首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of artificial salmon lice infection and pharmaceutical salmon lice prophylaxis on survival and rate of progression of Atlantic salmon (n = 72) and brown trout post-smolts (n = 72) during their fjord migration, were studied by telemetry. The infected groups were artificially exposed to infective salmon lice larvae in the laboratory immediately before release in the inner part of the fjord to simulate a naturally high infection pressure. Groups of infected Atlantic salmon (n = 20) and brown trout (n = 12) were also retained in the hatchery to control the infection intensity and lice development during the study period. Neither salmon lice infection nor pharmaceutical prophylaxis had any effects on survival and rate of progression of fjord migrating Atlantic salmon post-smolts compared to control fish. Atlantic salmon spent on average only 151.2 h (maximum 207.3 h) in passing the 80 km fjord system and had, thus, entered the ocean when the more pathogenic pre-adult and adult lice stages developed. The brown trout, in comparison to Atlantic salmon, remained to a larger extent than Atlantic salmon in the inner part of the fjord system. No effect of salmon lice infection, or protection, was found in brown trout during the first weeks of their fjord migration. Brown trout will, to a larger extent than Atlantic salmon, stay in the fjord areas when salmon lice infections reach the more pathogenic pre-adult and adult stages. In contrast to Atlantic salmon, they will thereby possess the practical capability of returning to freshwater when encountering severe salmon lice attacks.  相似文献   

2.
Seasonal microhabitat selection by sympatric young Atlantic salmon and brown trout was studied by diving. Both species, especially Atlantic salmon, showed seasonal variation with respect to surface and mean water velocities and depth. This variation is partly attributed to varying water flows and water temperatures. In winter the fish sought shelter in the substratum. A spatial variation in habitat use along the river due to different habitat availabilities was observed. Both species occupied habitats within the ranges of the microhabitat variables, rather than selecting narrow optima. It is hypothesized that the genetic basis allows a certain range to the behavioural response. Microhabitat segregation between the two species was pronounced, with brown trout inhabiting the more slow-flowing and partly more shallow stream areas. Atlantic salmon tolerated a wider range of water velocities and depths. Habitat suitability curves were produced from both species. It is suggested that habitat suitability curves that are based on observations of fish occupancy of habitat at median or base flow may not be suitable in habitat simulation models, where available habitat is projected at substantially greater water flows.  相似文献   

3.
Direct underwater observation of micro‐habitat use by 1838 young Atlantic salmon Salmo salar [mean LT 7·9 ± 3.1(s.d.) cm, range 3·19] and 1227 brown trout Salmo trutta (LT 10·9 ± 5·0 cm, range 3·56) showed both species were selective in habitat use, with differences between species and fish size. Atlantic salmon and brown trout selected relatively narrow ranges for the two micro‐habitat variables snout water velocity and height above bottom, but with differences between size‐classes. The smaller fishes <7 cm held positions in slower water closer to the bottom. On a larger scale, the Atlantic salmon more often used shallower stream areas, compared with brown trout. The larger parr preferred the deeper stream areas. Atlantic salmon used higher and slightly more variable mean water velocities than brown trout. Substrata used by the two species were similar. Finer substrata, although variable, were selected at the snout position, and differences were pronounced between size‐classes. On a meso‐habitat scale, brown trout were more frequently observed in slow pool‐glide habitats, while young Atlantic salmon favoured the faster high‐gradient meso‐habitats. Small juveniles <7 cm of both species were observed most frequently in riffle‐chute habitats. Atlantic salmon and brown trout segregated with respect to use of habitat, but considerable niche overlap between species indicated competitive interactions. In particular, for small fishes <7 cm of the two species, there was almost complete niche overlap for use of water depth, while they segregated with respect to water velocity. Habitat suitability indices developed for both species for mean water velocity and water depth, tended to have their optimum at lower values compared with previous studies in larger streams, with Atlantic salmon parr in the small streams occupying the same habitat as favoured by brown trout in larger streams. The data indicate both species may be flexible in their habitat selection depending on habitat availability. Species‐specific habitat overlap between streams may be complete. However, between‐species habitat partitioning remains similar.  相似文献   

4.
1. We estimated the biomass and production of juvenile anadromous brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) (parr) in 12 streams in the Skagerrak area of Norway to identify controlling environmental factors, such as land‐use and water chemistry. 2. Production estimates correlated positively with fish density in early summer, but not with the size of the catchment. The summer biomass of age‐0 brown trout and Atlantic salmon was smaller than that of age‐1 and constituted 27.4 and 25.7%, respectively, of the total biomass of the two groups. 3. Mean production of brown trout from July to September varied between streams, but in most cases it was below 2 g 100 m?2 day?1. Yearly cohort production from age‐0 in July to age‐1 in July was 10 g m?2 or less, with mean annual production of 1.32 g 100 m?2 day?1, equivalent to 4.8 g m?2 year?1. The corresponding annual cohort production of Atlantic salmon was 0.38 g 100 m?2 day?1 or 1.4 g m?2 year?1. Annual production to biomass ratio (P/B) for brown trout of the same cohort in the various streams was between 1.47 and 4.37; the overall mean (±SD) for all streams was 2.25 ± 0.94. Mean turnover rate of Atlantic salmon was 2.73 ± 0.24. 4. Production of 0+ brown trout during the summer correlated significantly with the percentage of agricultural land and forest/bogs in the catchment, with maxima at 20 and 75%, respectively. Age‐0 brown trout production also correlated with concentration of nitrogen and calcium in the water, with maxima at 2.4 and 14 mg L?1, respectively. 5. The results support the hypothesis that brown trout parr production reflects the quality of their habitat, as indicated by the dome‐shaped relationship between percentage of agricultural land and the concentration of nitrogen and calcium in the water.  相似文献   

5.
The body composition of protein and fat in Atlantic salmon Salmo salar and brown trout Salmo trutta before and after winter was investigated in a temperate, small river, normally ice covered from the middle of November until the end of March. Fat, protein and specific energy declined greatly in winter but were replenished rapidly in spring. Rates of decline were slower for the smallest fish, which also had the lowest specific content of fat, protein, and energy, while the differences in absolute amounts were greatest for the largest fish. The mean specific fat content was reduced by 45–70% during winter, relative to the pre-winter period (September). Mean daily reductions in specific enegy of the larger size groups of brown trout (3·7 × 10−3 kJ g−1 day−1) were almost half of the corresponding values for the largest Atlantic salmon (6·3 × 10−3 kJ g−1 day−1) during winter. A minor reduction in protein content was found during winter, with mean reductions of 6–10% in comparison to those in September. During spring the fat content was replenished rapidly, particularly for the smallest salmon fry (a threefold increase from April to June). Fat content in the larger salmon and trout increased by about 1·8 times. Based on estimated metabolic rates, digested energy during wintertime may contribute about two-thirds of the brown trout fry's energy demand. For Atlantic salmon, the corresponding value is about 50%. The winter period put considerable stress on the young salmonids living in lotic environments, in particular for the smallest fry with the lowest energy content before winter and the largest losses during winter. This should make the fry more vulnerable to adverse abiotic and biotic factors.  相似文献   

6.
Summer habitat use by sympatric Arctic charr Salvelinus alpinus, young Atlantic salmon Salmo salar and brown trout Salmo trutta was studied by two methods, direct underwater observation and electrofishing, across a range of habitats in two sub-arctic rivers. More Arctic charr and fewer Atlantic salmon parr were observed by electrofishing in comparison to direct underwater observation, perhaps suggesting a more cryptic behaviour by Arctic charr. The three species segregated in habitat use. Arctic charr, as found by direct underwater observation, most frequently used slow (mean ±s .d . water velocity 7·2 ± 16·6 cm s−1) or often stillwater and deep habitats (mean ±s .d . depth 170·1 ± 72·1 cm). The most frequently used mesohabitat type was a pool. Young Atlantic salmon favoured the faster flowing areas (mean ±s .d . water velocity 44·0 ± 16·8 cm s−1 and depth 57·1 ± 19·0 cm), while brown trout occupied intermediate habitats (mean ±s .d . water velocity 33·1 ± 18·6 cm s−1 and depth 50·2 ± 18·0 cm). Niche overlap was considerable. The Arctic charr observed were on average larger (total length) than Atlantic salmon and brown trout (mean ±s .d . 21·9 ± 8·0, 10·2 ± 3·1 and 13·4 ± 4·5 cm). Similar habitat segregation between Atlantic salmon and brown trout was found by electrofishing, but more fishes were observed in shallower habitats. Electrofishing suggested that Arctic charr occupied habitats similar to brown trout. These results, however, are biased because electrofishing was inefficient in the slow-deep habitat favoured by Arctic charr. Habitat use changed between day and night in a similar way for all three species. At night, fishes held positions closer to the bottom than in the day and were more often observed in shallower stream areas mostly with lower water velocities and finer substrata. The observed habitat segregation is probably the result of interference competition, but the influence of innate selective differences needs more study.  相似文献   

7.
Variations in distributions and behaviours of Atlantic salmon Salmo salar in allopatry (homogeneous) and in sympatry with brown trout Salmo trutta (mixed) were observed before, during and after 2 day periods of dewatering in a large glass-sided indoor stream at densities typical of Scottish upland streams. Brown trout utilized pools more than Atlantic salmon at normal flows and in both species the majority of fishes moved into pools during dewatering. There was no significant effect of brown trout, which was the more dominant species, on the overall ability of Atlantic salmon to use pool habitat as a refuge during dewatering. Within mixed and homogeneous groups, average feeding levels decreased during dewatering. The highest ranking fish, which was always a brown trout in mixed groups, predominantly monopolized the pool and other individuals in pools adopted a more cryptic, stationary behaviour. Dewatering effectively increased local population density with the result that dominance status became much more important in maintaining food intake, and polarization between the top ranking fish and others increased. During the first day of dewatering, there was extreme behavioural polarization such that the dominant fish exhibited most aggression and least feeding within the group. Among dominant fish on the second day of dewatering, aggression had largely abated and feeding had returned to pretreatment levels despite the reduced average feeding within the group. The main difference between mixed and homogeneous groups was in the behaviour of the most dominant Atlantic salmon, which was near-despotic in allopatry and subordinate to brown trout in sympatry.  相似文献   

8.
The movement and mortality of stocked brown trout Salmo trutta were investigated using radio telemetry. Four brown trout left the study area whereas the remaining fish were stationary. After 5 weeks, 13 out of 50 tagged brown trout were still alive in the stream. Surviving fish had a significantly lower mean movement per day than fish, which later either died or disappeared. This difference in behaviour was most pronounced 2 to 8 days after release. Predation by the otter Lutra lutra was probably the main cause of the observed mortality.  相似文献   

9.
Hatchery‐reared Atlantic salmon Salmo salar ( n  = 25) and wild anadromous brown trout (sea trout) Salmo trutta ( n  = 15) smolts were tagged with coded acoustic transmitters and released at the mouth of the River Eira on the west coast of Norway. Data logging receivers recorded the fish during their outward migration at 9, 32, 48 and 77 km from the release site. Seventeen Atlantic salmon (68%) and eight sea trout (53%) were recorded after release. Mean migratory speeds between different receiver sites ranged from 0·49 to 1·82 body lengths (total length) per second (bl s−1) for Atlantic salmon and 0·11–2·60 bl s−1 for sea trout. Atlantic salmon were recorded 9, 48 and 77 km from the river mouth on average 28, 65 and 83 h after release, respectively. Sea trout were recorded 9 km from the release site 438 h after release. Only four (23%) sea trout were detected in the outer part of the fjord system, while the rest of the fish seemed to stay in the inner fjord system. The Atlantic salmon stayed for a longer time in the inner part than in the outer parts of the fjord system, but distinct from sea trout, migrated through the whole fjord system into the ocean.  相似文献   

10.
Passive integrated transponder (PIT) technology was used to study the behaviour of fishes during the summer season in two headwater streams of northeastern Portugal. A total of 71 PIT tags (12 mm long × 2.1 mm diameter) were surgically implanted in 1+ stocked (39) and native (32) brown trout of two size classes (<20.0 and ≥20.0 cm). Eight independent antennae, connected to a multi-point decoder (MPD reader) unit, were placed in different microhabitats, selected randomly every 3 days during the observation period (29 August–9 September in Baceiro stream and 19 September–4 October in Sabor stream). The results confirmed this method as a suitable, labour efficient tool to assess the movement and habitat use of sympatric stocked and native trout populations. About 76.9% of stocked and 59.4% of native PIT tagged trouts were detected. Multivariate techniques (CCA, DFA and classification tree) showed a separation in habitat use between the two sympatric populations. Stocked trout mainly used the microhabitats located in the middle of the channel with higher depths and without cover. Furthermore, these fishes displayed a greater mobility and a diel activity pattern different to native trout populations.  相似文献   

11.
Aarestrup  Kim  Nielsen  Christian  Koed  Anders 《Hydrobiologia》2002,483(1-3):95-102
The downstream migration of Atlantic salmon (Salmo salarL.) and sea trout smolt (S. trutta L.) was investigated using radio telemetry in the spring of 1999 and 2000. Forty wild sea trout smolts, 20 F1 sea trout smolts, 20 hatchery salmon smolts and 20 salmon smolts from river stockings were radio tagged and released in the Danish River Lilleaa. The downstream migration of the different groups of fish was monitored by manual tracking and by three automatic listening stations. The downstream migration of radio tagged smolts of both species occurred concurrently with their untagged counterparts. The diel migration pattern of the radio tagged smolts was predominantly nocturnal in both species. Wild sea trout smolt migrated significantly faster than both the F1 trout and the introduced salmon. There was no correlation between net ground speed, gill Na+,K+-ATPase activity or fish length in any of the different groups. The migration speed of wild sea trout smolts was positively correlated with water discharge in both years. In F1 sea trout smolts, migration speed was positively correlated with temperature in 1999. The migration speed of salmon smolts did not correlate to any of the investigated parameters.  相似文献   

12.
The study tests two hypotheses: (1) the degree of shelter dominance in Atlantic salmon Salmo salar and brown trout Salmo trutta increases progressively with increasing size differential between heterospecific fish in a pair and (2) shelter dominance, standardized to size differential, correlates with aggression. The results support the first but not the second hypothesis, suggesting that the fitness consequences of high growth performance during the summer are likely to become evident during winter. At this time of year, when mortality is high among both Atlantic salmon and brown trout, shelter dominance may increase the chances of survival.  相似文献   

13.
A telemetry study in a Norwegian regulated river was conducted through a 12-day period in mid-winter 2003. The objective was to study activity (defined as number of movement per hour) and movement (defined as distance moved per hour) during different ice formation events. Twenty-four Atlantic salmon (Salmo salar L.) parr were radio tagged and continuously monitored by both manually tracking (N = 24) and by fixed recording stations (N = 15). Detailed data on climate, flow and ice formation and its spatial distribution were collected and used in the analyses. Fish activity was not found to be affected by their size (L F). There was a significant difference in activity between diel periods with highest activity during dusk (5–6 p.m.). Between high and low flow (mean ± SD, 21.1 m3 s−1 ± 1.7 SD and 11.1 m3 s−1 ± 1.7 SD, respectively) no significant difference in activity was found. During the experiment extensive anchor ice growth occurred mainly in the riffle part with thickness up to 50 cm. Juveniles tend to avoid riffle section during anchor ice formation and exploited ice covered areas, indicating critical and preferable habitats respectively. Further, a significant difference in movement was found between five selected ice events with highest mean movement during an anchor ice event and lowest mean movement during an ice break up with no anchor ice formation. No significant difference in activity or movement between parr exposed to frazil ice and parr not exposed were found.  相似文献   

14.
Radio tagged wild Atlantic salmon Salmo salar(n = 30) and sea trout Salmo trutta(n = 19) were simultaneously released from a sea pen outside the mouth of the River Lærdalselva and their migration to spawning areas was recorded. The distance from the river mouth to a position held at spawning ranged from 2 to 24 km and did not differ between the species (mean ± s .d . 15·9 ± 4·3 and 14·9 ± 5·2 km for Atlantic salmon and sea trout, respectively). The duration of the migration phase, however, was significantly shorter for Atlantic salmon than for sea trout (8–12 days, respectively). All Atlantic salmon migrated straight to an area near the spawning ground, whereas 50% of the sea trout had a stepwise progression with one or more periods with erratic movements before reaching the spawning area. After the migration phase, a distinct search phase with repeated movements up‐ and downstream at or close to the position held at spawning was identified for the majority of the fishes (75%, both species). This search phase was significantly shorter for Atlantic salmon than for sea trout (mean 13–31 days, respectively). Mean ± s .d . length of the river stretch used during the search phase was larger for sea trout (3·3 ± 2·5 km) than for Atlantic salmon (1·2 ± 0·9 km). A distinct holding phase, with no movements until spawning, was also observed in the majority of the Atlantic salmon (80%, mean duration 22 days) and sea trout (65%, mean duration 12 days). For both species, a weak, non‐significant trend was observed in the relationship between time spent on the migration phase, and time spent on the search (r2 = 0·43) and holding phase (r2 = 0·24). There was a highly significant decrease, however, in the duration of the holding phase with an increase in the time spent on the search phase (r2 = 0·67).  相似文献   

15.
Juveniles of Atlantic salmon Salmo salar and trout S. trutta populating the system of the Tornio River (the Baltic Sea basin) are investigated. The obtained parasitological data indicate the absence of rigid spatial and food competition between juvenile salmon and trout in the case of their cohabitation.  相似文献   

16.
The behaviour of wild (n = 43, mean LT = 152 mm) and hatchery-reared (n = 71, mean LT = 198 mm) Atlantic salmon and wild anadromous brown trout (n = 34, mean LT = 171 mm) post-smolts with acoustic transmitters was compared in a Norwegian fjord system. There was no difference in survival between wild and hatchery reared salmon from release in the river mouth to passing receiver sites 9.5 km and 37.0 km from the release site. Mortality approached 65% during the first 37 km of the marine migration for both groups. There was no difference between wild and hatchery-reared salmon either in time from release to first recording at 9.5 km (mean 135 and 80 h), or in the rate of movement through the fjord (mean 0.53 and 0.56 bl s−1). Hatchery-reared salmon reached the 37 km site sooner after release than the wild salmon (mean 168 and 450 h), but rate of movement in terms of body lengths per second did not differ (mean 0.56 and 0.77 bl s−1). The brown trout remained a longer period in the inner part of the fjord system, with much slower rates of movement during the first 9.5 km (mean 0.06 bl s−1).  相似文献   

17.
Degradation and destruction of valuable spawning and rearing habitat due to anthropogenic changes (e.g., flow modification and channelisation) is known to have dramatic impacts on fish populations. To compensate for habitat losses due to hydropower development, an artificial fluvial habitat channel (‘Compensation Creek’) was constructed in south-central Newfoundland, Canada. The creek was designed to include appropriate habitat features for the two dominant salmonid fish species, landlocked Atlantic salmon (Salmo salar L.) and brook charr (Salvenius fontinalis Mitchell). The study examines the habitat use of landlocked Atlantic salmon and brook charr in the Compensation Creek using electromyogram (EMG) radio telemetry. Ten landlocked Atlantic salmon and eight brook charr were captured and tagged with EMG transmitters. In laboratory swimming experiments, the EMG values were calibrated against swimming speed. Fish were then released in the Compensation Creek and tracked on a daily basis. The results show that (1) during residence in the creek, both species used preferentially the habitat features designed to match their rearing habitat preferences, and (2) swimming speed did not vary among habitat types for either species.  相似文献   

18.
Management of multiple exploited stocks of anadromous salmonids in large catchments requires understanding of movement and catchment use by the migrating fish and of their harvesting. The spawning migration of sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) was studied in the River Tweed, UK, using acoustic telemetry to complement exploitation rate data and to quantify catchment penetration. Salmon (n = 79) and sea trout (n = 65) were tagged in the tidal-influenced Tweed in summer–autumn. No tagged salmon left the river before spawning, but 3% (2010) and 8% (2011) of pre-spawning sea trout dropped out. Combined tag regurgitation/fish mortality in salmon was 12.5%, while trout mortality was 6% (2010) and 0% (2011). The estimated spawning positions of salmon and sea trout differed; tagged salmon were mostly in the main channel while trout occurred mostly in the upper Tweed and tributaries. Early fish migrated upstream slower than later fish, but sea trout moved through the lower-middle river more quickly than salmon, partly supporting the hypothesis that the lower exploitation rate in autumn of trout (1 vs 3.3% for salmon) there is generated by differences in migration behaviour.  相似文献   

19.
Two methods, visual observation from the river bank and visual observation underwater by diving, were compared for microhabitat studies in young brown trout and Atlantic salmon in a stream. A wide range of habitat conditions were surveyed. Each method yielded different results with respect to microhabitat use. River bank observations missed small fish under surface turbulence and in deeper waters. Underwater observations missed small fish in shallow areas.  相似文献   

20.
1. Movements and habitat use by Atlantic salmon parr in Catamaran Brook, New Brunswick, were studied using Passive Integrated Transponder technology. The fish were tagged in the summer of 1999, and a portable reading system was used to collect data on individual positions within a riffle‐pool sequence in the early winter of 1999. Two major freezing events occurred on November 11–12 (Ice 1) and November 18–19 (Ice 2) that generated significant accumulations of anchor ice in the riffle. 2. Individually tagged parr (fork length 8.4–12.6 cm, n = 15) were tracked from 8 to 24 November 1999. Over this period, emigration (40%) was higher from the pool than from the riffle. Of the nine parr that were consistently located, seven parr moved <5 m up‐ or downstream, and two parr moved more than 10 m (maximum 23 m). Parr moved significantly more by night than by day, and diel habitat shifts were more pronounced in the pool with some of the fish moving closer to the bank at night. 3. During Ice 2, there was relatively little movement by most of the parr in the riffle beneath anchor ice up to 10 cm in thickness. Water temperature was 0.16 °C above the freezing point beneath anchor ice, suggesting the existence of suitable habitats where salmon parr can avoid supercooling conditions and where they can have access to low velocity shelters. To our knowledge, these are the first data on habitat use by Atlantic salmon parr under anchor ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号