首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some eutrophic inland waters the invasive aquatic macrophyte Elodea canadensis has been displaced by the morphologically similar species Elodea nuttallii and subsequently E. nuttallii by Lagarosiphon major. We investigated whether differences in the responses of these species and their associated epiphytic floras to five nutrient loadings in the range 30–480 μg L−1 P and 0.21–3.36 mg L−1 N could explain their observed field displacements. The mean relative growth rate (RGR) of E. nuttallii (RGR 0.086 d−1) was significantly higher than that of either E. canadensis (RGR 0.066 d−1) or L. major (RGR 0.063 d−1). All three species exhibited a plastic morphological response to increasing nutrient loadings with mean root weights reduced at the highest nutrient loading compared with the lowest loading by 33, 75 and 56% for E. canandensis, E. nuttallii and L. major, respectively. Mean tissue nitrogen concentrations increased significantly with increasing nutrient loading, with concentrations in E. canadensis (1.83–2.10% dry wt.) significantly higher than either E. nuttallii (1.56–2.10% dry wt.) or L. major (1.50–1.90% dry wt.). Tissue phosphorus concentrations likewise increased with increasing nutrient loadings although this trend was not as pronounced. Epiphyte biomass per unit photosynthetic surface area (PSA) was significantly higher on E. canadensis than on either E. nuttallii or L. major, but did not increase significantly with increasing nutrient loadings. We suggest that differences in species responses to nutrient enrichment do not explain the species displacements observed in the field. E. nuttallii's higher RGR may, regardless of nutrient supply, enable this species to shade out neighbouring species and outpace the establishment of algae on its leaves.  相似文献   

2.
The laboratory testing of bottom sediments (BSs) from the Yenisei River containing different concentrations of technogenic radionuclides, heavy metals, and biogenic elements (N and P) based on aquatic such plants as Elodea canadensis (Canadian waterweed) and Myriophyllum spicatum (Eurasian watermilfoil) has revealed a higher sensitivity of roots to the general quality of BSs than shoots: shoot length (9%) < root length (11%) < root number (15%) in M. spicatum; shoot length (22%) < root length (42%) < root number (44%) in E. canadensis. In contrast to M. spicatum, the growth parameters of roots and shoots in E. canadensis have differed in a significant statistical manner between most BS samples. A reverse correlation has been found between the increase in shoot length and the activity of technogenic radionuclides in BSs, which is mostly significant in E. canadensis (r 2 = 0.90–0.95, p = 0.05). Since the growth of shoots and roots in E. canadensis has turned out to be more sensitive to changes in the quality of BSs than that in M. spicatum, E. canadensis can be considered more prospective for biotesting BSs.  相似文献   

3.
Myriophyllum spicatum L. is a nonindigenous invasive plant in North America that can displace the closely related native Myriophyllum sibiricum Komarov. We analyzed the chemical composition (including: C, N, P, polyphenols, lignin, nonpolar extractables, and sugars) of M. spicatum and M. sibiricum and determined how the chemistry of the two species varied by plant part with growing environment (lake versus tank), irradiance (full sun versus 50% shading), and season (July through September). M. spicatum had higher concentrations of carbon, polyphenols and lignin (C: 47%; polyphenols: 5.5%; lignin: 18%) than M. sibiricum (C: 42%; polyphenols: 3.7%; lignin: 9%) while M. sibiricum had a higher concentration of ash under all conditions (12% versus 8% for M. spicatum). Apical meristems of both species had the highest concentration of carbon, polyphenols, and tellimagrandin II, followed by leaves and stems. Tellimagrandin II was present in apical meristems of both M. spicatum (24.6 mg g−1 dm) and M. sibiricum (11.1 mg g−1 dm). Variation in irradiance from 490 (shade) to 940 (sun) μmol of photons m−2 s−1 had no effect on C, N, and polyphenol concentrations, suggesting that light levels above 490 μmol of photons m−2 s−1 do not alter chemical composition. The higher concentration of polyphenols and lignin in M. spicatum relative to M. sibiricum may provide advantages that facilitate invasion and displacement of native plants.  相似文献   

4.
We investigated the differential responses of invasive alien Lemna minuta and native Lemna minor to nutrient loading as well as the mechanism of competition between the species. The role of nutrients, species identity, species influence in determining the outcome of competition between the species was estimated using the Relative Growth Rate Difference (RGRD) model. The two species differed in their response to nutrient loading. The native L. minor responded indifferently to nutrient loading. The species Relative Growth Rate (RGR) was 0.10 d−1, 0.11 d−1 and 0.09 d−1 in high, medium and low nutrients, respectively. On the other hand, the invasive L. minuta responded opportunistically to high nutrient availability and had an RGR of 0.13 d−1, 0.10 d−1 and 0.08 d−1 in high, medium and low nutrients, respectively. As a result, the invasive species was dominant in high nutrient availability but lost to the native species at low nutrient availability. The invader formed approximately 60% and less than 50% of the stand final total dry biomass in high and low nutrient availability, respectively. Species RGR were reduced by both intra- and interspecific competition but intraspecific effects were stronger than interspecific effects. On the overall, the species significantly differed in their constant RGR. These differences in RGR between the species (species identity) and the differential response to nutrient loading were the main determinant of change in final biomass composition of these species in mixture. Species influence (competition) only had a small influence on the outcome of competition between the species. The observed species response to nutrient loading could be targeted in management of the invasive species. Lowering nutrients can be proposed to reduce the impact of the invasive L. minuta.  相似文献   

5.
The uptake kinetics of phosphate (Pi) by Myriophyllum spicatum was determined from adsorption and absorption under light and dark conditions. Pi uptake was light dependent and showed saturation following the Michaelis-Menten relation (in light: V = 16.91 × [Pi](1.335 + [Pi]), R2 = 0.90, p < 0.001; in the dark: V = 5.13 × [Pi](0.351 + [Pi]), R2 = 0.77, p < 0.001). Around 77% of the loss of Pi in the water column was absorbed into the tissue of M. spicatum, and only 23% was adsorbed on the surface of the plant shoots. Our study shows that M. spicatum shoots have a much higher affinity (in light: 3.9 μmol g−1 dw h−1 μM−1; in the dark: 3.7 μmol g−1 dw h−1 μM−1) and Vmax (maximum uptake rate, shoot light) for Pi uptake than many other aquatic macrophytes (in light: 0.002-0.23 μmol g−1 dw h−1 μM−1; in the dark: 0.002-0.19 μmol g−1 dw h−1 μM−1), which may provide a competitive advantage over other macrophytes across a wide range of Pi concentrations.  相似文献   

6.
Thirty-six programs have been set up to revegetate the degraded lake wetlands in east China since 2002. Most projects however faced deficiency of submerged macrophyte propagules. To solve the problem, alternative seedling sources must be found besides traditional field collection. This paper deals with an in vitro propagation protocol for two popularly used submerged macrophytes, Myriophyllum spicatum L. and Potamogeton crispus L. Full strength Murashige and Skoog-based liquid media (MS) plus 3% sucrose in addition to 0–2.0 mg l−1 6-benzylaminopurine (BA) and 0–1.0 mg l−1 indoleacetic acid (IAA) were tried for shoot regeneration. Meanwhile, full, half or quarter strength MS in addition to 0, 0.1 or 0.2 mg l−1 naphthaleneacetic acid (NAA) were tested for root induction, respectively. Results indicated that both species had the ability of regeneration from stem fragments in MS without further regulators. However, the addition of 2.0 mg l−1 BA with 0.2 or 1.0 mg l−1 IAA in MS drastically stimulated the regeneration efficiency of M. spicatum, while the addition of 2.0 mg l−1 BA with 0.2 or 0.5 mg l−1 IAA in MS significantly stimulated that of P. crispus. For root induction, full strength MS in combination with 0.1or 0.2 mg l−1 NAA was preferred by M. spicatum, and the same MS without or with 0.1 mg l−1 NAA was preferred by P. crispus. Seedlings of each species produced from tissue culture room had a 100% survival rate on clay, sandy loam or their mixture (1:1) in an artificial pond, and phenotypic plasticity was exhibited when the nutrient levels varied among the three types of sediments. This acclimation of seedlings helped develop the shoot and root systems, which ensured seedling quality and facilitated the transplantation. Our study has established an effective protocol to produce high quality seedlings for lake revegetation programs at a larger scale. Since the two species we tested represent different regeneration performances in nature but shared similar in vitro propagation conditions, this study has indicated a potentially wide use of the common media for preparing seedlings of other submerged macrophytes.  相似文献   

7.
A fully factorial pond experiment was designed using two irradiance levels and two phosphorus concentrations to investigate irradiance and phosphorus effects on the growth of three submerged macrophytes: common waterweed (Elodea canadensis), Eurasian water milfoil (Myriophyllum spicatum), and water stargrass (Zosterella dubia). Results revealed that higher irradiance (230 μmol s−1 m−2 vs. 113 μmol s−1 m−2 at 2 m depth) had significant positive effects on submerged macrophyte growth: increasing the number of individuals (seven-fold), the number of species surviving (two-fold), aboveground biomass (11-fold), belowground biomass (10-fold), and total biomass (11-fold), whereas elevated sediment phosphorus (2.1–3.3 mg g−1 vs. 0.7 mg g−1 dry sediment) did not have any significant impact. However, responses to irradiance differ among macrophyte species due to their morphology and physiology. Waterweed increased in numbers of individuals and total biomass under high irradiance while biomass per individual remained the same (∼0.02 g). The other species increased both in numbers and biomass per individual. These results suggest that increased irradiance rather than decreased phosphorus loading is the main driver of changes in submerged macrophytes in North American temperate lake ecosystems.  相似文献   

8.
We studied preferences of invasive Ponto-Caspian amphipod P. robustoides for various macrophyte species (Myriophyllum spicatum, Ceratophyllum demersum, Potamogeton perfoliatus, Elodea canadensis) and artificial plant-like objects (artificial Christmas tree branches) in laboratory pairwise-choice tests. Juvenile (<7 mm) and adult gammarids exhibited different habitat preferences. Adults did not discriminate between artificial and natural substrata, or among most of the tested species of plants. In contrast, juveniles clearly preferred all tested macrophytes over artificial substrata. Moreover, they particularly preferred plants with the finest leaf elements: M. spicatum and C. demersum over the others and E. canadensis over P. perfoliatus. We found no influence of chironomid larvae, a potential food source for adult gammarids, on their distribution, nor any effect of adults on the habitat choice by juveniles. The habitat partitioning between juvenile and adult P. robustoides may help them survive in a new environment and increase their invasive potential by reducing the intraspecific competition and cannibalism.  相似文献   

9.
《Aquatic Botany》2007,86(3):280-284
We evaluated one-sided competition from the floating-leaved plant Nymphoides peltata (non-indigenous in Sweden) on three submerged plant species, Ceratophyllum demersum, Elodea canadensis and Ranunculus circinatus, in a controlled experiment. The three submerged species were allowed to grow for 21 days in the absence of N. peltata and with the species present at densities of approximately 33, 66 and 100% cover. All species retained a positive relative growth rate (RGR) based on length at all N. peltata densities, but responded with negative growth based on weight for several treatments. C. demersum achieved RGR of 0.03 day−1 in the absence of N. peltata, RGR of 0.02 day−1 in the lowest N. peltata density but negative RGR in the two denser treatments. E. canadensis responded similarly with RGR of 0.04 day−1 in the absence of N. peltata, RGR of 0.01 day−1 in the lowest N. peltata density and negative RGR in the two denser treatments. R. circinatus, on the other hand, never achieved positive RGR based on weight. These results suggest that one-sided competition from floating-leaved plants has a profound effect on the submerged plant community.  相似文献   

10.
Macrophytes play a key role in stream ecology and therefore efforts should be made to enable colonisation of plants to rehabilitate degraded streams. Our overall objectives in this study were first to add to the sparse published studies on the sustainability of transplanting macrophytes in-stream rehabilitation, and secondly to propose general recommendations for this purpose. We assessed the survival and growth of macrophytes after propagating and transplanting them into two streams, one of which was physically degraded and the other was a newly established stream part. We determined differences in colonisation success of different macrophyte species and of different bed sizes. Survival during propagation and after transplanting was 100% for four of the six species used in the experiment. Both survival and colonisation after transplanting six different plant species into a newly created headwater stream were high for Ranunculus baudotii × pseudofluitans, Callitriche cophocarpa, Potamogeton crispus and Myriophyllum spicatum but low for P. perfoliatus and P. pectinatus. After two years, the transplanted macrophyte species were all present and had spread along the stream. Ranunculus baudotii × pseudofluitans beds was more sustainable than C. cophocarpa at places where extensive sand transport occurred. After the second growing season, the smaller patches (0.12 m2) had both similar survival rate and size as the large patches (0.24 m2) for both R. baudotii × pseudofluitans and C. cophocarpa. Our study together with two previous ones from New Zealand enabled us to make general recommendations for transplanting macrophytes into streams. These include: (1) selecting suitable streams, (2) selecting and obtaining suitable plant species, (3) propagation technique and (4) transplanting technique.  相似文献   

11.
Floating Pennywort (Hydrocotyle ranunculoides L.fil.), a native to North America and naturalized in Central and South America, is an invasive aquatic weed in western Europe and several other regions worldwide. H. ranunculoides settles primarily in stagnant to slow-flowing waters (e.g. ditches, canals, rivers, lakes and ponds). The species prefers sunny and nutrient-rich sites and forms dense interwoven mats, which can quickly cover the surface of infested waters. In this study, the effect of three different water levels on growth of Floating Pennywort was investigated. Plants were cultivated on high-nutrient soils under waterlogged, semi-drained and drained conditions. Highest relative growth rates (RGR) of 0.097±0.004 g g−1 dw d−1 were reached under waterlogged conditions. This was significantly higher than RGR of plants cultivated semi-drained and drained. Floating Pennywort showed some phenological adaptations to drained soil conditions, including significant differences in the relative amounts of leaf, petiole and shoot biomass, whilst the relative amount of root biomass was not significantly influenced by the water level. Furthermore, Floating Pennywort reached under drained conditions lower relative water contents (RWC) of leaves, petioles and shoots, a significant shorter length of internodes, a significant lower extent of shoot porosity (POR), a lower chlorophyll content and an increased Chla:Chlb ratio. In addition, maximum gas exchange of drained cultivated plants is significantly lower, due to strongly decreased leaf conductance under reduced water availability. Overall, H. ranunculoides showed ability to grow under different water levels, but performed best under waterlogged conditions.  相似文献   

12.
Patch dynamics of the Mediterranean slow-growing seagrass Posidonia oceanica was studied in two shallow sites (3–10 m) of the Balearic Archipelago (Spain) through repeated censuses (1–2 year−1). In the sheltered site of Es Port Bay (Cabrera Island), initial patch density (October 2001) was low: 0.05 patches m−2, and the patch size (number of shoots) distribution was bimodal: most of the patches had less than 6 shoots or between 20 and 50 shoots. Mean patch recruitment in Es Port Bay (0.006 ± 0.002 patches m−2 year−1) exceeded mean patch loss (0.001 ± 0.001 patches m−2 year−1), yielding positive net patch recruitment (0.004 ± 0.003 patches m−2 year−1) and a slightly increased patch density 3 years later (July 2004, 0.06 patches m−2). In the exposed site of S’Estanyol, the initial patch density was higher (1.38 patches m−2, August 2003), and patch size frequency decreased exponentially with size. Patch recruitment (0.26 patches m−2 year−1) and loss (0.24 patches m−2 year−1) were high, yielding a slightly increased patch density in the area 1 year later (October 2004, 1.40 patches m−2). Most recruited patches consisted of rooting vegetative fragments of 1–2 shoots. Seedling recruitment was observed in Summer 2004 at both sites. Episodic, seedling recruitment comprised 30% and 25% of total patch recruitment in Es Port Bay and S’Estanyol, respectively. Patch survival increased with patch size and no direct removal was observed among patches of 5 shoots or more. Most patches grew along the study, shifting patch distribution towards larger sizes. Within the size range studied (1–150 shoots), absolute shoot recruitment (shoots year−1) increased linearly with patch size (R2 = 0.64, p < 4 × 10−5, N = 125), while specific shoot recruitment was constant (about 0.25 ± 0.05 year−1), although its variance was large for small patches. Given the slow growth rate and the high survival of patches with 5 or more shoots, even the low patch recruitment rates reported here could play a significant role in the colonisation process of P. oceanica.  相似文献   

13.
This study assesses the growth and morphological responses, nitrogen uptake and nutrient allocation in four aquatic macrophytes when supplied with different inorganic nitrogen treatments (1) NH4+, (2) NO3, or (3) both NH4+ and NO3. Two free-floating species (Salvinia cucullata Roxb. ex Bory and Ipomoea aquatica Forssk.) and two emergent species (Cyperus involucratus Rottb. and Vetiveria zizanioides (L.) Nash ex Small) were grown with these N treatments at equimolar concentrations (500 μM). Overall, the plants responded well to NH4+. Growth as RGR was highest in S. cucullata (0.12 ± 0.003 d−1) followed by I. aquatica (0.035 ± 0.002 d−1), C. involucratus (0.03 ± 0.002 d−1) and V. zizanioides (0.02 ± 0.003 d−1). The NH4+ uptake rate was significantly higher than the NO3 uptake rate. The free-floating species had higher nitrogen uptake rates than the emergent species. The N-uptake rate differed between plant species and seemed to be correlated to growth rate. All species had a high NO3 uptake rate when supplied with only NO3. It seems that the NO3 transporters in the plasma membrane of the root cells and nitrate reductase activity were induced by external NO3. Tissue mineral contents varied with species and tissue, but differences between treatments were generally small. We conclude, that the free-floating S. cucullata and I. aquatica are good candidate species for use in constructed wetland systems to remove N from polluted water. The rooted emergent plants can be used in subsurface flow constructed wetland systems as they grow well on any form of nitrogen and as they can develop a deep and dense root system.  相似文献   

14.
  1. The dispersal of aquatic plant propagules is highly facilitated in streams due to flow. As many aquatic plants predominantly spread through vegetative propagules, the specific retention and thus drift distance of dispersed plant fragments largely contribute to the rapid spread along the course of a stream.
  2. We determined fragment retention for four aquatic plant species (Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum, Salvinia natans; representing four different common morpho-structural groups) in sections of small to medium-sized German streams with different levels of stream sinuosity.
  3. The number of fragments showed a logistic decline over drift distance. In two small streams, 90% of drifting fragments were retained at distances (D90) of only 5–9 m and 19–70 m, while higher D90 values of 116–903 m and 153–2,367 m were determined for sections of a medium-sized stream. The likelihood of retention thereby decreased significantly with increasing stream size and was reduced in straightened stream sections.
  4. Differences in retention were more strongly related to fragment buoyancy rather than fragment size and morphology. Increasing buoyancy significantly lowered the likelihood of fragment retention over drift distance by a factor of 3–8, whereas contrasting effects were documented for size and morphology of fragments.
  5. The relevance of different obstacles was highly stream section-specific and depended on obstacle abundance, distribution, and the degree of submergence/emergence.
  6. Our findings elucidate the dynamic retention patterns of plant fragments and highlight the strong interplay between extrinsic (stream) and intrinsic (fragment) properties. We conclude that straightened lowland streams of intermediate size promote the rapid dispersal of invasive aquatic plants and are particularly prone to invaders producing large amounts of small and highly buoyant plant fragments. Information on the species-specific fragment colonisation dynamics in the field is further required to improve our understanding of the vegetative dispersal capacity of invasive aquatic plants in stream ecosystems.
  相似文献   

15.
Summary Within the first few weeks after seedling emergence, Agropyron desertorum, a more competitive tussock grass, had a much higher mean relative growth rate (RGR) than Agropyron spicatum, a very similar, but less competitive species. However, beyond the early seedling stage, the two grasses had a remarkably similar whole-plant RGR in hydroponic culture and aboveground RGR in glasshouse soil, if root temperatures were above approximately 12°C. At soil temperatures between 5 and 12°C, A. desertorum exhibited a 66% greater aboveground RGR than A. spicatum (P<0.05). Both species responded similarly to warming soil temperatures. In the field, however, tiller growth rates were generally similar. Neither species showed marked tiller elongation until a couple of weeks after snowmelt, by which time soil temperatures, at least to a depth of 10 cm, were above 12°C for a significant portion of the day. Aboveground biomass accumulation over a three-year period indicated that both grasses had similar potential growth rates whereas Artemisia tridentata ssp. vaseyana, a common neighbor planted in the same plots, had a much greater potential growth rate. The greater competitive ability of adult A. desertorum, as compared to A. spicatum, cannot be attributed to appreciable differences in potential growth rates.  相似文献   

16.
《Aquatic Botany》2007,87(4):255-261
The response to drawdown of vegetative fragments (whole plants, shoot fragments and turions) of two invasive macrophyte species, Elodea canadensis and Elodea nuttallii, was studied through laboratory experiments. In addition, field observations were made on the colonisation of a wetland by E. nuttallii before and after a natural drawdown. The survival and the growth of vegetative fragments of E. nuttallii were higher than those of E. canadensis after an artificial drawdown of several days. In the field the recolonisation by E. nuttallii of a wetland that was drained for 10 weeks during a summer drawdown was very rapid, the abundance of this macrophyte species being not affected by the drawdown event. We conclude that E. nuttallii possesses a high resilience to desiccation and that a summer drawdown would not be efficient in the control of this invasive species.  相似文献   

17.
Callus was produced on cotyledon, shoot tip, hypocotyl and root explants of twoCorchorus species on several media. Cytokinin was necessary for callus production on cotyledon explants. BothC.olitorius genotypes produced most callus on media with zeatin and either NAA or IAA, and theC.capsularis genotype produced most callus on media with IAA and either zeatin or BA. High frequencies of regenerated shoots were obtained from shoot tip explants of both species, from the apical meristem and from callus. Media with 2.0 mg 1−1 BA were superior for both species, and media with zeatin were equally good forC.capsularis only. More regeneration was obtained for all genotypes after subculture of callus on media with 2.0 mg 1−1 zeatin. Cotyledon callus produced less regeneration, also with differences between genotypes; explants of both genotypes ofC.olitorius produced regeneration on a medium with NAA and zeatin, and theC.capsularis genotype produced regeneration on a medium with IAA and BA. Limited regeneration from root explant callus was obtained forC.capsularis only on medium with BA and IAA. Regeneration was not obtained from hypocotyl callus. Further regeneration of shoots of both species was obtained from secondary callus after subculture, and from nodal segments of regenerated shoots and of seedling shoots cultured on basic MS medium without growth hormones. Roots were produced on about 80% of all shoots after transference to medium with 0.2 mg 1−1 IBA, and rooted plantlets survived and flowered normally after transference to compost.  相似文献   

18.
《Aquatic Botany》2008,88(4):255-261
The response to drawdown of vegetative fragments (whole plants, shoot fragments and turions) of two invasive macrophyte species, Elodea canadensis and Elodea nuttallii, was studied through laboratory experiments. In addition, field observations were made on the colonisation of a wetland by E. nuttallii before and after a natural drawdown. The survival and the growth of vegetative fragments of E. nuttallii were higher than those of E. canadensis after an artificial drawdown of several days. In the field the recolonisation by E. nuttallii of a wetland that was drained for 10 weeks during a summer drawdown was very rapid, the abundance of this macrophyte species being not affected by the drawdown event. We conclude that E. nuttallii possesses a high resilience to desiccation and that a summer drawdown would not be efficient in the control of this invasive species.  相似文献   

19.
The growth vs. irradiance response of the seagrass Zostera noltii from Cadiz Bay Natural Park (southwestern Spain) was characterised. Plants were exposed along 14 days to different light treatments (1%, 7%, 42% and 100% surface irradiance, SI), using shade screens in an outdoor mesocosm. Growth at 100% SI (1.6 mg DW plant−1 day−1) was lower than that at 42% SI (2.4 mg DW plant−1 day−1), suggesting photoinhibition. The minimum light requirement estimated was 0.8 mol photons m−2 day−1 (2% SI). Light availability affected the pattern of plant development and the overall plant growth. The contribution of the apical shoots to the aboveground production was nearly constant (c.a. 1.13 cm plant−1 day−1) regardless of the light level (except at 1% SI). In contrast, recruitment and growth of lateral shoots arising from the main rhizome axes accounted for the observed differences in aboveground growth. Rhizome branching was only observed at 42% SI. The possibility of a light threshold for rhizome branching could explain the seasonality of shoot recruitment, as well as the observed decrease in shoot density along depth (or light) gradients in seagrass meadows. Carbon demands at low irradiances (1% and 7% SI) were partially met by mobilization of carbohydrate reserves (sucrose in belowground and starch in aboveground parts). Plant nitrogen content decreased with increasing light, especially in belowground parts, reaching critical levels for growth.  相似文献   

20.
High phenotypic plasticity has been hypothesized to affect the invasiveness of plants, as high plasticity may enlarge the breath of environments in which the plants can survive and reproduce. Here we compare the phenotypic plasticity of invasive and non-invasive populations of the same species in response to growth temperature. Populations of the submerged macrophyte Ceratophyllum demersum from New Zealand, where the species is introduced and invasive, and from Denmark, where the species is native and non-invasive, were grown in a common garden setup at temperatures of 12, 18, 25 and 35 °C. We hypothesized that the phenotypic plasticity in fitness-related traits like growth and photosynthesis were higher in the invasive than in the non-invasive population. The invasive population acclimated to elevated temperatures through increased rates of photosynthesis (range: Pamb: 8-452 μmol O2 g−1 DM h−1) and relative growth rates (range: 0.01-0.05 d−1) and associated regulations in the photosynthetic machinery. The non-invasive population had a lower acclimation potential (range: Pamb: 43-173 μmol O2 g−1 DM h−1; RGR: 0.01-0.03 d−1), but was better at acclimating to cooler conditions by regulation of the light-harvesting complex. Hence, the invasive population of C. demersum from New Zealand had higher phenotypic plasticity in response to temperature than the non-invasive Danish population. This might be the result of genetic evolution since its introduction to New Zealand five decades ago, but further studies are needed to test this hypothesis. The study also indicate, that the global increase in temperature may exacerbate the problems experienced with the invasive C. demersum in New Zealand, as the performance and fitness of this population appear to be favoured at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号