首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We evaluated the ability of pyridine-2,6-bis(thiocarboxylic acid) (pdtc) to form complexes with 19 metals and 3 metalloids. Pdtc formed complexes with 14 of the metals. Two of these metal:pdtc complexes, Co:(pdtc)2 and Cu:pdtc, showed the ability to cycle between redox states, bringing to 4 the number of known redox-active pdtc complexes. A precipitant formed when pdtc was added to solutions of As, Cd, Hg, Mn, Pb, and Se. Additionally, 14 of 16 microbial strains tested were protected from Hg toxicity when pdtc was present. Pdtc also mediated protection from the toxic effects of Cd and Te, but for fewer strains. Pdtc by itself does not facilitate iron uptake, but increases the overall level of iron uptake of Pseudomonas stutzeri strain KC and P. putida DSM301. Both these pseudomonads could reduce amorphous Fe(III) oxyhydroxide in culture. In vitro reactions showed that copper and pdtc were required for this activity. This reaction may derive its reducing power from the hydrolysis of the thiocarboxyl groups of pdtc.  相似文献   

2.
Pyridine-2,6-bis(monothiocarboxylic acid) (pdtc),a natural metal chelator produced by Pseudomonas stutzeri and Pseudomonas putidathat promotes the degradation of carbon tetrachloride, was synthesized and studiedby potentiometric and spectrophotometric techniques. The first two stepwise protonationconstants (pK) for successive proton addition to pdtc were found to be 5.48 and2.58. The third stepwise protonation constant was estimated to be 1.3. The stability (affinity)constants for iron(III), nickel(II), and cobalt(III) were determined by potentiometric orspectrophotometric titration. The results show that pdtc has strong affinity for Fe(III)and comparable affinities for various other metals. The stability constants (log K) are 33.93 for Co(pdtc)2 1-; 33.36 for Fe(pdtc)2 1-; and 33.28 for Ni(pdtc)2 2-. These protonationconstants and high affinity constants show that over a physiological pH range theferric pdtc complex has one of the highest effective stability constants for ironbinding among known bacterial chelators.  相似文献   

3.
Pyridine-2,6-dithiocarboxylic acid (pdtc) is a metal chelator produced by Pseudomonas spp. It has been shown to be involved in the biodegradation of carbon tetrachloride; however, little is known about its biological function. In this study, we examined the antimicrobial properties of pdtc and the mechanism of its antibiotic activity. The growth of Pseudomonas stutzeri strain KC, a pdtc-producing strain, was significantly enhanced by 32 μM pdtc. All nonpseudomonads and two strains of P. stutzeri were sensitive to 16 to 32 μM pdtc. In general, fluorescent pseudomonads were resistant to all concentrations tested. In competition experiments, strain KC demonstrated antagonism toward Escherichia coli. This effect was partially alleviated by 100 μM FeCl3. Less antagonism was observed in mutant derivatives of strain KC (CTN1 and KC657) which lack the ability to produce pdtc. A competitive advantage was restored to strain CTN1 by cosmid pT31, which restores pdtc production. pT31 also enhanced the pdtc resistance of all pdtc-sensitive strains, indicating that this plasmid contains elements responsible for resistance to pdtc. The antimicrobial effect of pdtc was reduced by the addition of Fe(III), Co(III), and Cu(II) and enhanced by Zn(II). Analyses by mass spectrometry determined that Cu(I):pdtc and Co(III):pdtc2 form immediately under our experimental conditions. Our results suggest that pdtc is an antagonist and that metal sequestration is the primary mechanism of its antimicrobial activity. It is also possible that Zn(II), if present, may play a role in pdtc toxicity.  相似文献   

4.
The question of the(N, S) vs. (S, S) coordination mode on M x (ACDA)(2) complexes (ACDA=2-aminocyclopentene-1-dithiocarboxylic acid, M=Ni(2+), Pd(2+), Pt(2+)) was assessed through an extensive ab initio study, using the hybrid B3LYP density functional approach. The (S,S)coordination was found to be the most stable one, with an energy difference of ca. 50 kJ mol(-1) relative to the(N, S) coordination mode. Detailed analysis of the ab initio results indicates that this preference is a result of the combined effect of geometry constraints and electron distribution within the complex.  相似文献   

5.
Degradation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) under strictly anaerobic conditions was studied in enrichment cultures from marine and freshwater sediments. In all cases, dipicolinic acid was completely degraded. From an enrichment culture from a marine sediment, a defined coculture of two bacteria was isolated. The dipicolinic acid-fermenting bacterium was a Gram-negative, non-sporeforming strictly anaerobic short rod which utilized dipicolinic acid as sole source of carbon, energy, and nitrogen, and fermented it to acetate, propionate, ammonia, and 2CO2. No other substrate was fermented. This bacterium could be cultivated only in coculture with another Gram-negative, non-sporeforming rod from the same enrichment culture which oxidized acetate to CO2 with fumarate, malate, or elemental sulfur as electron acceptor, similar to Desulfuromonas acetoxidans. Since this metabolic activity is not important in substrate degradation by the coculture, the basis of the dependence of the dipicolinic acid-degrading bacterium on the sulfur reducer may be sought in the assimilatory metabolism.  相似文献   

6.
We have designed, synthesized, and characterized a metal chelating compound that is based on the structure of cholesterol and contains the high affinity metal chelating group, lysine nitrilotriacetic acid (Lys-NTA). Using the enzyme isoprenylcysteine carboxylmethyltransferase (Icmt) from yeast as a model integral membrane metalloenzyme, we find that this agent potently inhibits Icmt activity with an IC(50) value between 35 and 75 microM, which is at least 40 times more potent than the best known Icmt metal chelating inhibitor, Zincon. We propose that the rigid hydrophobic cholesterol moiety promotes partitioning into the membrane, enabling the metal-binding NTA group(s) to inactivate the enzyme by metal chelation. Because this compound is based on a naturally occurring membrane lipid and appears to chelate metals buried deeply within water insoluble environments, this agent may also be useful as a general tool for identifying previously unappreciated metal dependencies of other classes of membrane proteins.  相似文献   

7.
By the reactions of a new ligand, 2,6-di(N,N′-5-ethyl-1,3,4-thia-diazole-2-formamide)pyridine (H2L), with Mn(II) and Cu(II) ions, two complexes namely [Mn33-O)(H2L)(L)2]·2DMF (1) and [Cu2(μ-H2O)(L)2]·DMF (2) were obtained, respectively. Compound 1 is a trinuclear complex containing triangle frames formed by three Mn(II) ions with a bridged μ3-O in the center; ligand H2L acts as a penta-dentate fashion. Compound 2 is a dinuclear complex, in which H2L coordinates two Cu(II) centers as a tetra-dentate coordination mode. Magnetic investigations show that an antiferromagnetic coupling between metal ions exists in 1, and a ferromagnetic coupling exists in 2. Thermal decomposition kinetic parameters of complex 1 are also obtained by employing non-isothermal (model-free) method.  相似文献   

8.
9.
Cyclic lipopeptides (CLPs) with antibiotic and biosurfactant properties are produced by a number of soil bacteria, including fluorescent Pseudomonas spp. To provide new and efficient strains for the biological control of root-pathogenic fungi in agricultural crops, we isolated approximately 600 fluorescent Pseudomonas spp. from two different agricultural soils by using three different growth media. CLP production was observed in a large proportion of the strains (approximately 60%) inhabiting the sandy soil, compared to a low proportion (approximately 6%) in the loamy soil. Chemical structure analysis revealed that all CLPs could be clustered into two major groups, each consisting of four subgroups. The two major groups varied primarily in the number of amino acids in the cyclic peptide moiety, while each of the subgroups could be differentiated by substitutions of specific amino acids in the peptide moiety. Production of specific CLPs could be affiliated with Pseudomonas fluorescens strain groups belonging to biotype I, V, or VI. In vitro analysis using both purified CLPs and whole-cell P. fluorescens preparations demonstrated that all CLPs exhibited strong biosurfactant properties and that some also had antibiotic properties towards root-pathogenic microfungi. The CLP-producing P. fluorescens strains provide a useful resource for selection of biological control agents, whether a single strain or a consortium of strains was used to maximize the synergistic effect of multiple antagonistic traits in the inoculum.  相似文献   

10.
The major chromophore of a mixture of fluorescent pigments produced by Pseudomonas aeruginosa ATCC 9027 had pH-dependent absorption, excitation, and emission spectra, such that two ionic forms existed in the ground state and three in the excited states. The pigments could complex with several metal ions to change fluorescence and absorption spectra. Although the pigments were separable into several components, spectra indicated that the same fluorescent chromophore was present in each component. Hydrolysis of the mixture of pigments gave amino acids which did not include alanine or lysine. These pigments must therefore differ from those described by other workers, even though similarities of the chromophores were evident from comparisons with data in the literature, and from comparisons of a hydrolytic product of the mixture of pigments, termed compound F, with the chromophore of the fluorescent pigment of Azotobacter vinelandii. Drastic hydrolysis of the latter chromophore also yielded compound F.  相似文献   

11.
Fifty-one strains of the genus Bifidobacterium have been found to accumulate indole-3-lactic acid in culture broth. The isolated metabolite was identified through mass and nuclear magnetic resonance spectroscopy. All the microorganisms tested, as resting cells, have been shown to be able to convert L-tryptophan into L-indole-3-lactic acid.  相似文献   

12.
The siderophore of Pseudomonas stutzeri KC, pyridine-2,6-bis(thiocarboxylic acid) (pdtc), is shown to detoxify selenium and tellurium oxyanions in bacterial cultures. A mechanism for pdtc's detoxification of tellurite and selenite is proposed. The mechanism is based upon determination using mass spectrometry and energy-dispersive X-ray spectrometry of the chemical structures of compounds formed during initial reactions of tellurite and selenite with pdtc. Selenite and tellurite are reduced by pdtc or its hydrolysis product H(2)S, forming zero-valent pdtc selenides and pdtc tellurides that precipitate from solution. These insoluble compounds then hydrolyze, releasing nanometer-sized particles of elemental selenium or tellurium. Electron microscopy studies showed both extracellular precipitation and internal deposition of these metalloids by bacterial cells. The precipitates formed with synthetic pdtc were similar to those formed in pdtc-producing cultures of P. stutzeri KC. Culture filtrates of P. stutzeri KC containing pdtc were also active in removing selenite and precipitating elemental selenium and tellurium. The pdtc-producing wild-type strain KC conferred higher tolerance against selenite and tellurite toxicity than a pdtc-negative mutant strain, CTN1. These observations support the hypothesis that pdtc not only functions as a siderophore but also is involved in an initial line of defense against toxicity from various metals and metalloids.  相似文献   

13.
14.

Background

Pyridine-2,6-bis(thiocarboxylic acid) (pdtc) is a small secreted metabolite that has a high affinity for transition metals, increases iron uptake efficiency by 20% in Pseudomonas stutzeri, has the ability to reduce both soluble and mineral forms of iron, and has antimicrobial activity towards several species of bacteria. Six GenBank sequences code for proteins similar in structure to MoeZ, a P. stutzeri protein necessary for the synthesis of pdtc.

Results

Analysis of sequences similar to P. stutzeri MoeZ revealed that it is a member of a superfamily consisting of related but structurally distinct proteins that are members of pathways involved in the transfer of sulfur-containing moieties to metabolites. Members of this family of enzymes are referred to here as MoeB, MoeBR, MoeZ, and MoeZdR. MoeB, the molybdopterin synthase activating enzyme in the molybdopterin cofactor biosynthesis pathway, is the most characterized protein from this family. Remarkably, lengths of greater than 73% nucleic acid homology ranging from 35 to 486 bp exist between Pseudomonas stutzeri moeZ and genomic sequences found in some Mycobacterium, Mesorhizobium, Pseudomonas, Streptomyces, and cyanobacteria species.

Conclusions

The phylogenetic relationship among moeZ sequences suggests that P. stutzeri may have acquired moeZ through lateral gene transfer from a donor more closely related to mycobacteria and cyanobacteria than to proteobacteria. The importance of this relationship lies in the fact that pdtc, the product of the P. stutzeri pathway that includes moeZ, has an impressive set of capabilities, some of which could make it a potent pathogenicity factor.  相似文献   

15.
A spontaneous mutant of Pseudomonas stutzeri strain KC lacked the carbon tetrachloride (CCl4) transformation ability of wild-type KC. Analysis of restriction digests separated by pulsed-field gel electrophoresis (PFGE) indicated that the mutant strain CTN1 differed from strain KC by deletion of approximately 170 kb of chromosomal DNA. CTN1 did not produce pyridine-2,6-bis(thiocarboxylic acid) (PDTC), the agent determined to be responsible for CCl4 dechlorination in cultures of strain KC. Cosmids from a genomic library of strain KC containing DNA from within the deleted region were identified by hybridization with a 148 kb genomic Spe I fragment absent in strain CTN1. Several cosmids identified in this manner were further screened for complementation of the PDTC biosynthesis-negative (Pdt) phenotype. One cosmid (pT31) complemented the Pdt phenotype of CTN1 and conferred CCl4 transformation activity and PDTC production upon other pseudomonads. Southern analysis showed that none of three other P. stutzeri strains representing three genomovars contained DNA that would hybridize with the 25 746 bp insert of pT31. Transposon mutagenesis of pT31 identified open reading frames (ORFs) whose disruption affected the ability to make PDTC in the strain CTN1 background. These data describe the pdt locus of strain KC as residing in a non-essential region of the chromosome subject to spontaneous deletion. The pdt locus is necessary for PDTC biosynthesis in strain KC and is sufficient for PDTC biosynthesis by other pseudomonads but is not a common feature of P. stutzeri strains.  相似文献   

16.
An enzyme which degraded polyvinyl alcohol, a water-soluble synthetic polymer, was isolated as a single protein from a culture of a strain of Pseudomonas. The pink-colored enzyme had absorption maxima at 280, 370, and 480 nm, a molecular weight of about 30,000, and an isoelectric point at about pH 10.3. The enzyme was most active at pH values from 7 to 9 and at 40 dgC and was stable at pH values from 3.5 to 9.5 and at temperatures below 45 dgC. The viscosity of the reaction mixture decreased and the pH dropped when the enzyme acted on polyvinyl alcohol as a substrate. Furthermore, the enzyme required O2 for the reaction and produced 1 mol of H2O2, per 1 mol of O2 consumed. The molecules of polyvinyl alcohol were cleaved into small fragments with a wide distribution of molecular weights. Inorganic Hg ions markedly inactivated the enzyme, and the activity was immediately recovered by glutathione. Enzyme inhibitors tested, which included p-chloromercuribenzoic acid, KCN, o-phenanthroline, and H2O2, showed no effect on the activity. Polyvinyl alcohol oxidized by periodic acid was similarly oxidized by the enzyme. The enzyme did not oxidize most of a variety of low molecular weight hydroxy compounds examined, such as primary alcohols, secondary alcohols, tertiary alcohols, diols, triols, and polyols, except for some secondary alcohols, such as 4-heptanol.  相似文献   

17.
The acetylacetonates VO(acac)2, M(acac)3, where M = V, Mn or Fe and [M′(acac)2]n, where M′ = Co, Ni or Cu, have been reacted with pyridine-2,6-dicarboxylic acid (dipicH2) in acetone to afford the complexes VO(dipic)·2H2O, M(acac)(dipic)·xH2O [M = V, Mn or Fe and x = 1 or 0] and M2(dipic) (dipicH)2·yH2O [M = Co, Ni or Cu and y = 2 or 0]. The cobalt(II) and nickel(II) complexes are converted to polymeric [M(dipic)]n in ethanol and all three complexes formulated as M2(dipic)(dipicH)2 react with 2,2′2″-terpyridyl to yield M(dipic)(terpy)·3H2O. The vanadium(III) complex V(acac)(dipic) is oxidized to VO(dipic)·4H2O in aqueous solution via the vanadium(III) intermediate V(OH)(dipic)·2H2O. Tentative structural conclusions are drawn for certain of these new complexes based upon room temperature spectral and magnetic measurements. The characterization of these complexes has included selected studies of their X-ray photoelectron spectra.  相似文献   

18.
Fifty-one strains of the genus Bifidobacterium have been found to accumulate indole-3-lactic acid in culture broth. The isolated metabolite was identified through mass and nuclear magnetic resonance spectroscopy. All the microorganisms tested, as resting cells, have been shown to be able to convert L-tryptophan into L-indole-3-lactic acid.  相似文献   

19.
Zoospores play an important role in the infection of plant and animal hosts by oomycetes and other zoosporic fungi. In this study, six fluorescent Pseudomonas isolates with zoosporicidal activities were obtained from the wheat rhizosphere. Zoospores of multiple oomycetes, including Pythium species, Albugo candida, and Phytophthora infestans, were rendered immotile within 30 s of exposure to cell suspensions or cell culture supernatants of the six isolates, and subsequent lysis occurred within 60 s. The representative strain SS101, identified as Pseudomonas fluorescens biovar II, reduced the surface tension of water from 73 to 30 mN m-1. The application of cell suspensions of strain SS101 to soil or hyacinth bulbs provided significant protection against root rot caused by Pythium intermedium. Five Tn5 mutants of strain SS101lacked the abilities to reduce the surface tension of water and to cause lysis of zoospores. Genetic characterization of two surfactant-deficient mutants showed that the transposons had integrated into condensation domains of peptide synthetases. A partially purified extract from strain SS101 reduced the surface tension of water to 30 mN m-1 and reached the critical micelle concentration at 25 micrograms ml-1. Reverse-phase high-performance liquid chromatography yielded eight different fractions, five of which had surface activity and caused lysis of zoospores. Mass spectrometry and nuclear magnetic resonance analyses allowed the identification of the main constituent as a cyclic lipopeptide (1,139 Da) containing nine amino acids and a 10-carbon hydroxy fatty acid. The other four zoosporicidal fractions were closely related to the main constituent, with molecular massesranging from 1,111 to 1,169 Da.  相似文献   

20.
M.H. LAINE, M.T. KARWOSKI, L.B. RAASKA AND T.-M. MATTILA-SANDHOLM. 1996. The present study demonstrates the siderophore production of two strains of Pseudomonas fluorescens and two of Ps. chlororaphis . The antimicrobial activities of these strains were studied against Salmonella typhimurium, Staphylococcus aureus, Fusarium culmorum, F. oxysporum and Aspergillus niger . Despite equal siderophore activities with various Pseudomonas spp. as measured by the chrome azurol S assay, the study shows how siderophore activity does not correlate with the antibacterial activity against food pathogens or with the antimould activity against pathogenic moulds. Furthermore, the results illustrate how siderophores are able to act both as growth inhibitors and stimulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号