首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study we describe the identification and structure-function analysis of a novel death-associated protein (DAP) kinase-related protein, DRP-1. DRP-1 is a 42-kDa Ca(2+)/calmodulin (CaM)-regulated serine threonine kinase which shows high degree of homology to DAP kinase. The region of homology spans the catalytic domain and the CaM-regulatory region, whereas the remaining C-terminal part of the protein differs completely from DAP kinase and displays no homology to any known protein. The catalytic domain is also homologous to the recently identified ZIP kinase and to a lesser extent to the catalytic domains of DRAK1 and -2. Thus, DAP kinase DRP-1, ZIP kinase, and DRAK1/2 together form a novel subfamily of serine/threonine kinases. DRP-1 is localized to the cytoplasm, as shown by immunostaining and cellular fractionation assays. It binds to CaM, undergoes autophosphorylation, and phosphorylates an exogenous substrate, the myosin light chain, in a Ca(2+)/CaM-dependent manner. The truncated protein, deleted of the CaM-regulatory domain, was converted into a constitutively active kinase. Ectopically expressed DRP-1 induced apoptosis in various types of cells. Cell killing by DRP-1 was dependent on two features: the status of the catalytic activity, and the presence of the C-terminal 40 amino acids shown to be required for self-dimerization of the kinase. Interestingly, further deletion of the CaM-regulatory region could override the indispensable role of the C-terminal tail in apoptosis and generated a "superkiller" mutant. A dominant negative fragment of DAP kinase encompassing the death domain was found to block apoptosis induced by DRP-1. Conversely, a catalytically inactive mutant of DRP-1, which functioned in a dominant negative manner, was significantly less effective in blocking cell death induced by DAP kinase. Possible functional connections between DAP kinase and DRP-1 are discussed.  相似文献   

2.
LDOC1, a novel MZF-1-interacting protein, induces apoptosis   总被引:2,自引:0,他引:2  
  相似文献   

3.
4.
Bak but not Bax is essential for Bcl-xS-induced apoptosis   总被引:2,自引:0,他引:2  
Bcl-x(S), a proapoptotic member of the Bcl-2 protein family, is localized in the mitochondria and induces apoptosis in a caspase- and BH3-dependent manner by a mechanism involving cytochrome c release. The way in which Bcl-x(S) induces caspase activation and cytochrome c release, as well as the relationship between Bcl-x(S) and other proapoptotic members of the Bcl-2 family, is not known. Here we used embryonic fibroblasts derived from mice deficient in the multidomain proapoptotic members of the Bcl-2 family (Bax and Bak) and the apoptotic components of the apoptosome (Apaf-1 and caspase-9) to unravel the cascade of events by which Bcl-x(S) promotes apoptosis. Our results show that Bak but not Bax is essential for Bcl-x(S)-induced apoptosis. Bcl-x(S) induced activation of Bak, which in turn promoted apoptosis by apoptosome-dependent and -independent pathways. These findings provide the first evidence that a proapoptotic Bcl-2 family protein induces apoptosis exclusively via Bak.  相似文献   

5.
The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 40% of breast cancers and are indicative of tumor resistance to chemotherapeutic agents. Recently, there has been a high degree of interest in pharmacological approaches for restoring the normal function to mutant p53. The low molecular weight compound p53 reactivation and induction of massive apoptosis (PRIMA-1) was shown to induce cytotoxic effects and apoptosis in human tumor cells with mutant p53. Here, we studied the molecular mechanisms of PRIMA-1-induced apoptosis in human breast cancer cells with p53 mutations such as MDA-231 and GI-101A as compared to MCF-7 cells. We show that PRIMA-1 selectively induces apoptosis in human breast cancer cells MDA-231 and GI-101A compared to the MCF-7. This effect was paralleled by an increase in total p53 level in the nucleus and the induction of its phosphorylation at Ser-15 site. Using the chromatin immunoprecipitation (ChIP) assays, we show that PRIMA-1 restored p53 DNA binding activity to the promoters of the proapoptotic genes such as Bax and PUMA, but inhibited the binding activity to the promoters of the MAP4K4 gene. Knockdown of p53 protein in breast cancer cells using siRNA followed by PRIMA-1 treatment resulted in decline of Bax and PUMA proteins expression. Cell incubation with either PRIMA-1 or SP600125 (c-Jun NH2-terminal kinase inhibitor) resulted in the abrogation of adriamycin-induced c-Jun NH2-terminal kinase (JNK) activation, whereas Bax activation was not inhibited. We conclude that both Bax and PUMA but not JNK signaling are involved in PRIMA-1-induced apoptosis in breast cancer cells with p53 mutation.  相似文献   

6.
The HIV-1 accessory protein viral protein R (Vpr) causes G2 arrest and apoptosis in infected cells. We previously identified the DNA damage-signaling protein ATR as the cellular factor that mediates Vpr-induced G2 arrest and apoptosis. Here, we examine the mechanism of induction of apoptosis by Vpr and how it relates to induction of G2 arrest. We find that entry into G2 is a requirement for Vpr to induce apoptosis. We investigated the role of the mitochondrial permeability transition pore by knockdown of its essential component, the adenine nucleotide translocator. We found that Vpr-induced apoptosis was unaffected by knockdown of ANT. Instead, apoptosis is triggered through a different mitochondrial pore protein, Bax. In support of the idea that checkpoint activation and apoptosis induction are functionally linked, we show that Bax activation by Vpr was ablated when ATR or GADD45alpha was knocked down. Certain mutants of Vpr, such as R77Q and I74A, identified in long-term nonprogressors, have been proposed to inefficiently induce apoptosis while activating the G2 checkpoint in a normal manner. We tested the in vitro phenotypes of these mutants and found that their abilities to induce apoptosis and G2 arrest are indistinguishable from those of HIV-1NL4-3 vpr, providing additional support to the idea that G2 arrest and apoptosis induction are mechanistically linked.  相似文献   

7.
Mcl-1 determines the Bax dependency of Nbk/Bik-induced apoptosis   总被引:1,自引:0,他引:1       下载免费PDF全文
B cell lymphoma 2 (Bcl-2) homology domain 3 (BH3)–only proteins of the Bcl-2 family are important functional adaptors that link cell death signals to the activation of Bax and/or Bak. The BH3-only protein Nbk/Bik induces cell death via an entirely Bax-dependent/Bak-independent mechanism. In contrast, cell death induced by the short splice variant of Bcl-x depends on Bak but not Bax. This indicates that Bak is functional but fails to become activated by Nbk. Here, we show that binding of myeloid cell leukemia 1 (Mcl-1) to Bak persists after Nbk expression and inhibits Nbk-induced apoptosis in Bax-deficient cells. In contrast, the BH3-only protein Puma disrupts Mcl-1–Bak interaction and triggers cell death via both Bax and Bak. Targeted knockdown of Mcl-1 overcomes inhibition of Bak and allows for Bak activation by Nbk. Thus, Nbk is held in check by Mcl-1 that interferes with activation of Bak. The finding that different BH3-only proteins rely specifically on Bax, Bak, or both has important implications for the design of anticancer drugs targeting Bcl-2.  相似文献   

8.
Livin, a novel inhibitor of apoptosis protein family member   总被引:204,自引:0,他引:204  
A novel human inhibitor of apoptosis protein (IAP) family member termed Livin was identified, containing a single baculoviral IAP repeat (BIR) domain and a COOH-terminal RING finger domain. The mRNA for livin was not detectable by Northern blot in most normal adult tissues with the exception of the placenta, but was present in developmental tissues and in several cancer cell lines. Highest levels were observed in two melanoma-derived cell lines, G361 and SK-Mel29. Transfection of livin in HeLa cells resulted in protection from apoptosis induced by expression of FADD, Bax, RIP, RIP3, and DR6. Similar to other IAP family members, the anti-apoptotic activity of Livin was dependent on the BIR domain. Livin was also capable of inhibiting DEVD-like caspase activity triggered by tumor necrosis factor-alpha. In vitro binding studies demonstrated a direct interaction between Livin and the active form of the downstream caspases, caspase-3 and -7, that was dependent on the BIR domain of Livin. In addition, the unprocessed and cleaved forms of caspase-9 co-immunoprecipitated with Livin in vivo, and recombinant Livin could inhibit the activation of caspase-9 induced by Apaf-1, cytochrome c, and dATP. The subcellular distribution of the transfected Livin was analyzed by immunofluorescence. Both Livin and Survivin were expressed in the nucleus and in a filamentous pattern throughout the cytoplasm. In contrast to the apoptotic activity, the COOH-terminal RING domain mediated its subcellular localization patterning. Further studies found that transfection of an antisense construct against livin could trigger apoptosis specifically in cell lines expressing livin mRNA. This was associated with an increase in DNA fragmentation and in DEVD-like caspase activity. Thus, disruption of Livin may provide a strategy to induce apoptosis in certain cancer cells.  相似文献   

9.
Liao CF  Luo SF  Shen TY  Lin CH  Chien JT  Du SY  Jiang MC 《BMB reports》2008,41(3):210-216
CSE1L/CAS, a microtubule-associated, cellular apoptosis susceptibility protein, is highly expressed in various cancers. Microtubules are the target of paclitaxel-induced apoptosis. We studied the effects of increased or reduced CAS expression on cancer cell apoptosis induced by chemotherapeutic drugs including paclitaxel. Our results showed that CAS overexpression enhanced apoptosis induced by doxorubicin, 5-fluorouracil, cisplatin, and tamoxifen, but inhibited paclitaxel-induced apoptosis of cancer cells. Reductions in CAS produced opposite results. CAS overexpression enhanced p53 accumulation induced by doxorubicin, 5-fluorouracil, cisplatin, tamoxifen, and etoposide. CAS was associated with alpha-tubulin and beta-tubulin and enhanced the association between alpha-tubulin and beta-tubulin. Paclitaxel can induce G2/M phase cell cycle arrest and microtubule aster formation during apoptosis induction, but CAS overexpression reduced paclitaxel-induced G2/M phase cell cycle arrest and microtubule aster formation. Our results indicate that CAS may play an important role in regulating the cytotoxicities of chemotherapeutic drugs used in cancer chemotherapy against cancer cells.  相似文献   

10.
A novel macrolide antibiotic, FK-506, isolated from Streptomyces tsukubaensis, has been shown to be a potent immunosuppressive agent in vivo and in vitro. FK-506 shares a number of immunosuppressive properties with the cyclic peptide, cyclosporin A (CsA), although 10 to 100 times more potent in this regard. These similarities suggest that both agents may share a similar mechanism(s) of action at the biochemical level. We have identified a cytoplasmic binding protein for FK-506 in the human T cell line, JURKAT, using [3H]FK-506. The FK-506 binding protein has a mr of 10 to 12 kDa (as determined by gel filtration), is heat stable and does not bind CsA. This contrasts with the CsA binding protein, cyclophilin, in that cyclophilin is heat labile and has a mr of 15 to 17 kDa. Our data suggest that FK-506 binds to a low m.w. protein(s) in JURKAT cells, which is distinct from cyclophilin. This protein may mediate the immunosuppressive effects of FK-506 in T cells. In addition, our results suggest that the immunosuppressive activity of FK-506, as with CsA, is mediated by an intracellular mechanism.  相似文献   

11.

Background  

The Human cervical cancer oncogene (HCCR-1) has been isolated as a human oncoprotein, and has shown strong tumorigenic features. Its potential role in tumorigenesis may result from a negative regulation of the p53 tumor suppressor gene.  相似文献   

12.
A novel structural analog of ceramide was synthesized by N-acylation of serinol (2-amino-1,3-propanediol) and studied for its effects on glycolipid biosynthesis and cell differentiation of neuroblastoma cells. Incubation with N-palmitoylated serinol (C16-serinol) increased the concentration of endogenous ceramide by 50-80% and caused apoptosis in rapidly dividing low density cells but not in confluent cells. Cell death was not suppressed by simultaneous incubation with phorbol ester, known to antagonize ceramide-induced apoptosis by activation of protein kinase C (PKC). Purification of potential target proteins of C16-serinol was achieved by affinity chromatography of a protein preparation from rat brain on immobilized C16-serinol. A gel activity assay revealed that the eluate from C16-serinol-Sepharose contained three serine/threonine-specific protein kinases with molecular masses of 50, 70, and 95 kDa. The 70-kDa protein was immunostained on a Western blot using a PKCzeta-specific antibody. The purified PKCzeta could be activated directly by C16-serinol in an in vitro phosphorylation assay. Induction of apoptosis in neuroblastoma cells was suppressed by inhibition of PKCzeta with G? 6983. Our overall results indicate that apoptosis in neuroblastoma cells induced by C16-serinol was at least partially mediated by activation of PKCzeta on condition of ongoing cell division. N-Acylated serinols may thus be useful for induction of apoptosis in mitotic cells and may be of therapeutic potential for treatment of cancer in the nervous system.  相似文献   

13.
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.  相似文献   

14.
MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine   总被引:23,自引:0,他引:23  
The melanoma differentiation-associated gene-7 (mda-7) was cloned by subtraction hybridization as a molecule whose expression is elevated in terminally differentiated human melanoma cells. Current information based on structural and sequence homology, has led to the recognition of MDA-7 as an IL-10 family cytokine member and its renaming as IL-24. Northern blot analysis revealed mda-7/IL-24 expression in human tissues associated with the immune system such as spleen, thymus, peripheral blood leukocytes and normal melanocytes. The MDA-7/IL-24 mouse counterpart, FISP, appears to be a Th2-specific protein and the rat counterpart, C49A/MOB-5, is associated with wound healing and is also induced as a consequence of ras-transformation. A notable property of MDA-7/IL-24 is its ability to induce apoptosis in a large spectrum of human cancer derived cell lines, in mouse xenografts and upon intratumoral injection in human tumors (phase I clinical trials). Various aspects of this intriguing molecule including its cytokine and anti-tumoral effects are described and discussed.  相似文献   

15.
A recent proteomics study identified FAM129B or MINERVA as a target of the MAP kinase (Erk1/2) signaling cascade in human melanoma cells. Phosphorylation of the protein was found to promote cell invasion and the dissociation of the protein from the cell-cell junctions. Suppression of apoptosis during metastasis is a prerequisite for the survival and spread of cancer cells. During apoptosis, the adherens junctions are disassembled as the dying cell retracts, and new contacts are formed between normal neighboring cells. In this study, we show that FAM129B was cytosolic in exponentially growing HeLa cells but was translocated to the adherens junctions where it colocalized with β-catenin whenever contact between two or more cells was established. Silencing the FAM129B gene expression by specific siRNAs did not induce apoptosis or inhibit the growth of HeLa cells. However, when apoptosis was induced by exposure to TNFα/cycloheximide or other apoptotic signaling molecules, the onset of apoptosis was accelerated 3-4-fold when FAM129B was depleted. Annexin V binding, the inactivation of the DNA repair enzyme, poly(ADP-ribose) polymerase, and the activation of the caspases occurred more rapidly in the cells lacking FAM129B. The rapid induction of apoptosis in FAM129B knockdown cells was reversed by co-transfection with recombinant FAM129B, indicating that its effect on apoptosis was specific. As apoptosis proceeded, FAM129B was degraded and disappeared from the plasma membrane. Thus, one crucial facet of the mechanism by which FAM129B promotes cancer cell invasion is likely to be the suppression of apoptosis.  相似文献   

16.
17.
Most intrinsic death signals converge into the activation of pro-apoptotic BCL-2 family members BAX and BAK at the mitochondria, resulting in the release of cytochrome c and apoptosome activation. Chronic endoplasmic reticulum (ER) stress leads to apoptosis through the upregulation of a subset of pro-apoptotic BH3-only proteins, activating BAX and BAK at the mitochondria. Here we provide evidence indicating that the full resistance of BAX and BAK double deficient (DKO) cells to ER stress is reverted by stimulation in combination with mild serum withdrawal. Cell death under these conditions was characterized by the appearance of classical apoptosis markers, caspase-9 activation, release of cytochrome c, and was inhibited by knocking down caspase-9, but insensitive to BCL-X(L) overexpression. Similarly, the resistance of BIM and PUMA double deficient cells to ER stress was reverted by mild serum withdrawal. Surprisingly, BAX/BAK-independent cell death did not require Cyclophilin D (CypD) expression, an important regulator of the mitochondrial permeability transition pore. Our results suggest the existence of an alternative intrinsic apoptosis pathway emerging from a cross talk between the ER and the mitochondria.  相似文献   

18.
TLRs are important sensors of the innate immune system that serve to identify conserved microbial components to mount a protective immune response. They furthermore control the survival of the challenged cell by governing the induction of pro- and antiapoptotic signaling pathways. Pathogenic Yersinia spp. uncouple the balance of life and death signals in infected macrophages, which compels the macrophage to undergo apoptosis. The initiation of apoptosis by Yersinia infection specifically involves TLR4 signaling, although Yersinia can activate TLR2 and TLR4. In this study we characterized the roles of downstream TLR adapter proteins in the induction of TLR-responsive apoptosis. Experiments using murine macrophages defective for MyD88 or Toll/IL-1R domain-containing adapter inducing IFN-beta (TRIF) revealed that deficiency of TRIF, but not of MyD88, provides protection against Yersinia-mediated cell death. Similarly, apoptosis provoked by treatment of macrophages with the TLR4 agonist LPS in the presence of a proteasome inhibitor was inhibited in TRIF-defective, but not in MyD88-negative, cells. The transfection of macrophages with TRIF furthermore potently promoted macrophage apoptosis, a process that involved activation of a Fas-associated death domain- and caspase-8-dependent apoptotic pathway. These data indicate a crucial function of TRIF as proapoptotic signal transducer in bacteria-infected murine macrophages, an activity that is not prominent for MyD88. The ability to elicit TRIF-dependent apoptosis was not restricted to TLR4 activation, but was also demonstrated for TLR3 agonists. Together, these results argue for a specific proapoptotic activity of TRIF as part of the host innate immune response to bacterial or viral infection.  相似文献   

19.
Inflammatory responses induced by allergen exposure cause mucous cell metaplasia (MCM) by differentiation of existing and proliferating epithelial cells into mucus-storing cells. Airway epithelia have various mechanisms that resolve these changes to form normal airway epithelia. In this report, we first investigated the state of mucous cell metaplasia and the mechanisms by which MCM is reduced despite continued exposures to allergen. After 5 days of allergen exposure, extensive MCM had developed but was reduced when allergen challenge was continued for 15 days. During this exposure period, IL-13 levels decreased and IFN-gamma levels increased in the bronchoalveolar lavage fluid. In contrast, IL-13 levels decreased but IFN-gamma was not detected at any time point during the resolution of MCM following cessation of allergen exposure. Instillation of IFN-gamma but not anti-Fas caused accelerated resolution of MCM and MCM was not resolved in Stat1-deficient mice exposed to allergen for 15 days, confirming that IFN-gamma is crucial for reducing MCM during prolonged exposures to allergen. IFN-gamma but not anti-Fas induced apoptotic cell death in proliferating normal human bronchial epithelial cells and in human bronchial epithelial cells from subjects with asthma. The apoptotic effect of IFN-gamma was caspase dependent and was inhibited by IL-13, indicating that the Th2 milieu in asthmatics may maintain MCM by preventing cell death in metaplastic mucous cells. These studies could be useful in the understanding of deficiencies leading to chronicity in airway changes and designing novel therapies to reverse MCM and airway obstruction in asthmatics.  相似文献   

20.
Huntington disease is a devastating neurodegenerative disease caused by the expansion of a polymorphic glutamine tract in huntingtin. The huntingtin interacting protein (HIP-1) was identified by its altered interaction with mutant huntingtin. However, the function of HIP-1 was not known. In this study, we identify HIP-1 as a proapoptotic protein. Overexpression of HIP-1 resulted in rapid caspase 3-dependent cell death. Bioinformatics analyses identified a novel domain in HIP-1 with homology to death effector domains (DEDs) present in proteins involved in apoptosis. Expression of the HIP-1 DED alone resulted in cell death indistinguishable from HIP-1, indicating that the DED is responsible for HIP-1 toxicity. Furthermore, substitution of a conserved hydrophobic phenylalanine residue within the HIP-1 DED at position 398 eliminated HIP-1 toxicity entirely. HIP-1 activity was found to be independent of the DED-containing caspase 8 but was significantly inhibited by the antiapoptotic protein Bcl-x(L), implicating the intrinsic pathway of apoptosis in HIP-1-induced cell death. Co-expression of a normal huntingtin fragment capable of binding HIP-1 significantly reduced cell death. Our data identify HIP-1 as a novel proapoptotic mediator and suggest that HIP-1 may be a molecular accomplice in the pathogenesis of Huntington disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号