首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonionic amphiphilic copolypeptides, which were composed of hydrophilic poly(sarcosine) and hydrophobic poly(gamma-methyl L-glutamate) blocks, were synthesized with varying chain lengths of the blocks. The polypeptides having a suitable hydrophilic and hydrophobic balance were found to form vesicular assemblies of 100 nm size in buffer, which was evidenced by the TEM observation, the DLS analysis, and the encapsulation experiment. The genuine peptide vesicles, peptosomes, were labeled with a near-infrared fluorescence (NIRF) probe. In vivo retention in blood experiment showed long circulation of the peptosome in rat blood as stable as the PEGylated liposome. NIRF imaging of a small cancer on mouse by using the peptosome as a nanocarrier was successful due to the EPR effect of the peptosome. Peptosome is shown here as a novel excellent nanocarrier for molecular imaging.  相似文献   

2.
We synthesized YC-27 3 to provide a fluorescent imaging agent for the prostate-specific membrane antigen (PSMA), a marker for hormone-independent prostate cancer and tumor neovasculature, with suitable pharmacokinetics for use in vivo. Immediate precursor trifluoroacetate salt of 2-(3-{5-[7-(5-amino-1-carboxy-pentylcarbamoyl)-heptanoylamino]-1-carboxy-pentyl}-ureido)-pentanedioic acid 2 was conjugated with a commercially available near-infrared light-emitting dye (IRDye 800CW) to provide 3 in 72% yield. YC-27 3 demonstrated a PSMA inhibitory activity of 0.37 nM and was capable of generating target-to-nontarget ratios of at least 10 in PSMA-expressing PC3-PIP vs. PSMA-negative PC3-flu tumors in vivo. YC-27 3 may be useful for study of PSMA-expressing tissue in preclinical models or for intraoperative guidance.  相似文献   

3.
Highly tumor selective near-infrared (NIR) pH-activatable probe was developed by conjugating pH-sensitive cyanine dye to a cyclic arginine-glycine-aspartic acid (cRGD) peptide targeting α(v)β(3) integrin (ABIR), a protein that is highly overexpressed in endothelial cells during tumor angiogenesis. The NIR pH-sensitive dye used to construct the probe exhibits high spectral sensitivity with pH changes. It has negligible fluorescence above pH 6 but becomes highly fluorescent below pH 5, with a pK(a) of 4.7. This probe is ideal for imaging acidic cell organelles such as tumor lysosomes or late endosomes. Cell microscopy data demonstrate that binding of the cRGD probe to ABIR facilitated the endocytosis-mediated lysosomal accumulation and subsequent fluorescence enhancement of the NIR pH-activatable dye in tumor cells (MDA-MB-435 and 4T1/luc). A similar fluorescence enhancement mechanism was observed in vivo, where the tumors were evident within 4 h post injection. Moreover, lung metastases were also visualized in an orthotopic tumor mouse model using this probe, which was further confirmed by histologic analysis. These results demonstrate the potential of using the new integrin-targeted pH-sensitive probe for the detection of primary and metastatic cancer.  相似文献   

4.
5.
Recently, there has been tremendous interest in developing techniques such as MRI, micro-CT, micro-PET, and SPECT to image function and processes in small animals. These technologies offer deep tissue penetration and high spatial resolution, but compared with noninvasive small animal optical imaging, these techniques are very costly and time consuming to implement. Optical imaging is cost-effective, rapid, easy to use, and can be readily applied to studying disease processes and biology in vivo. In vivo optical imaging is the result of a coalescence of technologies from chemistry, physics, and biology. The development of highly sensitive light detection systems has allowed biologists to use imaging in studying physiological processes. Over the last few decades, biochemists have also worked to isolate and further develop optical reporters such as GFP, luciferase, and cyanine dyes. This article reviews the common types of fluorescent and bioluminescent optical imaging, the typical system platforms and configurations, and the applications in the investigation of cancer biology.  相似文献   

6.
A number of quantitative three-dimensional tomographic near-infrared fluorescence imaging techniques have recently been developed and combined with MR imaging to yield highly detailed anatomic and molecular information in living organisms (1, 2). Here we describe magnetic nanoparticle based MR contrast agents that have a near-infrared fluorescence (NIRF) that is activated by certain enzymes. The probes are prepared by conjugation of arginyl peptides to cross-linked iron oxide amine (amino-CLIO), either by a disulfide linkage or a thioether linker, followed by the attachment of the indocyanine dye Cy5.5. The NIRF of disulfide-linked conjugate was activated by DTT, while the NIRF of thioether-linked conjugate was activated by trypsin. Fluorescent quenching of the attached fluorochrome occurs in part due to the interaction with iron oxide, as evident by the activation of fluorescence with DTT when nanoparticles that have less than one dye attached per particle. With a SC injection of the probe, axillary and brachial lymph nodes were darkened on MR images and easily delineated by NIRF imaging. The probes may provide the basis for a new class of so-called smart nanoparticles, capable of pinpointing their position through their magnetic properties, while providing information on their environment by optical imaging techniques.  相似文献   

7.
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) has extensively been used for clinical diagnosis, staging, and therapy monitoring of cancer and other diseases. Nonradioactive glucose analogues enabling the screening of the glucose metabolic rate of tumors are of particular interest for anticancer drug development. A nonradioactive fluorescent deoxyglucose analogue may have many applications for both imaging of tumors and monitoring therapeutic efficacy of drugs in living animals and may eventually translate to clinical applications. We found that a fluorescent 2-deoxyglucose analogue, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG), can be delivered in several tumor cells via the glucose transporters (GLUTs). We therefore conjugated D-glucosamine with a near-infrared (NIR) fluorphor Cy5.5 and tested the feasibility of the Cy5.5-D-glucosamine (Cy5.5-2DG) conjugate for NIR fluorescence imaging of tumors in a preclinical xenograft animal model. Cy5.5-2DG was prepared by conjugating Cy5.5 monofunctional N-hydroxysuccinimide ester (Cy5.5-NHS) and D-glucosamine followed by high-performance liquid chromatography purification. The accumulation of Cy5.5-2DG and Cy5.5-NHS in different tumor cell lines at 37 and 4 degrees C were imaged using a fluorescence microscope. Tumor targeting and retention of Cy5.5-2DG and Cy5.5-NHS in a subcutaneous U87MG glioma and A375M melanoma tumor model were evaluated and quantified by a Xenogen IVIS 200 optical cooled charged-coupled device system. Fluorescence microscopy imaging shows that Cy5.5-2DG and Cy5.5-NHS are taken up and trapped by a variety of tumor cell lines at 37 degrees C incubation, while they exhibit marginal uptake at 4 degrees C. The tumor cell uptake of Cy5.5-2DG cannot be blocked by the 50 mM D-glucose, suggesting that Cy5.5-2DG may not be delivered in tumor cells by GLUTs. U87MG and A375M tumor localization was clearly visualized in living mice with both NIR fluorescent probes. Tumor/muscle contrast was clearly visible as early as 30 min postinjection (pi), and the highest U87MG tumor/muscle ratios of 2.81 +/- 0.10 and 3.34 +/- 0.23 were achieved 24 h pi for Cy5.5-2DG and Cy5.5-NHS, respectively. While as a comparison, the micropositron emission tomography imaging study shows that [18F]FDG preferentially localizes to the U87MG tumor, with resulting tumor/muscle ratios ranging from 3.89 to 4.08 after 30 min to 2 h postadministration of the probe. In conclusion, the NIR fluorescent glucose analogues, Cy5.5-2DG and Cy5.5-NHS, both demonstrate tumor-targeting abilities in cell culture and living mice. More studies are warranted to further explore their application for optical tumor imaging. To develop NIR glucose analogues with the ability to target GLUTs/hexokinase, it is highly important to select NIR dyes with a reasonable molecular size.  相似文献   

8.
Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.  相似文献   

9.
Chen Y  Li X 《Biomacromolecules》2011,12(12):4367-4372
Polymeric near-infrared (NIR) fluorescent nanocapsules were developed, of which the fluorescence exhibited reversible response to local thermal/pH modulation. Our strategy was to use polymeric micelles made of temperature-sensitive Pluronic F-127 to encapsulate an amphiphilic NIR fluorescent dye-indocyanine green (ICG)-within the core and then cross-link the micelle corona by pH-sensitive poly(ethylenimine) (PEI). The size swelling/shrinking property of the micelles induced by temperature decrease/increase was used as a switch to control the fluorescence yield of the nanocapsules. It was found that the fluorescence yield significantly increased with the increase in temperature. The PEI cross-link made the fluorescence yield also sensitive to local pH change and enhanced intracellular delivery of the nanocapsules as well. Preliminary results suggest the NIR fluorescent probes could be potentially used as a contrast agent sensitive to local environment for translational optical imaging/sensing.  相似文献   

10.
Second harmonic generating (SHG) nanoprobes have recently emerged as versatile and durable labels suitable for in vivo imaging, circumventing many of the inherent drawbacks encountered with classical fluorescent probes. Since their nanocrystalline structure lacks a central point of symmetry, they are capable of generating second harmonic signal under intense illumination - converting two photons into one photon of half the incident wavelength - and can be detected by conventional two-photon microscopy. Because the optical signal of SHG nanoprobes is based on scattering, rather than absorption as in the case of fluorescent probes, they neither bleach nor blink, and the signal does not saturate with increasing illumination intensity. When SHG nanoprobes are used to image live tissue, the SHG signal can be detected with little background signal, and they are physiologically inert, showing excellent long-term photostability. Because of their photophysical properties, SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues with unmatched sensitivity and temporal resolution.  相似文献   

11.
Near-infrared fluorescence optical imaging is a powerful technique for studying diseases at the molecular level in preclinical models. We recently reported that monomeric RGD peptide c(RGDyK) conjugated to the NIR fluorescent dye specifically targets integrin receptor both in cell culture and in living subjects. In this report, Cy5.5-conjugated mono-, di-, and tetrameric RGD peptides were evaluated in a subcutaneous U87MG glioblastoma xenograft model in order to investigate the effect of multimerization of RGD peptide on integrin avidity and tumor targeting efficacy. The binding affinities of Cy5.5-conjugated RGD monomer, dimer, and tetramer for alpha(v)beta(3) integrin expressed on U87MG cell surface were determined to be 42.9 +/- 1.2, 27.5 +/- 1.2, and 12.1 +/- 1.3 nmol/L, respectively. All three peptide-dye conjugates had integrin specific uptake both in vitro and in vivo. The subcutaneous U87MG tumor can be clearly visualized with each of these three fluorescent probes. Among them, tetramer displayed highest tumor uptake and tumor-to-normal tissue ratio from 0.5 to 4 h postinjection. Tumor-to-normal tissue ratio for Cy5.5-conjugated RGD monomer, dimer, and tetramer were found to be 3.18 +/- 0.16, 2.98 +/- 0.05, and 3.63 +/- 0.09, respectively, at 4 h postinjection. These results suggest that Cy5.5-conjugated monomeric, dimeric, and tetrameric RGD peptides are all suitable for integrin expression imaging. The multmerization of RGD peptide results in moderate improvement of imaging characteristics of the tetramer, compared to that of the monomer and dimeric counterparts.  相似文献   

12.
Protein scaffold molecules are powerful reagents for targeting various cell signal receptors, enzymes, cytokines and other cancer-related molecules. They belong to the peptide and small protein platform with distinct properties. For the purpose of development of new generation molecular probes, various protein scaffold molecules have been labeled with imaging moieties and evaluated both in vitro and in vivo. Among the evaluated probes Affibody molecules and analogs, cystine knot peptides, and nanobodies have shown especially good characteristics as protein scaffold platforms for development of in vivo molecular probes. Quantitative data obtained from positron emission tomography, single photon emission computed tomography/CT, and optical imaging together with biodistribution studies have shown high tumor uptakes and high tumor-to-blood ratios for these probes. High tumor contrast imaging has been obtained within 1 h after injection. The success of those molecular probes demonstrates the adequacy of protein scaffold strategy as a general approach in molecular probe development.  相似文献   

13.
We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)‐1‐(pyridin‐2‐yl‐diazenyl)naphthalen‐2‐ol (PAN) complex. This probe emits near‐infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (λex = 530 nm, λem = 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The vasculature of each organ expresses distinct molecular signatures critically influenced by the pathological status. The heterogeneous profile of the vascular beds has been successfully unveiled by the in vivo phage display, a high-throughput tool for mapping normal, diseased, and tumor vasculature. Specific challenges of this growing field are targeted therapies against cancer and cardiovascular diseases, as well as novel bioimaging diagnostic tools. Tumor vasculature-homing peptides have been extensively evaluated in several preclinical and clinical studies both as targeted-therapy and diagnosis. To date, results from several Phase I and II trials have been reported and many other trials are currently ongoing or recruiting patients. In this review, advances in the identification of novel peptide ligands and their corresponding receptors on tumor endothelium through the in vivo phage display technology are discussed. Emphasis is given to recent findings in the clinical setting of vascular-homing peptides selected by in vivo phage display for the treatment of advanced malignancies and their altered vascular beds.  相似文献   

15.
Peptide-based molecular beacons are Förster resonance energy transfer-based target-activatable probes. They offer control of fluorescence emission in response to specific cancer targets and thus are useful tools for in vivo cancer imaging. With our increasing knowledge about human genome in health and disease, peptide-based “smart” probes are continually developed for in vivo optical imaging of specific molecular targets, biological pathways and cancer progression and diagnosis. A class of fluorescent photosensitizers further extends the application of peptide beacons to cancer therapeutics. This review highlights the applications of peptide beacons in cancer imaging, the simultaneous treatment and response monitoring and smart therapeutics with a focus on recent improvements in the design of these probes.  相似文献   

16.
We describe the spectral properties of an amine-reactive, pH-sensitive, long-wavelength ratiometric fluorescent label having a pKa in the physiological pH range. The label exhibits its main absorption and emission in the near-infrared (NIR) region. On deprotonation, a blue shift of the excitation maximum is observed. Importantly, both the protonated and deprotonated forms of the label are fluorescent, with the deprotonated form having an extremely large Stokes shift of more than 100 nm. The spectral and photophysical properties of this pH label are compared with the properties of the protein-conjugated forms. Due to the observed pKa shift to the acidic pH range upon conjugation to proteins, such labels are ideal for studying phagocytic events and their regulation by drugs and/or environmental factors.  相似文献   

17.
To date, several fluorescent probes modified by a single targeting agent have been explored. However, studies on the preparation of dual‐function quantum dot (QD) fluorescent probes with dual‐targeting action and a therapeutic effect are rare. Here, a dual‐targeting CdTe/CdS QD fluorescent probe with a bovine serum albumin–glycyrrhetinic acid conjugate and arginine‐glycine‐aspartic acid was successfully prepared that could induce the apoptosis of liver cancer cells and showed enhanced targeting in in vitro cell imaging. Therefore, the as‐prepared fluorescent probe in this work is an efficient diagnostic tool for the simultaneous detection of liver cancer and breast cancer cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The expression of programmed death ligand-1 (PD-L1) in tumor has been used as a biomarker to predict the anti-PD-L1 immunotherapy response. To develop a noninvasive imaging technique to monitor the dynamic changes in PD-L1 expression in colorectal cancer (CRC), we labeled an anti-PD-L1 monoclonal antibody with near-infrared (NIR) dye and tested the ability of the NIR-PD-L1-mAb probe to monitor the PD-L1 expression in CRC-xenografted mice by performing optical imaging. Consistent with the expression levels of PD-L1 protein in three CRC cell lines in vitro by flow cytometry and Western blot analyses, our in vivo imaging showed the highest fluorescence signal of the xenografted tumors in mice bearing SW620 CRC cells, followed by tumors derived from SW480 and HCT8 cell lines. We detected the highest fluorescent intensity of the tumor at 120 hours after injection of NIR-PD-L1-mAb. The highest fluorescence intensity was seen in the tumor, followed by the spleen and the liver in SW620 xenografted mice. In SW480 and HCT8 xenografted mice, however, the highest fluorescent signals were detected in the spleen, followed by the liver and the tumor. Our findings indicate that SW620 cells express a higher level of PD-L1, and the NIR-PD-L1-mAb binding to PD-L1 on the surface of CRC cells was specific. The technique was safe and could provide valuable information on PD-L1 expression of the tumor for development of a therapeutic strategy of personized targeted immunotherapies as well as treatment response of patients with CRC.  相似文献   

19.
Prostate-specific membrane antigen (PSMA) remains an active target for imaging and therapeutic applications for prostate cancer. Although radionuclide-based imaging is generally more sensitive and also has been deeply explored, near-infrared fluorescence imaging agents are simple to prepare and compatible with long-term storage conditions. In the present study, a near-infrared fluorescent imaging probe (Cy5.5-CTT-54.2) has been developed by chemical conjugation of Cy5.5N-hydroxysuccinimide ester (Cy5.5-NHS) with a potent PSMA inhibitor CTT-54.2 (IC(50)=144 nM). The probe displays a highly potency (IC(50)=0.55 nM) against PSMA and has demonstrated successful application for specifically labeling PSMA-positive prostate cancer cells in both two and three-dimensional cell culture conditions. These results suggest that the potent, near-infrared Cy5.5-PSMA inhibitor conjugate may be useful for the detection of prostate tumor cells by optical in vivo imaging.  相似文献   

20.
Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping   总被引:20,自引:0,他引:20  
The use of near-infrared or infrared photons is a promising approach for biomedical imaging in living tissue. This technology often requires exogenous contrast agents with combinations of hydrodynamic diameter, absorption, quantum yield and stability that are not possible with conventional organic fluorophores. Here we show that the fluorescence emission of type II quantum dots can be tuned into the near infrared while preserving absorption cross-section, and that a polydentate phosphine coating renders them soluble, disperse and stable in serum. We then demonstrate that these quantum dots allow a major cancer surgery, sentinel lymph node mapping, to be performed in large animals under complete image guidance. Injection of only 400 pmol of near-infrared quantum dots permits sentinel lymph nodes 1 cm deep to be imaged easily in real time using excitation fluence rates of only 5 mW/cm(2). Taken together, the chemical, optical and in vivo data presented in this study demonstrate the potential of near-infrared quantum dots for biomedical imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号