首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
12(R)-Hydroxy-5,8,14-eicosatrienoic acid (HETrE) is a potent inflammatory and angiogenic eicosanoid in ocular and dermal tissues. Previous studies suggested that 12(R)-HETrE activates microvessel endothelial cells via a high affinity binding site; however, the cellular mechanisms underlying 12(R)-HETrE angiogenic activity are unexplored. Because the synthesis of 12(R)-HETrE is induced in response to hypoxic injury, we examined its interactions with vascular endothelial growth factor (VEGF) in rabbit limbal microvessel endothelial cells. Addition of 12(R)-HETrE (0.1 nm) to the cells increased VEGF mRNA levels with maximum 5-fold increase at 45 min. The increase in VEGF mRNA was followed by an increase in immunoreactive VEGF protein. 12(R)-HETrE (0.1 nm) rapidly activated the extracellular signal-regulated kinases (ERKs) ERK1 and ERK2. Moreover, preincubation of cells with PD98059, a selective inhibitor of MEK-1, inhibited 12(R)-HETrE-induced VEGF mRNA. Addition of VEGF antibody to cells grown in Matrigel-coated culture plates inhibited 12(R)-HETrE-induced capillary tube-like formation, suggesting that VEGF mediates, at least in part, the angiogenic response to 12(R)-HETrE. The results indicate that in microvessel endothelial cells, 12(R)-HETrE induces VEGF expression via activation of ERK1/2 and that VEGF mediates, at least in part, the angiogenic activity of 12(R)-HETrE. Given the fact that both VEGF and 12(R)-HETrE are produced in the cornea after hypoxic injury, their interaction may be an important determinant in the development of neovascularized tissues.  相似文献   

2.
Evidence accumulating over the last decade has established the fundamental role of vascular endothelial growth factor (VEGF) as a key regulator of normal and abnormal angiogenesis. The biological effects of VEGF are mediated by two tyrosine kinase receptors, Flt-1 (VEGFR-1) and KDR (VEGFR-2). The signaling and biological properties of these two receptors are strikingly different. VEGF is essential for early development of the vasculature to the extent that inactivation of even a single allele of the VEGF gene results in embryonic lethality. VEGF is also required for female reproductive functions and endochondral bone formation. Substantial evidence also implicates VEGF as an angiogenic mediator in tumors and intraocular neovascular syndromes, and numerous clinical trials are presently testing the hypothesis that inhibition of VEGF may have therapeutic value.  相似文献   

3.
4.
In this study we have investigated the molecular mechanisms of insulin and insulin-like growth factor-I (IGF-I) action on vascular endothelial growth factor (VEGF) gene expression. Treatment with insulin or IGF-I for 4 h increased the abundance of VEGF mRNA in NIH3T3 fibroblasts expressing either the human insulin receptor (NIH-IR) or the human IGF-I receptor (NIH-IGFR) by 6- and 8-fold, respectively. The same elevated levels of mRNA were maintained after 24 h of stimulation with insulin, whereas IGF-I treatment further increased VEGF mRNA expression to 12-fold after 24 h. Pre-incubation with the phosphatidylinositol 3-kinase inhibitor wortmannin abolished the effect of insulin on VEGF mRNA expression in NIH-IR cells but did not modify the IGF-I-induced VEGF mRNA expression in NIH-IGFR cells. Blocking mitogen-activated protein kinase activation with the MEK inhibitor PD98059 abolished the effect of IGF-I on VEGF mRNA expression in NIH-IGFR cells but had no effect on insulin-induced VEGF mRNA expression in NIH-IR cells. Expression of a constitutively active PKB in NIH-IR cells induced the expression of VEGF mRNA, which was not further modified by insulin treatment. We conclude that VEGF induction by insulin and IGF-I occurs via different signaling pathways, the former involving phosphatidylinositol 3-kinase/protein kinase B and the latter involving MEK/mitogen-activated protein kinase.  相似文献   

5.
6.
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) has been recently identified as a mitogen specific for the endothelium of steroidogenic glands. Here we report a characterization of the signal transduction of EG-VEGF in a responsive cell type, bovine adrenal cortex-derived endothelial (ACE) cells. EG-VEGF led to a time- and dose-dependent phosphorylation of p44/42 MAPK. This effect was blocked by pretreatment with pertussis toxin, suggesting that G alpha(i) plays an important role in mediating EG-VEGF-induced activation of MAPK signaling. The inhibitor of p44/42 MAPK phosphorylation PD 98059 resulted in suppression of both proliferation and migration in response to EG-VEGF. EG-VEGF also increased the phosphorylation of Akt in a phosphatidylinositol 3-kinase-dependent manner. Consistent with such an effect, EG-VEGF was a potent survival factor for ACE cells. We also identified endothelial nitric-oxide synthase as one of the downstream targets of Akt activation. Phosphorylation of endothelial nitric-oxide synthase in ACE cells was stimulated by EG-VEGF with a time course correlated to the Akt phosphorylation. Our data demonstrate that EG-VEGF, possibly through binding to a G-protein coupled receptor, results in the activation of MAPK p44/42 and phosphatidylinositol 3-kinase signaling pathways, leading to proliferation, migration, and survival of responsive endothelial cells.  相似文献   

7.
Vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) play critical roles in vascular physiology and pathophysiology. We have demonstrated previously that NADPH oxidase-derived ROS are required for VEGF-mediated migration and proliferation of endothelial cells. The goal of this study was to determine the extent to which VEGF signaling is coupled to NADPH oxidase activity. Human umbilical vein endothelial cells and/or human coronary artery endothelial cells were transfected with short interfering RNA against the p47(phox) subunit of NADPH oxidase, treated in the absence or presence of VEGF, and assayed for signaling, gene expression, and function. We show that NADPH oxidase activity is required for VEGF activation of phosphoinositide 3-kinase-Akt-forkhead, and p38 MAPK, but not ERK1/2 or JNK. The permissive role of NADPH oxidase on phosphoinositide 3-kinase-Akt-forkhead signaling is mediated at post-VEGF receptor levels and involves the nonreceptor tyrosine kinase Src. DNA microarrays revealed the existence of two distinct classes of VEGF-responsive genes, one that is ROS-dependent and another that is independent of ROS levels. VEGF-induced, thrombomodulin-dependent activation of protein C was dependent on NADPH oxidase activity, whereas VEGF-induced decay-accelerating factor-mediated protection of endothelial cells against complement-mediated lysis was not. Taken together, these findings suggest that NADPH oxidase-derived ROS selectively modulate some but not all the effects of VEGF on endothelial cell phenotypes.  相似文献   

8.
9.
Vascular endothelial growth factor (VEGF), which was originally discovered as vascular permeability factor, is critical to human cancer angiogenesis through its potent functions as a stimulator of endothelial cell survival, mitogenesis, migration, differentiation and self-assembly, as well as vascular permeability, immunosuppression and mobilization of endothelial progenitor cells from the bone marrow into the peripheral circulation. Genetic alterations and a chaotic tumor microenvironment, such as hypoxia, acidosis, free radicals, and cytokines, are clearly attributed to numerous abnormalities in the expression and signaling of VEGF and its receptors. These perturbations confer a tremendous survival and growth advantage to vascular endothelial cells as manifested by exuberant tumor angiogenesis and a consequent malignant phenotype. Understanding the regulatory mechanisms of both inducible and constitutive VEGF expression will be crucial in designing effective therapeutic strategies targeting VEGF to control tumor growth and metastasis. In this review, molecular regulation of VEGF expression in tumor cells is discussed.  相似文献   

10.
The insulin receptor (IR) and the insulin-like growth factor receptor I (IGF-IR) have different functions in cell growth, apoptosis, differentation, and transformation. Although some of these differences may be explained by the relative level of receptor expression and receptor structure (alpha and beta subunits), they may also be attributed to differences in intracellular signals generated by insulin and IGF-I. The presence of hybrid receptors (IR alphabeta subunits and IGF-IR alphabeta subunits) making up the heterotetramers has added a new dimension to our understanding of the functional roles of these receptors. However, to date the results of efforts to understand the differences between these two closely related receptors have indicated mostly similarities. For example, both receptors utilize IRS-1/IRS-2 and Shc as immediate downstream adaptors, leading to activation of the Ras, Raf, ERK kinases and PI-3 kinase pathways. We have used the yeast two hybrid system to identify proteins which bind to the activated IGF-IR but not to the IR. The cytoplasmic domain of the IGF-IR was used to screen a human fetal brain library and two isoforms of the 14-3-3 family were identified. 14-3-3 proteins are a highly conserved family of proteins which have recently been shown to interact with other components of the mitogenic and apoptotic signaling pathways, including Raf, BAD, Bcr/Bcr-Abl, middle-T antigen, Ksr, PKC, PI-3 kinase, ASK1 kinase, and cdc25C phosphatase. We also identified human Grb10, an adaptor protein with SH2 domain associated with the IGF-IR beta subunit. Smith's laboratory showed that Grb10 preferentially binds to the IR in intact cells. Using the interaction trap screen (active cytoplasmic domain of the IGF-IR) 55PIK and SOCS-2 proteins were also identified. However, 55PIK and SOCS-2 also interact with the IR in the yeast two hybrid system. These studies raise the possibility that 14-3-3 and Grb10 may play a role in insulin and IGF-I signal transduction and may underlie the observed differences.  相似文献   

11.
Fibroblast growth factor-2 (FGF2) and vascular endothelial growth factor (VEGF) are two key regulators of placental angiogenesis. The potent vasodilator nitric oxide (NO) could also act as a key mediator of FGF2- and VEGF-induced angiogenesis. However, the postreceptor signaling pathways governing these FGF2- and VEGF-induced placental angiogenic responses are poorly understood. In this study, we assessed the role of endogenous NO, mitogen-activated protein kinase 3/1 (MAPK3/1), and v-akt murine thymoma viral oncogene homolog 1 (AKT1) in FGF2- and VEGF-stimulated proliferation of ovine fetoplacental endothelial (OFPAE) cells. Both FGF2 and VEGF time-dependently stimulated (P < 0.05) NO production and activated AKT1. Both FGF2- and VEGF-stimulated cell proliferation was dose-dependently inhibited (P < 0.05) by N(G)-monomethyl-L-arginine (L-NMMA; an NO synthase inhibitor), PD98059 (a selective MAPK3/1 kinase 1 and 2 [MAP2K1/2] inhibitor), or LY294002 (a selective phosphatidylinositol 3 kinase [PI3K] inhibitor) but not by phenyl-4,4,5,5 tetramethylimidazoline-1-oxyl 3-oxide (PTIO, a potent extracellular NO scavenger). At the maximal inhibitory dose without cytotoxicity, PD98059 and LY294002 completely inhibited VEGF-induced cell proliferation but only partially attenuated (P < 0.05) FGF2-induced cell proliferation. PD98059 and LY294002 also inhibited (P < 0.05) FGF2- and VEGF-induced phosphorylation of MAPK3/1 and AKT1, respectively. L-NMMA did not significantly affect FGF2- and VEGF-induced phosphorylation of either MAPK3/1 or AKT1. Thus, in OFPAE cells, both FGF2- and VEGF-stimulated cell proliferation is partly mediated via NO as an intracellular and downstream signal of MAPK3/1 and AKT1 activation. Moreover, activation of both MAP2K1/2/MAPK3/1 and PI3K/AKT1 pathways is critical for FGF2-stimulated cell proliferation, whereas activation of either one pathway is sufficient for mediating the VEGF-induced maximal cell proliferation, indicating that these two kinase pathways differentially mediate the FGF2- and VEGF-stimulated OFPAE cell proliferation.  相似文献   

12.
13.
Protease-activated receptor 2 (PAR2) is a G-protein coupled receptor that is cleaved and activated by serine proteases including the coagulation protease factor VIIa (FVIIa). There is evidence that PAR2 function contributes to angiogenesis, but the mechanisms involved are poorly defined. Here we show that PAR2 activation in human breast cancer cells leads to the upregulation of vascular endothelial growth factor (VEGF). Activation of PAR2 with agonist peptide (AP), trypsin or FVIIa results in a robust increase of VEGF message and protein. Incubation of cells with PAR1-AP, PAR3-AP, PAR4-AP, or thrombin has only a modest effect on VEGF production. Cleavage blocking antibodies show that FVIIa-mediated VEGF production is PAR2 mediated. Mitogen-activated protein kinase (MAPK) pathway inhibitors U0126 and SB203580 inhibit PAR2-mediated VEGF production. Incubation of cells with PAR2-AP leads to significant extracellular regulated kinase1/2 (ERK1/2) and p38 MAPK phosphorylation and activation. Collectively, these data suggest that PAR2 signaling through MAPK pathways leads to the production of proangiogenic VEGF in breast cancer cells.  相似文献   

14.
15.
Alcohol abuse has a negative impact on human health; however, epidemiological studies show that moderate consumption of ethanol (EtOH) reduces the risk of coronary heart disease, sudden cardiac death, and ischemic stroke. The mechanisms for these reductions in cardiovascular disease are not well established. Using cultured coronary artery vascular smooth muscle cells, we found that moderate levels of EtOH (10 and 20 mM) caused dose-related increases in both vascular endothelial growth factor (VEGF) mRNA (Northern blot) expression (1.9- and 2.6-fold) and VEGF protein (ELISA) expression (19 and 68%) compared with control (P < 0.05). EtOH at 0.25 g. kg(-1). day(-1) (7 days) increased VEGF mRNA expression by 1.48-fold over control, and increased vessel length density from 3.9 +/- 0.7 (control) to 6.0 +/- 0.3 mm/mm(2) (P < 0.05) in chick chorioallantoic membrane (CAM). We conclude that moderate levels of ethanol can induce VEGF expression and stimulate angiogenesis in chick CAM. Therefore, the results provide a theoretical basis for speculating that the cardiovascular-protective effects of moderate alcohol consumption may be partly mediated through VEGF-induced angiogenesis.  相似文献   

16.
17.
OBJECTIVE: To quantitate tumor angiogenesis by establishing intratumoral microvessel density (IMD), to study vascular endothelial growth factor (VEGF) expression in different grades of astrocytomas and to correlate VEGF expression with tumor angiogenesis. STUDY DESIGN: Forty cases of astrocytic neoplasms (10 of each grade) were assessed for tumor angiogenesis and VEGF expression. The panendothelial marker CD31 was used to highlight microvessels. Tumor angiogenesis was quantitated as IMD count per square millimeter in areas of high vascularity, or "hot spots," using an image analyzer. VEGF expression was studied in sections of the tumors. IMD counts per square millimeter and VEGF expression were correlated with histologic grade. The angiogenic potential of tumors as reflected by IMD counts per square millimeter was correlated with the intensity of VEGF expression. RESULTS: Vascular proliferation in high grade gliomas was significantly higher as compared to that in low grade gliomas. IMD count per square millimeter revealed a positive correlation with histologic grade in high grade gliomas. Pilocytic astrocytoma and low grade astrocytoma as a group had comparable IMD counts per square millimeter. VEGF expression paralleled IMD counts in rare high grade gliomas only. CONCLUSION: Malignant progression in astrocytoma is heralded and accompanied by increased angiogenesis. VEGF is an important angiogenic factor in high grade gliomas since its expression parallels the increased IMD counts in these tumors. In contrast, in low grade gliomas, angiogenic factors other than VEGF may contribute to vascular proliferation. The results emphasize the role of antiangiogenic therapy as an optimal tool in therapeutic strategies as they become available.  相似文献   

18.
19.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell growth and permeability factor highly expressed in rodent alveolar epithelium after injury and repair. To investigate VEGF synthesis in human lung epithelial cells, we examined VEGF expression by cultured cells under basal conditions and after cytokine treatment or oxidative stress. Basal VEGF expression was detected in transformed human epithelial cell lines (A549 and 1HAEo-) and in primary human bronchial epithelial cells with RT-PCR, Western blot, and immunocytochemistry. Among the cytokines tested, only transforming growth factor-beta1 increased the levels of excreted VEGF(165) as measured by ELISA. Under hypoxia (0% O(2) for 24 h), the VEGF(165) level increased fivefold, and this effect was O(2) concentration dependent. VEGF concentrations in the medium of all the cell types studied reached values similar to those found in bronchoalveolar lavage fluids from normal patients. Endothelial cells (human umbilical vein endothelial cells) exposed to conditioned medium from primary bronchial epithelial cell cultures showed an increased growth rate, which was inhibited in the presence of a specific neutralizing antibody to VEGF. These results suggest that lung epithelial cells participate in the endothelial repair and angiogenesis that follow lung injury through the synthesis of VEGF.  相似文献   

20.
Here we show that vascular endothelial growth factor (VEGF) mRNA expression is up-regulated in oncogene transformed rat liver epithelial (RLE) cell lines and that the extracellular signal-regulated kinase (ERK) and p38 kinase differentially regulate the oncogene-mediated stimulation of VEGF. The highest level of VEGF mRNA expression was observed in the v-H-ras transformed RLE cell line, followed by the v-raf and v-myc transformed lines. The PD98059 MEK inhibitor was used to block the ERK pathway and SB203580 inhibitor to block the p38 pathway. The parent and the v-H-ras transformed RLE cell lines showed up-regulation of VEGF RNA expression through the ERK pathway and down-regulation of VEGF through the p38 pathway. VEGF was regulated in a comparable manner in a human breast carcinoma cell line. In the v-raf and v-myc transformed RLE lines, positive regulation of VEGF was transduced through the p38 pathway. These findings suggest that (1) oncogenic ras differs from raf and myc in the recruitment of the MAPK signaling pathways for VEGF regulation; (2) that VEGF is regulated in ras transformed and human cancer cell lines in a positive and negative manner by the ERK and p38 signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号