for microalgal grazers than Typha. Abundance rankings of common species in these diatom-dominated communities were also typically dissimilar between these plant types. Although % grazers was unrelated to epiphyton densities and % diatoms, grazer identity (snails) differed between natural and diked marshes, which had different microalgal food supplies. Our findings suggest that Phragmites does not necessarily adversely affect macroinvertebrate community structure and diversity and that invasion history alone has little effect on the H′-diversity–reed dominance relationship.  相似文献   

3.
Five three- to four-year old created palustrine/emergent wetland sites were compared with five nearby natural wetlands of comparable size and type. Hydrologic, soil and vegetation data were compiled over a nearly two-year period (1988-90). Created sites, which were located along major highways, exhibited more open water, greater water depth, and greater fluctuation in water depth than natural wetlands. Typical wetland soils exhibiting mottling and organic accumulation were wanting in created sites as compared with natural sites. Typha latifolia (common cattail) was the characteristic emergent vegetation at created sites, whereas a more diverse mosaic of emergent wetland species was often associated with Typha at the natural sites. Species richness was slightly higher in created (22–45) vs. natural (20–39) wetlands, but the mean difference (33 vs. 30) was not significant. Nearly half (44%) of the 54 wetland taxa found at the various study sites were more frequently recorded at created than natural wetlands. The presence of mycorrhizae in roots of Typha angustifolia (narrow-leaved cattail) and Phragmites australis (common reed) was greater at created than natural wetlands, which may be related to differential nutrient availability. Wildlife use at all sites ranged from occasional to rare, with more sightings of different species in the natural (39) than created (29) wetlands. The presence of P. australis and introduced Lythrum salicaria (purple loosestrife) may pose a threat to future species richness at the created sites. One created site has permanent flow-through hydrology, and its vegetation and wildlife somewhat mimic a natural wetland; however, the presence of P. australis and its potential spread pose an uncertain future for this site. This study suggests the possibility of creating small palustrine/emergent wetlands having certain functions associated with natural wetlands, such as flood water storage, sediment accretion and wildlife habitat. It is premature to evaluate fully the outcome of these wetland creation efforts. A decade or more is needed, emphasizing the importance of long term monitoring and the need to establish demonstration areas.  相似文献   

4.
Abstract: Common reed (Phragmites australis) forms dense stands with deep layers of residual organic matter that negatively affects plant diversity and possibly habitat use by wetland birds. We sought to determine whether seasonal relative abundance and species richness of birds varied among 3 habitat types in Great Lakes coastal wetland complexes recently invaded by common reed. We used fixed-distance point counts to determine species relative abundances and species richness in edge and interior locales within common reed, cattail (Typha spp.), and meadow marsh habitats of various sizes during 2 summers (2001 and 2002) and 1 autumn (2001) at Long Point, Lake Erie, Ontario, Canada. We found that total relative abundance and species richness of birds were greater in common reed habitat compared to cattail or meadow marsh habitats. However, we also found that relative abundance of marsh-nesting birds was greater in meadow marsh habitat than in cattail and common reed during summer. Lastly, we found that, irrespective of habitat type, habitat edges had higher total relative abundance and species richness of birds than did habitat interiors. Our results show that common reed provides suitable habitat for a diversity of landbirds during summer and autumn but only limited habitat for many marsh-nesting birds during summer. Based on these results, we recommend restoration of meadow marsh habitat through reduction of common reed in Great Lakes wetlands where providing habitat for breeding marsh-nesting birds is an objective. Managers also might consider reducing the size of nonnative common reed stands to increase edge effect and use by birds, possibly including wetland birds.  相似文献   

5.
Invasions of Typha (cattail) and/or Phragmites (common reed) in wetland ecosystems result in changes in species richness, diversity and composition of vascular plants. These invasions are particularly harmful in lakes where threatened species and/or communities are found. The spread of two species of Typha (T. angustifolia and T. latifolia) and of Phragmites australis in the Stagnone Lake, on Capraia Island (Tuscan Archipelago — Mediterranean sea) was studied. We report this progressive invasion, documented by means of a series of vegetation maps (1991, 1995, 1998 and 2009). The expansion rate of the three invasive helophytes and the shrinking of the aquatic communities were studied using a GIS system. The impact of the spread of these three species on the floristic characteristics of the plant communities and the lake vegetation in general, was analysed by means of 15 plots of 1 m2 in 2000 and in 2009. Statistical analysis of the two series shows a significant change in the floristic composition of the communities as a result of the invasion process. Many important groups of species, such as many aquatic species, decrease in number and in cover value.  相似文献   

6.
The Sanjiang Plain is the largest freshwater wetlands in Northeast China. In order to feed the growing population, about 84 % of the wetlands in this area have been converted to farmland, especially to paddy fields, since the 1950s. However, little is known about the influence of this conversion on soil microbial community composition. In this study, soil samples were collected from two natural wetlands dominated by plant species Carex lasiocarpa and Deyeuxia angustifolia and from a neighboring paddy field that was changed from wetland more than 10 years ago. The composition and diversity of bacterial communities in the soils were estimated by clone library analysis of nearly full length of 16S rDNA sequences. The results revealed that bacterial diversity was higher in paddy fields, and that the composition of bacterial communities differed among the three samples; the difference was more notable between the paddy field and two natural wetlands than between two natural wetlands. The distribution of clones into different bacterial phyla differed among soil samples, and the conversion from natural wetlands to paddy field increased the abundance of Proteobacteria and Firmicutes but decreased the abundance of Chloroflexi. About 63 % and 71 % of clones from two natural wetlands and 49 % of clones from the paddy field had <93 % similarity with known bacteria, suggesting that the majority of bacteria in natural wetland soils in the Sanjiang Plain are phylogenetically novel. In general, this study demonstrated that long-term conversion from natural wetlands to paddy field changes soil bacterial communities in the Sanjiang Plain.  相似文献   

7.
Anaerobic ammonium-oxidizing (anammox) bacteria, aerobic ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) are three groups of ammonium/ammonia-oxidizing prokaryotes (AOPs) that are involved in the nitrogen cycle. This research compared the AOP communities in a constructed freshwater wetland with a natural coastal marine wetland in the subtropical Hong Kong. Both vegetated/rhizosphere and nonvegetated sediments were investigated to identify the effects of different macrophytes on the AOP communities. The polymerase chain reaction (PCR)-amplified gene fragments of 16S rRNA and archaeal and bacterial amoA (encoding the ammonia monooxygenase alpha subunit) were applied as molecular biomarkers to analyze the AOPs’ phylogeny and diversity. Quantitative PCR was used to determine the abundances of AOPs in the sediments. The results showed that the relatively more heterogeneous freshwater wetland contained a broader range of phylotypes, higher diversity, more complex community structures, and more unevenly distributed abundances of AOPs than the coastal wetland. The effects of vegetation on the community structures of AOPs were plant-specific. The exotic Typha angustifolia affected the community structures of all AOPs and enhanced their abundances in the rhizosphere region. Both Phragmites australis and Cyperus malaccensis showed some effects on the community structures of AOB, but minimal effects on those of anammox bacteria or AOA. Kandelia obovata had almost no detectable effect on all AOPs due to their smaller size. This study suggested that the freshwater and coastal marine wetlands may have different contributions to the inorganic N removal due to the variations in AOP communities and plant types.  相似文献   

8.
The effects of invasive plants on plants native to areas that are being invaded can be quite variable, depending on the species of the invasive plant involved as well as the physical characteristics of the location being invaded. My study focuses on the effects of Phragmites australis Linnaeus (common reed) and Lythrum salicaria L. (purple loosestrife) on the same native plant community. Uninvaded plots dominated by native plants Typha angustifolia L. (narrowleaf cattail) and Typha latifolia L. (broadleaf cattail) served as the control. I surveyed percent cover of species during early summer and midsummer for 3 years in six Hudson River freshwater tidal wetlands (sites). Differences in species richness, composition and abundance were small, but significant among invaded and uninvaded plots and among sites. However, these differences remained significant when data for dominant species (invasive and native) were removed. Differences in native plant species abundance were attributed to invasive plant species-specific characteristics and differences in species richness and composition were attributed to physical location (zonation) in these freshwater tidal marshes. “Invasive” status of a dominant plant species was less important in invasive plant–native plant interactions than species-specific characteristics and zonation. Further research into the effects of site and land-use on invasive plant impacts is recommended.  相似文献   

9.
This study focused on the diversity of bacterial communities from two series of two-stage constructed wetlands (CWs) treating tannery wastewater, under different hydraulic conditions. Series were separately planted with Typha latifolia and Phragmites australis in expanded clay aggregates and operated for 31 months. The effect of plant species, hydraulic loading and unit stage on bacterial communities was addressed through bacterial enumeration and denaturating gradient gel electrophoresis (DGGE). Diverse and distinct bacterial communities were found in each system unit, which was related in part to the type of plant and stage position (first or second unit in the series). Numerical analysis of DGGE profiles showed high diversity in each unit with an even distribution of species. No clear relation was established between the sample collection time, hydraulic loading applied and the bacterial diversity.  相似文献   

10.
通过研究陕西省宝鸡市千渭之会国家湿地公园不同植被类型的底泥中真菌群落结构、多样性及功能差异,为千渭之会国家湿地公园水生植物的优化选择提供依据。以芦苇、香蒲、白茅、水葱、荷花等典型湿地植物底泥样本为研究对象,采用高通量测序技术对底泥样本DNA的ITS1片段进行基因测序,获取底泥中真菌群落结构组成并预测其功能信息,测定样本理化性质及酶活性。结果表明,测序共获得11 778个OTUs(Operational Taxonomic Units),划分为34个门、58个纲、134个目、244个科、599个属;真菌群落以子囊菌门(Ascomycota)和担子菌门(Basidiomycota)为主;芦苇底泥样品的真菌多样性最低;子囊菌门的相对丰度与蔗糖酶、磷酸酶活性呈显著正相关(P<0.05),担子菌门的相对丰度与总碳、总有机碳含量以及蔗糖酶活性呈显著正相关(P<0.05);底泥真菌群落主要包括3类营养型和6类互有交叉营养型功能菌群。探讨了湿地中不同植物群落的底泥中真菌群落结构、多样性以及潜在功能的差异,分析相关理化性质的影响,以期为筛选人工湿地植物、有效利用湿地资源和生态修复提供参考。  相似文献   

11.
Recognition of wetland ecosystem services has led to substantial investment in wetland restoration in recent decades. Wetland restorations can be designed to meet numerous goals, among which reestablishing a diverse native wetland plant community is a common aim. In agricultural areas, where previously drained wetland basins can fill with eroded sediment from the surrounding landscape, restoration often includes excavation to expose buried seed banks. The extent to which excavation improves the diversity of wetland plant communities is unclear, particularly in terms of longer‐term outcomes. We examined plant species diversity and community composition in 24 restored agricultural wetlands across west‐central Minnesota, U.S.A. In all study wetlands, hydrology was restored by removing subsurface drainage and plugging drainage ditches, thus reestablishing groundwater connectivity and hydroperiod (“business as usual” treatment). In half of the wetlands, accumulated sediment was removed from the basin and redeposited on the surrounding landscape (“excavated” treatment). Initially, sediment removal significantly decreased invasive species cover, particularly of hybrid cattail (Typha × glauca) and reed canary grass (Phalaris arundinacea), and increased community diversity and evenness. Over time, the effects of sediment removal diminished, and eventually disappeared by approximately 6 years after restoration. While our results demonstrate that sediment removal improves initial restoration outcomes for plant communities, longer‐term benefits require sustained management, such as invasive species control or resetting of basins through additional excavation.  相似文献   

12.
潜流人工湿地中植物对氮磷净化影响效应的研究   总被引:2,自引:0,他引:2  
刘树元 《生态学报》2011,31(6):1538-1546
采用潜流人工湿地系统,配制以NH+4-N、NO-3-N和PO3-4-P为主要成分的模拟污水,通过间歇运行方式,考察了芦苇和小叶章的生长情况、生理生态学特性及其对污水中N、P净化效能的影响,并研究了植物对湿地系统pH变化、NO-3-N和NH+4-N净化效率的影响。结果表明,当水力停留时间为7d时,小叶章和芦苇湿地对TN的去除率分别为65.1%和99.6%,去除负荷分别为1.66g · m-3 · d-1和2.53g · m-3 · d-1。小叶章和芦苇对去除TN的贡献率分别为14.7%、61.7%,对去除TP的贡献率分别为11.7%和12.9%;芦苇植株内N、P浓度分别为29.2mg/g和3.41mg/g。芦苇湿地的净化效能高于小叶章湿地。湿地系统中pH值先升高后降低的拐点可作为氨氧化反应结束的指示参数。  相似文献   

13.
Vegetation coverage is considered to be a key factor controlling nitrogen removal in wetlands. We describe the use of newly designed stainless steel incubation chambers to detect shifts in the in situ nitrate reduction activities associated to areas covered with common reed (Phragmites australis) and cattail (Typha latifolia) in the sediment of a free water surface constructed wetland (FWS-CW). Activities were measured at six different positions and times of the year and were related to physicochemical and hydraulic variables. Mean nitrate + nitrite reduction activities varied from 11.1 to 69.4 mg N/m2/h and showed a high variability within sediment types. Ammonification rates accounted for roughly 10% of the total nitrate reduction and were especially relevant in vegetated areas. Measured activities were highly above total nitrogen removal efficiencies estimated in the three parallel treatment cells of the Empuriabrava FWS-CW, indicating the potentiality of the system. In situ nitrate reduction activities correlated well with physichochemical characteristics such as pH and temperature. Additionally, differences in the total nitrogen removal efficiencies were detected between the three treatment cells and were related to changes in the water retention time. The plant species effect was detected in treatment cells of comparable hydraulic loads in which vegetation belts dominated by Typha latifolia were shown to have greater nitrogen removal efficiencies.  相似文献   

14.
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.  相似文献   

15.
The direct competitive effects of exotic plants on natives are among the leading causes of plant extinctions worldwide. Allelopathy, one type of direct plant competition, has received relatively little research, particularly in aquatic and wetland systems, even though allelopathy can be a potent mechanism through which plant communities are structured. Typha angustifolia (narrow-leaved cattail) is an invasive exotic plant in North America that often forms monocultures in disturbed wetlands and is more invasive than native members of its genus. We tested whether T. angustifolia was allelopathic and whether it produced different biochemicals than a native congener by growing it with the native bulrush Bolboschoenus fluviatilis (river bulrush) in soil with and without activated carbon and by qualitatively and quantitatively comparing soluble phenolics produced in the roots of T. angustifolia and the native Typha latifolia (broad-leaved cattail). T. angustifolia had a strong allelopathic effect on B. fluviatilis, reducing the longest leaf length and root, shoot, and total biomass of B. fluviatilis. When the allelopathy of T. angustifolia was ameliorated by activated carbon, however, longest leaf length, ramet number, root biomass, shoot biomass, and total biomass of T. angustifolia were greatly reduced due to resource competition with B. fluviatilis. Furthermore, T. angustifolia produced different, but not more, soluble phenolics than T. latifolia suggesting that the identity of the phenolics is different between the two species rather than the concentrations. The allelopathic effects of T. angustifolia on a North American native wetland plant and its production of root biochemicals that appear to differ from those produced by a native congener are consistent with the possibility that T. angustifolia may use a novel allelochemical in its invasion of North American wetlands.  相似文献   

16.
The effects of salt stress on endophytic prokaryotic communities in plants are largely unknown, and the distribution patterns of bacterial and archaeal endophytes in different tissues of a plant species are rarely compared. We investigated the endophytic bacterial and archaeal communities in roots, stems and leaves of the common reed, Phragmites australis, collected from three tidal zones along a salinity gradient, using terminal restriction fragment (T-RF) length polymorphism analysis of the 16S rRNA genes. The results showed that the bacterial diversity in the roots was significantly higher than that in the leaves, whereas similar archaeal diversity was revealed for either plant tissues or tidal zones. Network analysis revealed that T-RFs were grouped largely by tissue, and the major groups were generally linked by a few common T-RFs. Unique T-RFs in roots were mainly present in plants growing in the supratidal zone, but unique T-RFs in stems and leaves were mainly present in those from the middle and high tidal zones. Non-metric multidimensional scaling ordination and analysis of similarity revealed that bacterial communities were significantly different among tissues (P < 0.05), but similar among tidal zones (P = 0.49). However, the archaeal communities differed among tidal zones (P < 0.05), but were similar among tissues (P = 0.89). This study indicates that: (1) the endophytic archaeal communities are influenced more significantly than the endophytic bacterial communities by soil salinity, and (2) the differential distribution patterns of bacterial and archaeal endophytes in plant tissues along a salinity gradient imply that these two groups play different roles in coastal hydrophytes.  相似文献   

17.
In the Sanjiang Plain (North East China), narrowleaf small reed (Deyeuxia angustifolia) usually distributes widely in typical meadow or marsh, while reed (Phragmites australis), the concomitant species, is distributed sparsely in the D. angustifolia communities or relative open sites. To date, the mechanisms responsible for their different distribution patterns are far from clear. Both water level and light are important factors determining plant distribution in wetland ecosystems and therefore, the aim of this paper was to identify the role of these two factors and their potential interaction on plant distribution in this plain. Growth responses and biomass allocation of the two macrophytes were investigated by growing them in three irradiances (300, 100, 20 μmol m−2 s−1) and two water levels (0 and 5 cm) under greenhouse conditions. Biomass accumulation, mean relative growth rate (RGR), height and mean relative elongation rate (RER) of both species significantly decreased with the reduction of light availability. Biomass accumulation, RGR, height and RER of P. australis were significantly inhibited by higher water level. However, water level had no effect on the growth of D. angustifolia. Stem mass fraction was higher at 0-cm water level in D. angustifolia, and was not affected by water level in P. australis. These data suggest that D. angustifolia has a higher adaptive ability to acclimate to flooding and shade stresses than does P. australis, which might be an important reason for their different distribution patterns.  相似文献   

18.
Here we present the use of high-throughput DNA pyrosequencing to assess bacterial diversity in the rhizosphere of three Phragmites australis ecotypes from the Hexi Corridor, China. In total, 43404 sequences were obtained for the three ecotypes, representing 31 phyla and a small amount of unclassified bacteria. The predominant bacterial groups in the rhizosphere of P. australis were Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes and Planctomycetes. The bacterial community structure varied with the different degrees of wetland degradation, which were exhibited by the three P. australis ecotypes in the study area. At the phylum level, the Caldiserica, Chlamydiae, Deferribacteres, Lentisphaerae, and candidate division WS3 were only detected in the swamp reed (SR) sample. Then, δ-proteobacteria, Acidobacteria, Cyanobacteria and Fusobacteria decreased, the Actinobacteria increased with the degree of degradation from SR through salt meadow reed (SMR) to dune reed (DR). The functional bacterial genera also varied with wetland degradation. The sulfur and sulfate-reducing, nitrifying and nitrogen-fixing bacteria were more abundant in the rhizosphere of the SR sample. Methane-oxidizing bacteria were abundant in the SR and DR samples but less so in the SMR. In our study, pyrosequencing of different P. australis ecotypes provided insight into the structural variation of the rhizosphere bacterial community. This study gave a database for the use of bacteria in the protection and ecological restoration of wetland.  相似文献   

19.
Aim To evaluate the importance (number of species, plant cover) of the exotic flora in seven well‐defined sectors of one of the most important transportation waterways in North America. To determine the impact of exotic species on wetland plant diversity and reconstruct the spread of some invasive species. Location St Lawrence River, southern Québec. Methods The exotic flora (vascular plants) of wetlands bordering the St Lawrence River was studied using 713 sampling stations (25 m2) along a 560‐km long corridor. Results Exotic species represent 13.7% of the vascular flora of the St Lawrence wetlands. The relative plant cover occupied by exotic species is high in some of the fluvial sectors (42–44%), but low (6–10%) in the estuarine sectors. Wetlands (marshes) surrounding islands were particularly susceptible to invasion by exotic plants. Historical, abiotic and landscape factors may explain the differences observed between sites. Purple loosestrife (Lythrum salicaria L.) is the most common exotic species of the St Lawrence wetlands, but other species, namely flowering‐rush (Butomus umbellatus L.) and reed canary grass (Phalaris arundinacea L.) are much more invasive. There is no linear relationship between the exotic species cover and the diversity of wetland plants; low diversity sites can be dominated by either exotic or native plant species. In the other sites, exotic species generally have little impact on plant communities and can contribute to increase diversity. Common reed (Phragmites australis (Cav.) Trin. ex Steudel) and reed canary grass, both considered as exotic species in this study, clearly have a stronger impact on plant diversity than flowering‐rush and purple loosestrife. Main conclusions This study shows that the global impact of an invader cannot be adequately evaluated with only a few highly invaded sites. While nationwide strategies have been developed to control exotic species, large surveys are essential to adapt them to regional particularities.  相似文献   

20.
蚯蚓对湿地植物光合特性及净化污水能力的影响   总被引:2,自引:0,他引:2  
以香蒲、芦苇和美人蕉为研究对象,并以土壤+沙子+有机质混合物为供试基质模拟人工湿地处理污水,采用向基质中加入蚯蚓与未加入蚯蚓2种处理。研究加入蚯蚓后,香蒲、芦苇和美人蕉光合速率、蒸腾速率、SPAD值和水分蒸发、蒸腾量的变化及其对净化污水能力的影响。结果表明:与未加入蚯蚓相比,加入蚯蚓后,香蒲、芦苇和美人蕉的净光合速率、蒸腾速率、SPAD值和水分蒸发、蒸腾量均增加,其中芦苇的净光合速率、蒸腾速率和水分蒸发、蒸腾量增加达到显著水平(P <0.05),而香蒲的水分蒸发、蒸腾量增加也达到显著水平(P <0.05);加入蚯蚓后,香蒲、芦苇和美人蕉对CODMn、NH4+-N、NO3--N、TN和TP的去除率均增加,且香蒲和芦苇对CODMn的去除率显著增加 (P <0.05)。加入蚯蚓后,香蒲、芦苇和美人蕉的SPAD值均增加,说明蚯蚓能提高湿地植物对氮的吸收,增加植株中的氮含量,促进湿地植物的光合速率和蒸腾速率从而提高对污水的净化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号