首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We investigated biomass allocation and root architecture of eight tropical species with different successional status, as classified from the literature, along a size gradient up to 5 m. We focused on belowground development, which has received less attention than aboveground traits. A discriminant analysis based upon a combination of allocational and architectural traits clearly distinguished functional types and classified species according to successional status at a 100% success rate. For a given plant diameter, the pioneer species presented similar root biomass compared to the non-pioneer ones but higher cumulative root length and a higher number of root apices. A detailed study on the root system of a sub-sample of three species showed that the most late-successional species (Tabebuia rosea) had longer root internodes and a higher proportion of root biomass allocated to the taproot compared to the other two species (Hura crepitans and Luehea seemannii). Most pioneer species showed a higher leaf area ratio due to a higher specific leaf area (SLA). We conclude that the functional differences between pioneer and non-pioneer tree species found in natural forests were maintained in open-grown plantation conditions.  相似文献   

2.
3.
Seasonal dynamics were studied by monthly monitoring of biological and environmental variables in permanent quadrats in two contrasting intertidal seagrass beds in South Sulawesi, Indonesia, from February 1991 to January 1992. Datasets were analysed with canonical correlation analysis for correlations between environmental and biological variables. Considerable variation in biomass, production and plant tissue nutrient contents in a monospecific seagrass bed of Enhalus acoroides, growing on a coastal terrigenous mudbank (Gusung Tallang), was assumed to be related to riverine influences of the nearby Tallo River. The variation in seagrass variables at this site could, however, not be significantly correlated to seasonal patterns in rainfall, salinity, tides, nutrient availability, water motion or turbidity. A seasonal cycle in biomass, production and nutrient contents in a mixed seagrass bed of Thalassia hemprichii and E. acoroides, growing on carbonate sand on the reef flat of an offshore coral island (Barang Lompo), was found to be largely determined by tidal exposure and water motion. Exposure of the intertidal seagrass bed during hours of low water during spring tides showed a gradual shift from exposure during the night (January-June) to exposure during daylight (July-December). Daylight exposure resulted in a significant loss of above-ground plant biomass through desiccation and burning of leaves. The observed seasonal dynamics of the seagrass bed on reef sediment contrast with reports from the Caribbean, where the effect of tidal exposure on comparable shallow-water seagrass communities is relatively insignificant due to a small tidal amplitude.  相似文献   

4.
Although fine roots might account for 50% of the annual net primary productivity in moist tropical forests, there are relatively few studies of fine-root dynamics in this biome. We examined fine-root distributions, mass, growth and tissue N and C concentrations for six tree species established in 16-year-old plantations in the Caribbean lowlands of Costa Rica in a randomized-block design (n = 4). The study included five native species (Hyeronima alchorneoides, Pentaclethra macroloba, Virola koschnyi, Vochysia ferruginea and Vochysia guatemalensis) and one exotic (Pinus patula). Under all species >60% of the total fine-root mass to 1 m deep was located in the uppermost 15 cm of the soil. Fine-root live biomass and necromass (i.e., the mass of dead fine-roots) varied significantly among species but only within the uppermost 15 cm, with biomass values ranging from 182 g m−2 in Pinus to 433 g m−2 in Hyeronima plots, and necromass ranging from 48 g m−2 in Pinus to 183 g m−2 in Virola plots. Root growth, measured using ingrowth cores, differed significantly among species, ranging from 304 g m−2 year−1 in Pinus to 1,308 g m−2 year−1 in Hyeronima. These growth rates were one to five times those reported for moist temperate areas. Turnover rates of fine-root biomass ranged from 1.6 to 3.0 year−1 in Virola and Hyeronima plots, respectively. Fine-root biomass was significantly and positively correlated with fine-root growth (r = 0.79, P < 0.0001), but did not correlate with fine-root turnover (r = 0.10, P = 0.20), suggesting that fine-root accumulation is a function of growth rate rather than mortality. Fine-root longevity was not correlated (r = 0.20, P = 0.34) and growth was negatively correlated with root N concentration across species (r = −0.78, P < 0.0001), contrary to reported trends for leaves, perhaps because N was relatively abundant at this site.  相似文献   

5.
Summary Root attributes of tree seedlings of seven species from the tropical deciduous forest along the Pacific Coast of Mexico are described using morphometirc root system analysis. Mean relative growth rate, root/shoot ratios, specific root length, root density, mean number of roots tips and root length/leaf area ratio were determined in seedlings grown for 35 days inside growth chambers. All the species had low relative growth rates, low root/shoot ratios and low root densities (<0.5 cm/cm3). The species associated with disturbed habitats, in contrast to the species characteristic of undisturbed areas, presented small seeds, a dichotomous root branching pattern and large specific root length. No relationship was found between seed size and mean relative growth rate among the species studied.  相似文献   

6.
采用全根挖掘法挖取塔克拉玛干沙漠南缘3种主要防护林植物种——多枝柽柳(Tamarix ramosissima)、梭梭(Haloxylon ammodendron)和新疆杨(Populus albavar. pyramidalis)成年植株根系, 测定并分析了根系构型及其拓扑结构。结果表明: 1)多枝柽柳和梭梭的根系趋向于鱼尾状分支结构, 新疆杨根系为叉状分支结构, 根系分支结构的差异使其资源获取能力和对环境的适应能力有所差异; 2)三种植物最小的根系平均连接长度为33.67 cm, 多枝柽柳和梭梭的根系连接长度大于新疆杨, 增加连接长度对植物在资源贫瘠的沙质土壤环境的生存有利; 3)新疆杨的根系分支率显著高于多枝柽柳和梭梭, 但其对干旱的适应性不如多枝柽柳和梭梭。4)三种植物根系分支均遵循Leonardo da Vinci法则, 且不受根系直径的约束。三种防护林植物在水、养资源获取与土壤空间拓展方面具有差异性, 表明在相似的极端干旱环境中3种植物采取了不同的生态适应策略。  相似文献   

7.
To investigate factors determining the differences in their salt tolerance, growth and germination, experiments were conducted on two plant species belonging to genus Artemisia: Artemisia fukudo Makino, a biennial salt marsh plant and Artemisia stelleriana Bess, a perennial coastal hind dune plant. Growth experiments revealed that salinity (100 and 300 m m NaCl) inhibited the relative growth rate (RGR) in A. stelleriana significantly but not in A. fukudo. These specific differences in salt tolerance were mainly attributed to differential responses of net assimilation rate (NAR). That is, the reduction in RGR in A. stelleriana was mainly due to the reduction in NAR, whereas no significant reduction in NAR was observed in A. fukudo. The reduction in RGR in A. stelleriana in the salt treatment was also attributable to a reduced leaf area ratio (LAR). Specific leaf area (SLA) in the two species decreased in the 300 m m treatment. The decrease in SLA in A. fukudo was, however, compensated for partly by an increase in leaf weight ratio (LWR). Germination experiments also showed that A. fukudo has a higher salt tolerance than does A. stelleriana. These results are consistent with the differences in the salinity conditions between the native habitats of the two species.  相似文献   

8.
9.
Intertidal seagrass has been selected as a Biological Quality Element for the assessment of ecological status under the Water Framework Directive. In Ireland, two species of seagrass, Zostera marina and Z. noltei occur in intertidal habitats. This study presents the first comprehensive assessment of the distribution and Water Framework Directive status of intertidal seagrass in the Republic of Ireland and Northern Ireland. Most of the areas assessed, using the Water Framework Directive-compliant assessment tool, have a status of HIGH or GOOD. Only two areas were found to have a status less than GOOD and in both, the cause for the decline was smothering by opportunistic foliose green macroalgae. Linear regression showed a relationship between pressure index scores and Ecological Quality Ratio, showing the relevance of the index as a metric of anthropogenic pressure. Trace element concentrations were examined in Z. noltei tissues and Trace Element Pollution Index values were calculated. The relationship between Trace Element contamination and Water Framework Directive status was examined but the results showed little correlation. However, a relationship between the pressure index and trace element contamination was obtained. This assessment provides the most comprehensive overview of intertidal seagrass beds in Ireland and establishes a strong baseline for ongoing monitoring and assessment under the Water Framework Directive. The data provide key information on the pressures affecting these valuable habitats which will assist in the development of measures to improve and protect our transitional and coastal waters.  相似文献   

10.
In the pure stand of tropical seagrass,Syringodium isoetifolium, in a small oceanic island, Fiji, grazing effects of the seagrass-associated gammarid,Ampithoe sp., on seagrass and epiphytes were assessed in October 1989, November 1991, November 1992. Density of the gammarid was estimated with two methods, mesh bag method and tuft method. During the three years surveyed the density of the gammarid increased remarkably from 1989 to 1991, with heavy epiphytism. Gut contents of the gammarid were examined. Grazing rates on seagrass leaf with and without epiphytic blue-green algae were measured in a bottle experiment. Litter bag experiments were conducted using different mesh sizes each containing seagrass only and seagrass and gammarids. The seagrass leaf biomass in the litter bag reduced abruptly in both bags. After one week, 78–86% of seagrass biomass disappeared from the bags. Enhancement of decomposition of seagrass leaf by the gammarid grazing was observed. Oxygen consumption and ammonium excretion rates were measured simultaneously in bottle experiments. Carbon budget in the seagrass bed was estimated as follows: 0.9 gC m−2 day−1 in seagrass growth, gammarid grazing was about a half of it and further assimilated a half of it, about 0.1 gC m−2 day−1, and more than half of it become CO2 by respiration. Grazing effects on epiphyte and seagrass growth and production were discussed through the carbon budget and indirect interactions between seagrass, epiphytes and associated gammarids to explain the temporal change of seagrass and epiphyte dynamics.  相似文献   

11.
We investigated the photosynthetic induction time-course in species of different ecological groups grown in contrasting forest irradiance environments, gap and understorey, exposed to different darkness times in order to verify the plant capacity to exploit irradiance heterogeneity. Photosynthetic induction was studied in leaves of Bauhinia forficata and Guazuma ulmifolia (early succession species, ES), and Esenbeckia leiocarpa and Hymenaea courbaril (late succession species, LS). T50 and T90 (time estimates to attain 50 and 90 % of maximum net photosynthetic rate, respectively) varied according to the time of previous exposure to darkness and growth irradiance. In both darkness times of 10 and 30 min, T50 was lower in the LS-than ES-species. These results, jointly with significant higher induction state of the leaves after 10 min of darkness, suggest that the LS-species has a higher potential to sunfleck utilization compared to ES-species, both grown in the understorey. After 10 and 30 min of darkness the differences between ecological groups were not clearly detected in the gap for T50 and T90, indicating that eco-physiological characteristics of each ecological group did not influence the induction time of the species evaluated herein. Thus the capacity to show phenotypic plasticity is not exclusive to an ecological group, but it is rather a more intrinsic feature related to the differential capacity of individuals.  相似文献   

12.
Connolly  Rod M. 《Hydrobiologia》1997,346(1-3):137-148
Assemblages of small, motile invertebrates (epifauna) from eelgrass(Zostera muelleri) and unvegetated habitats in a shallow, marine-dominatedestuary were compared at five sampling periods over one year. Assemblagesbased on abundance and biomass of 21 taxa from the two habitats groupedseparately in multivariate analyses (MDS ordination), and these groupingswere shown to be significant using an analysis of similarities (ANOSIM)randomisation routine. Secondarily to habitat differences, weak influencesof water temperature and distance to open water, but not of salinity, weredetected at some periods. Abundance and biomass of key taxa and all speciescombined were higha in eelgrass than in unvegetated habitat. Cumaceans wereexceptional in being collected predominantly from unvegetated habitat. Totalepifaunal production and crustacean production estimated using twovariables, (1) the biomass of individuals of each size class, and (2) watertemperature, were also higher in eelgrass than in unvegetated habitat. Thehigher abundance in eelgrass of taxa such as amphipods, harpacticoidcopepods and polychaetes that are major components of the diets of smallfish is consistent with a model explaining higher fish numbers in eelgrassin terms of prey availability.  相似文献   

13.
Hydraulic architecture and its relationship with environmental factors were studied in three Caragana species, namely, Caragana microphylla Lam., C. davazamcii Sancz and C. korshinskii Kom, which were found in different habitats of the Inner Mongolian Plateau, China. The improved flushing method was used in situ on one-year-old twigs for comparing the hydraulic efficiency and the regulating abilities of these three species as well as their mechanisms of regulating water transport to cope with variable environments. The relationship between hydraulic architecture and air temperature followed a linear function with negative slope, whereas the relationships between these parameters with atmospheric humidity were positive. Comparing the hydraulic efficiency among the three seasons, a descending order was given as summer>spring>autumn. In the same season, the hydraulic efficiency of C. korshinskii was higher than that of C. davazamcii, which was in turn higher than that of C. microphylla. It can be concluded from the range of Ks and the slope of two linear functions that there were significant differences in the sensitivity of specific conductivity to environmental factors, both among species and among seasons, with a descending order as summer>spring>autumn. In the same season, C. korshinskii was the most sensitive to the changes of environment, and the sensitivity of C. davazamcii was higher than that of C. microphylla. The results also supported the view that the reduction of hydraulic efficiency because of the embolism in xylem could benefit the plants subjected to water deficit by means of limiting water loss.  相似文献   

14.
Li J  Gao Y B  Zheng Z R  Gao Z L 《农业工程》2007,27(3):837-845
Hydraulic architecture and its relationship with environmental factors were studied in three Caragana species, namely, Caragana microphylla Lam., C. davazamcii Sancz and C. korshinskii Kom, which were found in different habitats of the Inner Mongolian Plateau, China. The improved flushing method was used in situ on one-year-old twigs for comparing the hydraulic efficiency and the regulating abilities of these three species as well as their mechanisms of regulating water transport to cope with variable environments. The relationship between hydraulic architecture and air temperature followed a linear function with negative slope, whereas the relationships between these parameters with atmospheric humidity were positive. Comparing the hydraulic efficiency among the three seasons, a descending order was given as summer>spring>autumn. In the same season, the hydraulic efficiency of C. korshinskii was higher than that of C. davazamcii, which was in turn higher than that of C. microphylla. It can be concluded from the range of Ks and the slope of two linear functions that there were significant differences in the sensitivity of specific conductivity to environmental factors, both among species and among seasons, with a descending order as summer>spring>autumn. In the same season, C. korshinskii was the most sensitive to the changes of environment, and the sensitivity of C. davazamcii was higher than that of C. microphylla. The results also supported the view that the reduction of hydraulic efficiency because of the embolism in xylem could benefit the plants subjected to water deficit by means of limiting water loss.  相似文献   

15.
海南新村湾海草床主要鱼类及大型无脊椎动物的食源   总被引:1,自引:0,他引:1  
利用稳定碳同位素技术,分析了海南岛新村湾海草床中主要鱼类及大型无脊椎动物的食物来源。结果显示,有机碳源δ13C值的变化范围为-16.9‰--6.8‰,以海草叶片及其碎屑最高(-7.8‰ ±0.2‰),悬浮颗粒有机质(POM)最低(-16.9±0.2)‰,而附生藻类(-12.0±0.9)‰和沉积物有机质(SOM)(-13.2±0.2)‰居中。消费者δ13C值的变化范围为-15.4‰--6.4‰,表明其食物来源较广。IsoSource 混合模型计算结果表明,本海草床棘皮动物、多毛类、甲壳类和大部分的鱼类以海草为主要有机碳源,双壳类主要同化附生藻类和SOM的混合有机碳源,少数鱼类以POM为主要碳源。以上结果表明,海草是海草床中主要鱼类及大型无脊椎动物的重要食物来源。  相似文献   

16.
Inter- and intraspecific variation in hydraulic traits was investigated in nine Cordia (Boraginaceae) species growing in three tropical rainforests differing in mean annual precipitation (MAP). Interspecific variation was examined for the different Cordia species found at each site, and intraspecific variation was studied in populations of the widespread species Cordia alliodora across the three sites. Strong intra- and interspecific variation were observed in vulnerability to drought-induced embolism. Species growing at drier sites were more resistant to embolism than those growing at moister sites; the same pattern was observed for populations of C. alliodora. By contrast, traits related to hydraulic capacity, including stem xylem vessel diameter, sapwood specific conductivity (K(s)) and leaf specific conductivity (K(L)), varied strongly but independently of MAP. For C. alliodora, xylem anatomy, K(s), K(L) and Huber value varied little across sites, with K(s) and K(L) being consistently high relative to other Cordia species. A constitutively high hydraulic capacity coupled with plastic or genotypic adjustment in vulnerability to embolism and leaf water relations would contribute to the ability of C. alliodora to establish and compete across a wide precipitation gradient.  相似文献   

17.
Schippers  Peter  Olff  Han 《Plant Ecology》2000,149(2):219-231
Three grasses (Holcus lanatus, Anthoxanthum odoratum and Festuca ovina) and three herbs (Rumex obtusifolius, Plantago lanceolata and Hieracium pilosella) were grown in a greenhouse at 3 nutrient levels in order to evaluate plant allocation, architecture and biomass turnover in relation to fertility level of their habitats.Four harvests were done at intervals of 4 weeks. Various plant traits related to biomass partitioning, plant architecture, biomass turnover and performance were determined. Differences in nutrient supply induced a strong functional response in the species shoot:root allocation, but architecture and turnover showed little or no response. Architectural parameters like specific leaf area and specific root length, however, in general decreased during plant development.Species from more nutrient-rich successional stages were characterized by a larger specific leaf area and longer specific shoot height (height/shoot biomass), resulting in a higher RGR and total biomass in all nutrient conditions. There was no evidence that species from nutrient-poor environments had a longer specific root length or any other superior growth characteristic. The only advantage displayed by these species was a lower leaf turnover when expressed as the fraction of dead leaves and a shorter specific shoot height (SSH) which might prevent herbivory and mowing losses.The dead leaf fraction, which is a good indicator for biomass and nutrient loss, appeared to be not only determined by the leaf longevity, but was also found to be directly related to the RGR of the species. This new fact might explain the slow relative growth rates in species from a nutrient-poor habitat and should be considered in future discussions about turnover.  相似文献   

18.
Architecture and leaf display were compared in saplings of six rain forest tree species differing in shade tolerance. Saplings were selected along the whole light range encountered in a forest environment. Species differed largely in realized height and crown expansion per unit support biomass, but this could not be related to differences in shade tolerance. The results demonstrate that there exist various solutions to an effective expansion of plant height and crown area. It is argued that choice of the study species and the ontogenetic trajectory regarded determine to a large extent the outcome of interspecific comparisons. No evidence was found that pioneers were characterized by a multilayered and shade tolerants by a monolayered leaf distribution. Yet, sun plants had a similar crown area, a deeper crown, and a higher leaf area index compared to shade plants and their leaves were more evenly distributed along the stem. This suggests that differences in leaf layering are found between plants growing in different light environments, rather than between species differing in shade tolerance.  相似文献   

19.
以生长在内蒙古高原不同生境条件下的小叶锦鸡儿、中间锦鸡儿和柠条锦鸡儿为研究对象,通过定点观测1年生枝条水力结构特征在不同季节的日变化,结合气候因子的相关性分析,比较不同环境条件下3种锦鸡儿植物输水效率与调节能力的高低,进一步分析旱生植物如何通过调整水分传输来适应变化着的环境条件。结果表明,在一定范围内,3种供试植物的水力结构参数都与气温呈显著的线性负相关,与大气相对湿度呈线性正相关关系。同种锦鸡儿植物在不同季节的输水效率比较,总的趋势是夏季〉春季〉秋季;比较同一季节不同种锦鸡儿的输水效率,基本上是柠条锦鸡儿〉中间锦鸡儿〉小叶锦鸡儿;在比导率对环境因子的敏感度方面,季节之间的差异是夏季〉春季〉秋季,物种之间是柠条锦鸡儿〉中间锦鸡儿〉小叶锦鸡儿。一方面日变幅的差异可以体现敏感度的不同,另一方面比导率与大气温度、湿度线性回归方程的斜率也可以体现敏感度的相对高低。这些结果证实了栓塞引起的导水率的下降并不都产生负面影响,相反它具有限流节水的积极作用。  相似文献   

20.
The effects of temperature on photosynthesis of a rosette plant growing at ground level, Acaena cylindrostachya R. et P., and an herb that grows 20–50 cm above ground level, Senecio formosus H.B.K., were studied along an altitudinal gradient in the Venezuelan Andes. These species were chosen in order to determine – in the field and in the laboratory – how differences in leaf temperature, determined by plant form and microenvironmental conditions, affect their photosynthetic capacity. CO2 assimilation rates (A) for both species decreased with increasing altitude. For Acaena leaves at 2900 m, A reached maximum values above 9 μmol m−2 s−1, nearly twice as high as maximum A found at 3550 m (5.2) or at 4200 m (3.9). For Senecio leaves, maximum rates of CO2 uptake were 7.5, 5.8 and 3.6 μmol m−2 s−1 for plants at 2900, 3550 and 4200 m, respectively. Net photosynthesis-leaf temperature relations showed differences in optimum temperature for photosynthesis (A o.t.) for both species along the altitudinal gradient. Acaena showed similar A o.t. for the two lower altitudes, with 19.1°C at 2900 m and 19.6°C at 3550 m, while it increased to 21.7°C at 4200 m. Maximum A for this species at each altitude was similar, between 5.5 and 6.0 μmol m−2 s−1. For the taller Senecio, A o.t. was more closely related to air temperatures and decreased from 21.7°C at 2900 m, to 19.7°C at 3550 m and 15.5°C at 4200 m. In this species, maximum A was lower with increasing altitude (from 6.0 at 2900 m to 3.5 μmol m−2 s−1 at 4200 m). High temperature compensation points for Acaena were similar at the three altitudes, c. 35°C, but varied in Senecio from 37°C at 2900 m, to 39°C at 3550 m and 28°C at 4200 m. Our results show how photosynthetic characteristics change along the altitudinal gradient for two morphologically contrasting species influenced by soil or air temperatures. Received: 5 July 1997 / Accepted: 25 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号