首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relation of starch phosphorylases to starch metabolism in wheat   总被引:7,自引:0,他引:7  
  相似文献   

2.
Two major α-glucan phosphorylases (I and II) from leaves of the C4 plant corn (Zea mays L.) were previously shown to be compartmented in mesophyll and bundle sheath cells, respectively (C Mateyka, C Schnarrenberger 1984 Plant Sci Lett 36: 119-123). The two enzymes were separated by chromatography on DEAE-cellulose and purified to homogeneity by affinity chromatography on immobilized starch, according to published procedures, as developed for the cytosol and chloroplast phosphorylase from the C3 plant spinach. The two α-glucan phosphorylases have their pH optimum at pH 7. The specificity for polyglucans was similar for soluble starch and amylopectin, however, differed for glycogen (Km = 16 micrograms per milliliter for the mesophyll cell and 250 micrograms per milliliter for the bundle sheath cell phosphorylase). Maltose, maltotriose, and maltotetraose were not cleaved by either phosphorylase. If maltopentaose was used as substrate, the rate was about twice as high with the bundle sheath cell phosphorylase, than with the mesophyll cell phosphorylase. The phosphorylase I showed a molecular mass of 174 kilodaltons and the phosphorylase II of 195 kilodaltons for the native enzyme and of 87 and of 53 kilodaltons for the SDS-treated proteins, respectively. Specific antisera raised against mesophyll cell phosphorylase from corn leaves and against chloroplast phosphorylase from spinach leaves implied high similarity for the cytosol phosphorylase of the C3 plant spinach with mesophyll cell phosphorylase of the C4 plant corn and of chloroplast phosphorylase of spinach with the bundle sheath cell phosphorylase of corn.  相似文献   

3.
Amyloplast is the site of starch synthesis in the storage tissue of maize (Zea mays). The amyloplast stroma contains an enriched group of proteins when compared with the whole endosperm. Proteins with molecular masses of 76 and 85 kD have been identified as starch synthase I and starch branching enzyme IIb, respectively. A 112-kD protein was isolated from the stromal fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to tryptic digestion and amino acid sequence analysis. Three peptide sequences showed high identity to plastidic forms of starch phosphorylase (SP) from sweet potato, potato, and spinach. SP activity was identified in the amyloplast stromal fraction and was enriched 4-fold when compared with the activity in the whole endosperm fraction. Native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses showed that SP activity was associated with the amyloplast stromal 112-kD protein. In addition, antibodies raised against the potato plastidic SP recognized the amyloplast stromal 112-kD protein. The amyloplast stromal 112-kD SP was expressed in whole endosperm isolated from maize harvested 9 to 24 d after pollination. Results of affinity electrophoresis and enzyme kinetic analyses showed that the amyloplast stromal 112-kD SP preferred amylopectin over glycogen as a substrate in the synthetic reaction. The maize shrunken-4 mutant had reduced SP activity due to a decrease of the amyloplast stromal 112-kD enzyme.  相似文献   

4.
The α2 phosphorylase isoenzyme of Oscillatoria princeps, Rhodymenia pertusa and Chlorella pyrcnoidosa has been found to be capable of the synthesis of amylose-like polyglucans without the necessity for addition of primers. This enzyme differs in this respect from the a1 isoenzyme of blue-green and green algae. The a2 enzyme appears to be a glyco-protein and synthesis of linear polyglucans appears to occur by the apposition of glucosyl residues from glucose-1-phos-phate directly to the glycosyl moiety of its molecule.  相似文献   

5.
《Phytochemistry》1986,25(2):351-357
Acid phosphatase (EC 3.1.3.2) from sunflower seed was purified 1800-fold to homogeneity using both conventional and affinity chromatographic methods. The purified enzyme was a mixture of two enzyme forms distinguishable by polyacrylamide gel electrophoresis (PAGE). Gel exclusion chromatography, which did not distinguish between the two forms, gave an apparent M, of 103 000. Preparative PAGE permitted the separation of the two forms, and SDS-PAGE showed that they contained equivalent peptide subunits of apparent M, 56 000 and 52 000. Amino acid analysis indicated that both enzyme forms have similar amino acid compositions. Data on substrate specificity and pH dependence is presented. The kinetic constants for hydrolysis of p-nitrophenyl phosphate as catalysed by sunflower seed acid phosphatase were independent of pH in the range 3-5. The enzyme was competitively inhibited by inorganic phosphate and non-competitively inhibited by phosphomycin.  相似文献   

6.
Three forms of α-glucan phosphorylase from mature banana fruit pulp separated by ammonium sulfate fractionation and DEAE-cellulose chromatography were anodic at pH 8·6 on starch gel electrophoresis. The three forms differed in sensitivity to the phenolics extracted from immature and mature banana fruit pulp. Only two forms of the enzyme were detected in immature banana fruit pulp.  相似文献   

7.
The purification of yeast glycogen phosphorylase [EC 2.4.1.1] was improved by ethanol precipitation and affinity chromatography on a glycogen-Sepharose column. The purified enzyme gave a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and had a subunit molecular mass of 100 kDa. Gel electrophoresis also showed that the major activity of native phosphorylase was ascribed to a dimer of 203 kDa, which was agreed with the value obtained by gel filtration on Sephadex G-200. The yeast phosphorylase showed a high affinity for AMP- Sepharose, whereas the enzyme was specifically inhibited by AMP. This inhibition was competitive with respect to the substrate glucose 1-phosphate and gave a Ki value of 9.3 mm. Activation of the crude extract by phosphorylation with an endogenous phosphorylase kinase indicated that the yeast phosphorylase occurred in a mixture of phosphorylated and non-phosphorylated forms.  相似文献   

8.
Glycogen phosphorylase isolated from bovine skeletal muscles was found to be homogeneous during polyacrylamide gel electrophoresis. The enzyme phosphorylation by phosphorylase kinase is accompanied by the incorporation of one mole of labeled phosphate per protein dimer; therefore the enzyme is represented by a partly phosphorylated form. The presence of a phosphate group prevents the removal of the protein-bound pyridoxal phosphate. The partly phosphorylated bovine phosphorylase possesses a low affinity for AMP and is inactive in the presence of IMP. Bovine phosphorylase a obtained from the partly phosphorylated enzyme has a molecular mass corresponding to a dimer. Both forms of bovine phosphorylase exhibit high cooperativity towards the substrate. The mechanism of phosphorylase a activation by AMP and IMP is identical: the nucleotides increase the enzyme affinity for the substrate as well as the maximal rate of the enzymatic reaction. Study of the enzyme inhibition by caffeine revealed the cooperativity of caffeine-binding centers. The equilibrium between the active and inactive enzyme conformations in the presence of caffeine is markedly shifted towards the inactive (T) form of glycogen phosphorylase.  相似文献   

9.
Yang Y  Steup M 《Plant physiology》1990,94(3):960-969
From leaves of Spinacia oleracea L. or from Pisum sativum L. and from cotyledons of germinating pea seeds a high molecular weight polysaccharide fraction was isolated. The apparent size of the fraction, as determined by gel filtration, was similar to that of dextran blue. Following acid hydrolysis the monomer content of the polysaccharide preparation was studied using high pressure liquid and thin layer chromatography. Glucose, galactose, arabinose, and ribose were the main monosaccharide compounds. The native polysaccharide preparation interacted strongly with the cytosolic isozyme of phosphorylase (EC 2.4.1.1). Interaction with the plastidic phosphorylase isozyme(s) was by far weaker. Interaction with the cytosolic isozyme was demonstrated by affinity electrophoresis, kinetic measurements, and by 14C-labeling experiments in which the glucosyl transfer from [14C]glucose 1-phosphate to the polysaccharide preparation was monitored.  相似文献   

10.
Leaf extracts of Pisum sativum L. contain three forms of α-1,4-glucan phosphorylase (EC 2.4.1.1) activity. One of these (form I) is located outside the chloroplast; the other two reside inside this organelle (Steup, M. and Latzko, E. (1979) Planta 145, 69–75). The extra-chloroplastic enzyme form, which represents the major proportion of the total extractable phosphorylase activity, was purified and characterized. Its in situ location was determined by indirect immunofluorescence performed with cryostat sections of formaldehyde-fixed leaf. By this technique the enzyme was localized in the cytoplasm of mesophyll and guard cells, whereas the other epidermal cells lacked the enzyme. In its kinetic properties, especially glucan specificity, the enzyme was very similar to the cytosolic phosphorylase from spinach leaves; it has a low affinity towards low-molecular-weight glucans but a very high affinity towards branched polysaccharides such as strach and glycogen. The immunological properties of the enzyme and its peptide pattern were determined and compared with those of other plant phosphorylase. The pea phosphorylase form I was immunologically different from the two chloroplastic phosphorylase forms, and it reacted more strongly with antibodies raised against the spinach cytosolic phosphorylase than with those directed against the spinach chloroplastic counterpart. Peptide patterns obtained after cleavage with N-chlorosuccinimide were very similar for the cytosolic spinach and pea leaf phosphorylase forms, suggesting a high degree of homology between both proteins.  相似文献   

11.
The sensitivity of homoserine dehydrogenase (EC 1.1.1.3) to inhibition by the feed-back modifier, l-threonine, was examined in preparations derived from etiolated shoots, roots, and lightgrown tissues of Zea mays L. var. earliking. A progressive decrease in enzyme sensitivity was observed during seedling growth. Enzyme derived from internode tissue retained a greater sensitivity to the effector than enzyme derived from apical portions of etiolated shoots, whereas enzyme from root tips was characteristically more sensitive than that prepared from mature cells of the root. Enzyme desensitization occurred rapidly during culture of excised shoots and the activities of both homoserine dehydrogenase and aspartokinase (EC 2.7.2.4) declined during shoot culture under a variety of conditions. The initial enzyme levels and the characteristic sensitivity of homoserine dehydrogenase were preserved during culture at 5 to 7 C, but desensitization was not prevented by inclusion of cycloheximide in the culture medium.Results of control experiments provide evidence that desensitization occurs in vivo. No alteration of the enzyme properties was detected during extraction or concentration of sensitive or insensitive enzyme or during coextraction of enzyme from mixed populations of different age shoots; nor was a differential distribution of inhibitors or activators indicated during assay of mixed preparations. The change in enzyme sensitivity was apparent under a variety of assay conditions and was not accompanied by changes in the apparent affinity of the enzyme for the substrate, homoserine. It is suggested that systematic changes in the regulatory characteristics of certain enzymes could be an important level of metabolic regulation during cellular differentiation.Three forms of maize homoserine dehydrogenaase were detected after acrylamide gel electrophoresis of samples derived from 72-hr shoots. Similar analysis of samples from older shoots revealed a broad asymmetric band of enzyme activity, suggesting that changes in the relative distribution of specific forms of the enzyme could be related to the growth-dependent changes in the sensitivity of maize homoserine dehydrogenase.  相似文献   

12.
The α-glucan phosphorylases of the glycosyltransferase family are important enzymes of carbohydrate metabolism in prokaryotes and eukaryotes. The plant α-glucan phosphorylase, commonly called starch phosphorylase (EC 2.4.1.1), is largely known for the phosphorolytic degradation of starch. Starch phosphorylase catalyzes the reversible transfer of glucosyl units from glucose-1-phosphate to the nonreducing end of α-1,4-d-glucan chains with the release of phosphate. Two distinct forms of starch phosphorylase, plastidic phosphorylase and cytosolic phosphorylase, have been consistently observed in higher plants. Starch phosphorylase is industrially useful and a preferred enzyme among all glucan phosphorylases for phosphorolytic reactions for the production of glucose-1-phosphate and for the development of engineered varieties of glucans and starch. Despite several investigations, the precise functional mechanisms of its characteristic multiple forms and the structural details are still eluding us. Recent discoveries have shed some light on their physiological substrates, precise biological functions, and regulatory aspects. In this review, we have highlighted important developments in understanding the role of starch phosphorylases and their emerging applications in industry.  相似文献   

13.
The relative contribution of each of several forms of homoserine dehydrogenase (EC 1.1.1.3) to the total enzyme population in etiolated shoots and in roots of Zea mays L. var. earliking was examined by the use of gel filtration chromatography and disc gel electrophoresis. In enzyme preparations derived from shoots of seedlings grown for 72, 120, or 168 hours, two molecular forms, II and III, which have the same apparent molecular weight but differ in net charge, contributed 75 to 80% of the total enzyme activity. A lower molecular weight species, form I, contributed 20 to 25% of the activity from 72-hour shoots, but was found to decrease concomitantly with a proportional increase in activity contributed by aggregated enzyme form(s) during shoot development. Form I contributed a comparatively larger fraction of the total enzyme activity in preparations of roots of 72-hour seedlings.  相似文献   

14.
Two interconvertible forms of glycogen synthase and glycogen phosphorylase, one active (a) or the other less active (b), were predominantly present in a thermosensitive adenylate-cyclase-deficient mutant that had been preincubated at the restrictive temperature of 35 degrees C, either in the presence or in the absence of glucose. Glycogen phosphorylase was at least 20-fold less active after incubation of the cells in the presence of glucose, but this residual activity had kinetic properties identical to those of the active form of enzyme, obtained after incubation in the absence of glucose; this suggests that the b form might be completely inactive and that the low activity measured after glucose treatment must be attributed to a residual amount of phosphorylase a. By contrast, the kinetic properties of the two forms of glycogen synthase were very different. When measured in the absence of glucose 6-phosphate, the two forms of enzyme had a similar affinity for UDP-Glc but differed essentially by their Vmax. Glucose 6-phosphate had no effect on synthase a, but increased both Vmax and Km of synthase b; these effects, however, were in great part counteracted by sulfate and by inorganic phosphate, the latter also having the property of increasing the Km of the a form, without affecting Vmax. It was estimated that at physiological concentrations of substrates and effectors, synthase a was about 20-fold more active than synthase b. When an extract of cells that had been preincubated in the absence of glucose was gel-filtered and then incubated at 30 degrees C, phosphorylase was progressively fully inactivated and synthase was partially activated; these reactions were severalfold faster and, in the case of glycogen synthase, more complete in the presence of 10 mM glucose 6-phosphate. When a gel-filtered extract of cells that had been preincubated in the presence of glucose was incubated at 30 degrees C in the presence of ATP-Mg and EGTA, phosphorylase became activated and synthase was inactivated; the first of these two reactions was severalfold stimulated by micromolar concentrations of Ca2+, whereas both reactions were completely inhibited by 10 mM glucose 6-phosphate and only slightly and irregularly stimulated by cyclic AMP.  相似文献   

15.
The glycogen phosphorylase of Tetrahymena pyriformis complexes with glycogen as judged by its elution pattern from columns of Sepharose 6B. Complex formation does not occur with starch, amylose, or amylopectin, and neither do these polyglucans serve as primers for the enzyme. To study the association between the phosphorylase and glycogen particles in situ, Tetrahymena were grown under differing physiological conditions, phosphorylase was isolated and chromatographed on a Sepharose 6B column. Phosphorylase activity isolated from cells grown in the absence of glucose was only partially associated with glycogen, while in cells exposed to glucose for 30 min or more all the phosphorylase activity was associated with glycogen. The effects of culture age and anaerobiosis on the relative amounts of free and glycogen-bound enzyme in the cells were also studied. It was concluded from the in vivo experiments that there was no simple relation between the fraction of enzyme bound to glycogen and between cell glycogen content.  相似文献   

16.
Starch phosphorylase activity in extracts of spinach or pea leaves and of isolated chloroplasts was determined and separated by electrophoresis in polyacrylamide gels. In spinach leaf extracts, a specific activity of 16 nmol glucose 1-phosphate formed per min per mg protein was found, whereas a lower value (6 nmol per min per mg protein) was observed in preparations of isolated chloroplasts which were about 75% intact. In the spinach leaf extracts two forms of phosphorylase were found; chloroplast preparations almost exclusively contained one of these. In pea leaf extracts the specific activity was 10 nmol glucose 1-phosphate formed per min per mg protein. Three forms of phosphorylase contributed to this activity. Preparations of isolated chloroplasts with an intactness of about 85% exhibited a lower specific activity (5nmol per min per mg protein) and contained two of these three phosphorylase forms.Abbreviations G1P Glucose 1-phosphate - Pi orthophosphate - Tris Tris (hydroxymethyl)aminomethane - MES 2(N-morpholino)ethane sulphonic acid - EDTA ethylenediamine tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid  相似文献   

17.
《Insect Biochemistry》1986,16(4):659-665
RNA was extracted from two insecticide-resistant clones and one susceptible clone of M. persicae. The resistant clones each produced large amounts of one of two closely related carboxylesterases, the enzymes responsible for cross-resistance to a wide range of insecticides. After purification by affinity chromatography on oligo(dT) cellulose, the mRNA was translated into protein in a rabbit reticulocyte lysate system with [l-35S]methionine. The resultant radiolabelled esterases were immunoprecipitated from the products with IgG prepared from an antiserum to one form of the enzyme, but cross-reacting with both. The bound enzyme was extracted by affinity chromatography on protein A sepharose, and characterized alongside the total radiolabelled proteins by SDS electrophoresis and fluorography. The translation products of the two resistant clones each contained large amounts of an immunoprecipitable protein. However, no such protein was detected in the translation products of the mRNA from susceptible aphids showing that resistant aphids produce much more of the mRNA encoding the enzymes responsible for resistance. It was also shown that the enzymes from the two resistant clones had primary structures differing from each other by 1 kDa. In addition, the nascent forms of both enzymes differed from their native forms by 8 kDa and glycosylation was shown to be responsible for this post-translational modification. The likely genetic basis of the changes in mRNA is discussed and related to the karyotype of the resistant clones.  相似文献   

18.
1.The two forms of glycogen phosphorylase were purified from human liver, and some kinetic properties were examined in the direction of glycogen synthesis. The b form has a limited catalytic capacity, resembling that of the rabbit liver enzyme. It is characterized by a low affinity for glucose 1-phosphate, which is unaffected by AMP, and a low V, which becomes equal to that of the a form in the presence of the nucleotide. Lyotropic anions stimulate phosphorylase b and inhibit phosphorylase a by modifying the affinity for glucose 1-phosphate. Both enzyme forms are easily saturated with glycogen. 2. These kinetic properties have allowed us to design a simple assay method for total (a + b) phosphorylase in human liver. It requires only 0.5 mg of tissue, and its average efficiency is 90% when the enzyme is predominantly in the b form. 3. The assay of total phosphorylase allows the unequivocal diagnosis of hepatic glycogen-storage disease caused by phosphorylase deficiency. One patient with a complete deficiency is reported. 4. The assay of human liver phosphorylase a is based on the preferential inhibition of the b form by caffeine. The a form displays the same activity when measured by either of the two assays.  相似文献   

19.
A plastidic 112-kDa starch phosphorylase (SP) has been identified in the amyloplast stromal fraction of maize. This starch phosphorylase was purified 310-fold from maize endosperm and characterized with respect to its enzymological and kinetic properties. The purification procedure included ammonium sulfate fractionation, Sephacryl 300 HR chromatography, affinity starch adsorption, Q-Sepharose, and Mono Q chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and SDS-polyacrylamide gel electrophoresis. Anti-SP antibodies recognized the purified 112-kDa SP enzyme and N-terminal amino acid sequence analysis confirmed that the purified enzyme is the amyloplast stromal 112-kDa SP. Analysis of the purified enzyme by Superose 6 gel filtration chromatography indicated that the native enzyme consisted of two identical subunits. The pH optimum for the enzyme was 6.0 in the synthetic direction and 5.5 in the phosphorolytic direction. SP activity was inhibited by thioreactive agents, diethyl pyrocarbonate, phenylglyoxal, and ADP-glucose. The activation energies for the synthetic and phosphorolytic reactions were 11.1 and 16.9 kcal/mol, respectively, and the enzyme was thermally labile above 50 degrees C. Results of kinetic experiments indicated that the enzyme catalyzes its reaction via a sequential Bi Bi mechanism. The Km value for amylopectin was eight-fold lower than that of glycogen. A kinetic analysis indicated that the phosphorolytic reaction was favored over the synthetic reaction when malto-oligosaccharides (4 to 7 units) were used as substrates. The specificity constants (Vmax/Km) of the enzyme measured in either the synthetic or the phosphorolytic directions increased with increasing chain length.  相似文献   

20.
1. Two forms of phosphorylase kinase having mol. wt of 1,260,000 (form I) and 205,000 (form II) have been identified by gel filtration chromatography of rabbit liver crude extracts. 2. Form I was the majority when the homogenization buffer was supplemented with a mixture of proteinase inhibitors. This form has been purified through a protocol including ultracentrifugation, gel filtration and affinity chromatography on Sepharose-heparin. 3. Form II was purified by a combination of chromatographic procedures including ion exchange, gel filtration and affinity chromatography on Sepharose-Blue Dextran and Sepharose-histone. 4. Upon electrophoresis in the presence of sodium dodecyl sulfate two subunits of 69,000 and 44,000 were identified for this low molecular weight enzyme. Thus, a tetrameric structure comprising two subunits of each kind can be proposed. 5. Treatment of form I with either trypsin or chymotrypsin gave an active fragment having a molecular weight similar to that of form II. On the contrary, other dissociating treatments with salts, thiols and detergents failed in producing forms of lower molecular weight. 6. The similarities between proteolyzed forms I and II were stressed by their behavior in front of antibodies raised against the muscle isoenzyme of phosphorylase kinase. 7. The study of the effect of magnesium and fluoride ions on the activity of both forms showed an inhibitory effect of magnesium when its concentration exceeded that of ATP. 8. The inhibition could nevertheless be reverted by including 50 mM NaF in the reaction mixture. 9. Form I and form II could be distinguished by their pH dependence in the presence of an excess of magnesium ions over ATP, whereas the affinity for both substrates was not significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号