首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin secretion and GLUT-2 expression in undernourished neonate rats   总被引:1,自引:0,他引:1  
In previous studies, we verified increased insulin sensitivity in adult male offspring of lactating rats readjusting to lack of insulin secretion reduction brought about by protein restriction during lactation. The present study aims to evaluate the effects of maternal protein undernutrition during lactation on glucose-induced insulin secretion and GLUT-2 expression in beta-cells of neonate male and female rats. Lactating Wistar rats were given a protein-free diet during the first 10 days and a normal diet (22% of protein) until weaning. The neonates were separated at birth by sex and diet and studied at 4, 8 and 21 days of lactation. Glucose-induced insulin secretion by pancreatic islets was analyzed by radioimmunoassay and GLUT-2 expression in beta-cells by Western blot. Glucose-induced insulin secretion of the undernourished groups was higher than in the control groups except among females. When comparing the male and female groups and the control and undernourished groups, female neonates showed significantly greater insulin secretion than the male group. Also it was noted that undernutrition induced greater GLUT-2 expression. For instance, comparing the undernourished male and female neonates there was an increase in female GLUT-2 expression on day 4. On the other hand, in undernourished male neonates a GLUT-2 expression increased later in lactation. In conclusion, during a short term, maternal undernutrition induces an increase of the glucose-induced insulin secretion only in male neonates and is associated with an increase in GLUT-2 expression in the beta-cell.  相似文献   

2.
Insulin secretion in mature beta-cells increases vigorously when extracellular glucose concentration rises. Glucose-stimulated insulin secretion depends on Ca(2+) influx through voltage-gated Ca(2+) channels. During fetal development, this structured response is not well established, and it is after birth that beta-cells acquire glucose sensitivity and a robust secretion. We compared some elements of glucose-induced insulin secretion coupling in beta-cells obtained from neonatal and adult rats and found that neonatal cells are functionally immature compared with adult cells. We observed that neonatal cells secrete less insulin and cannot sense changes in extracellular glucose concentrations. This could be partially explained because in neonates Ca(2+) current density and synthesis of mRNA alpha1 subunit Ca(2+) channel are lower than in adult cells. Interestingly, immunostaining for alpha1B, alpha1C, and alpha1D subunits in neonatal cells is similar in cytoplasm and plasma membrane, whereas it occurs predominantly in the plasma membrane in adult cells. We also observed that GLUT2 expression in adult beta-cells is mostly located in the membrane, whereas in neonatal cells glucose transporters are predominantly in the cytoplasm. This could explain, in part, the insensitivity to extracellular glucose in neonatal beta-cells. Understanding neonatal beta-cell physiology and maturation contributes toward a better comprehension of type 2 diabetes physiopathology, where alterations in beta-cells include diminished L-type Ca(2+) channels and GLUT2 expression that results in an insufficient insulin secretion.  相似文献   

3.
The aim of this study was to characterize the glucose responsiveness of individual beta-cells from fa/fa rats under ad libitum feeding conditions. Enlarged intact islets from fed fa/fa rats had a compressed insulin response curve to glucose compared with smaller islets. Size-sorted islets from obese rats yielded beta-cells whose glucose responsiveness was assessed by reverse hemolytic plaque assay to determine whether glucose refractoriness was caused by a decreased number of responsive cells or output per cell. In addition, the effects of palmitic acid on glucose-stimulated insulin secretion were assessed because of evidence that nonesterified fatty acids have acute beneficial effects. Two- to threefold more beta-cells from >250 microm diameter (large) islets than <125 microm diameter (small) or lean islets responded to low glucose. Increasing the glucose (8.3-16.5 mM) induced a >10-fold increase in recruitment of active cells from small islets, compared with only a 2.6-fold increase in large islets. This refractoriness was partially reversed by preincubation of the cells in low glucose for 2 h. In addition, secretion per cell of the large islet beta-cell population was significantly reduced compared with lean beta-cells, so that the overall response capacity of large but not small islet beta-cells was significantly reduced at high glucose. Therefore, continued near-normal function of the beta-cells from small islets of fa/fa rats seems crucial for glucose responsiveness. Incubation of beta-cells from large islets with palmitic acid normalized the secretory capacity to glucose mainly by increasing recruitment and secondarily by increasing secretion per cell. In conclusion, these studies demonstrate refractoriness to glucose of beta-cells from large islets of fa/fa rats under ad libitum feeding conditions. When acutely exposed to nonesterified fatty acids, islets from fa/fa rats have a potentiated insulin response despite chronic elevation of plasma lipids in vivo.  相似文献   

4.
Analysis of glucose transporter mRNA levels in adipose tissue from streptozotocin (STZ)-induced diabetic rats demonstrated a specific decrease (10-fold) in adipose tissue GLUT-4 mRNA with no significant effect on GLUT-1 mRNA levels. Treatment of STZ-diabetic rats with twice daily injections of insulin for 1-3 days resulted in a 16-fold increase in the relative amount of GLUT-4 mRNA to levels approximately 2-fold greater than those in control animals. However, after 7 days of insulin therapy the amount of GLUT-4 mRNA decreased approximately 2-fold back to the levels in the control animals. Normalization of the STZ-induced serum hyperglycemia by phlorizin treatment, which inhibits renal tubular reabsorption of glucose, had no effect on GLUT-4 mRNA in the absence of insulin. Similar to STZ-diabetes, fasting for 48 h also reduced adipose GLUT-4 mRNA levels. Parenteral administration of insulin with glucose over 7.5 h, but not glucose alone, increased the levels of the GLUT-4 mRNA 3- to 4-fold. These studies demonstrate that the relative glycemic state does not influence GLUT-4 glucose transporter mRNA expression in vivo and strongly suggests that insulin is a major factor regulating the levels of GLUT-4 mRNA in adipose tissue.  相似文献   

5.
We have previously investigated glucose induction of glucokinase, glucose usage and insulin release in isolated cultured rat pancreatic islets (Liang, Y., Najafit, H., Smith, R. M., Zimmerman, E. C., Magnuson, M. A., Tal, M., and Mastchinsky, F. M. (1992) Diabetes (1992) 41, 792-806). Here we studied the expression and function of GLUT-1 and GLUT-2 glucose transporter isoforms, using the same system, i.e. isolated pancreatic rat islets immediately after isolation or cultured in the presence of 3 or 30 mM glucose for as long as 10 days. We found by immunofluorescence microscopy and Western and Northern blot analysis of islet extracts that GLUT-1 expression was induced in islet beta-cells in tissue culture both with low or high glucose present. The induction of GLUT-1 was specific to beta-cells but was not present in all beta-cells and was not detected in alpha-cells. GLUT-2 expression was also specific for beta-cells and was not observed in all beta-cells. Some beta-cells in culture coexpressed GLUT-1 and GLUT-2. The expression of the two glucose transporters was regulated in the opposite direction in response to glucose concentration in the culture medium. GLUT-1 was more effectively induced when glucose was low, and GLUT-2 expression was more pronounced when glucose was high in the culture media. Another difference between the two glucose transporters was that GLUT-2 expression was increased while GLUT-1 expression was decreased as culturing continued as long as 7 days. Thus, after 7 days of culture GLUT-2 expression in beta-cells was nearly the same at low and high glucose, whereas GLUT-1 was practically absent no matter what the glucose level was. In attempts to correlate GLUT-1 and GLUT-2 expression to beta-cell function glucose uptake and glucose-stimulated insulin release in fresh and cultured islets were measured. In freshly isolated islet glucose uptake was estimated to be 100-fold in excess of actual glucose use. Glucose uptake was reduced by 7-day culture to about one-third of that observed in freshly isolated islets no matter what the glucose concentration of the culture media. We conclude that in the present experimental system GLUT-1 and GLUT-2 expression and function are not closely associated with glucose usage rates or the secretory function of beta-cells.  相似文献   

6.
High-level expression of the low-Km glucose transporter isoform GLUT-1 is characteristic of many cultured tumor and oncogene-transformed cells. In this study, we tested whether induction of GLUT-1 occurs in tumors in vivo. Normal mouse beta islet cells express the high-Km (approximately 20 mM) glucose transporter isoform GLUT-2 but not the low-Km (1 to 3 mM) GLUT-1. In contrast, a beta cell line derived from an insulinoma arising in a transgenic mouse harboring an insulin-promoted simian virus 40 T-antigen oncogene (beta TC3) expressed very low levels of GLUT-2 but high levels of GLUT-1. GLUT-1 protein was not detectable on the plasma membrane of islets or tumors of the transgenic mice but was induced in high amounts when the tumor-derived beta TC3 cells were grown in tissue culture. GLUT-1 expression in secondary tumors formed after injection of beta TC3 cells into mice was reduced. Thus, high-level expression of GLUT-1 in these tumor cells is characteristic of culture conditions and is not induced by the oncogenic transformation; indeed, overnight culture of normal pancreatic islets causes induction of GLUT-1. We also investigated the relationship between expression of the different glucose transporter isoforms by islet and tumor cells and induction of insulin secretion by glucose. Prehyperplastic transgenic islet cells that expressed normal levels of GLUT-2 and no detectable GLUT-1 exhibited an increased sensitivity to glucose, as evidenced by maximal insulin secretion at lower glucose concentrations, compared with that exhibited by normal islets. Further, hyperplastic islets and primary and secondary tumors expressed low levels of GLUT-2 and no detectable GLUT-1 on the plasma membrane; these cells exhibited high basal insulin secretion and responded poorly to an increase in extracellular glucose. Thus, abnormal glucose-induced secretion of insulin in prehyperplastic islets in mice was independent of changes in GLUT-2 expression and did not require induction of GLUT-1 expression.  相似文献   

7.
The glucose responsiveness of alpha- and beta-cells of normal as well as untreated and insulin-treated streptozotocin diabetic rats was tested in the extracorporeal perfusion system. Also assessed was the possible in vitro effect of added insulin on the glucose sensitivity of islets from untreated diabetic animals. Insulin and glucose responsiveness of the two cell types. The rate of glucose entry islet tissue was estimated, and the effect of glucose on the tissue supply of ATP and lactate and the cyclic 3':5'-AMP level of islets was measured under the above in vitro conditions. It was demonstrated that beta-cells are more accessible to glucose than alpha-cells, that glucose entry into islet cells is not significantly modified by insulin and that glucose had no effect on ATP, lactate and cyclic 3':5'-AMP levels of islet tissue under any of the conditions investigated. High insulin in vitro elevated ATP levels of alpha-cell islets independent of extracellular glucose. Glucose caused insulin release from normal but not from diabetic islets and rapidly and efficiently suppressed stimulated glucagon secretion of the pancreas from normal and insulin treated diabetic rats. Glucose was less effective in inhibiting stimulated glucagon secretion by the pancreas from untreated diabetic rats whether insulin was added to the perfusion media or not. Therefore, profound differences of glucose responsiveness of alpha-cells fail to manifest themselves in alterations of basic parameters of glucose and energy metabolism in contrast to what had been postulated in the literature. It is however, apparent that the glucose responsiveness of alpha-cells is modified by insuling by an as yet undefined mechanism.  相似文献   

8.
Diazoxide and the diazoxide-analogue, NNC 55-0118, are potassium channel openers that interfere with insulin secretion from beta-cells. In vitro, we show that these two drugs inhibit insulin release from diabetes-resistant BB rat islets cultured at either low or high glucose concentration and cause an intracellular accumulation of insulin with high glucose. Preservation of beta-cells was investigated in newly diabetic BB rats treated with insulin implants from day 0-8 under oral diazoxide, NNC 55-0118 or solvent gavage once a day from day 0-7. Three of eight rats (37.5%) treated with diazoxide and three of ten (30%) treated with NNC 55-0118 retained near normal C-peptide responses when challenged with glucose/arginine on day 9, whereas none of eight (0%) solvent-treated rats showed a C-peptide response. Immunohistochemical staining for insulin and glucagon showed that all the C-peptide responding rats had insulin-positive cells in their islets. In contrast, islets from non-responding rats displayed marked inflammation or end-stage lesions. Furthermore, rats with C-peptide response and treated with NNC 55-0118 exhibited only minimal signs of islet inflammation, whereas C-peptide responding diazoxide-treated rats had low level islet inflammation. These results imply that it is conceivable to preserve residual beta-cells at diabetes onset by induction of target cell rest with potassium channel openers and continuous insulin treatment.  相似文献   

9.
To investigate the role of protein kinase C (PKC) in the regulation of insulin secretion, we visualized changes in the intracellular localization of alpha-PKC in fixed beta-cells from both isolated rat pancreatic islets and the pancreas of awake unstressed rats during glucose-induced insulin secretion. Isolated, perifused rat islets were fixed in 4% paraformaldehyde, detergent permeabilized, and labeled with a mAb specific for alpha-PKC. The labeling was visualized by confocal immunofluorescent microscopy. In isolated rat pancreatic islets perifused with 2.75 mM glucose, alpha-PKC immunostaining was primarily cytoplasmic in distribution throughout the beta-cells. In islets stimulated with 20 mM glucose, there was a significant redistribution of alpha-PKC to the cell periphery. This glucose-induced redistribution was abolished when either mannoheptulose, an inhibitor of glucose metabolism, or nitrendipine, an inhibitor of calcium influx, were added to the perifusate. We also examined changes in the intracellular distribution of alpha-PKC in the beta-cells of awake, unstressed rats that were given an intravenous infusion of glucose. Immunocytochemical analysis of pancreatic sections from these rats demonstrated a glucose-induced translocation of alpha-PKC to the cell periphery of the beta-cells. These results demonstrate that the metabolism of glucose can induce the redistribution of alpha-PKC to the cell periphery of beta-cells, both in isolated islets and in the intact animal, and suggest that alpha-PKC plays a role in mediating glucose-induced insulin secretion.  相似文献   

10.
Undernutrition in rats impairs secretion of insulin but maintains glucose normotolerance, because muscle tissue presents an increased insulin-induced glucose uptake. We studied glucose transporters in gastrocnemius muscles from food-restricted and control anesthetized rats under basal and euglycemic hyperinsulinemic conditions. Muscle membranes were prepared by subcellular fractionation in sucrose gradients. Insulin-induced glucose uptake, estimated by a 2-deoxyglucose technique, was increased 4- and 12-fold in control and food-restricted rats, respectively. Muscle insulin receptor was increased, but phosphotyrosine-associated phosphatidylinositol 3-kinase activity stimulated by insulin was lower in undernourished rats, whereas insulin receptor substrate-1 content remained unaltered. The main glucose transporter in the muscle, GLUT-4, was severely reduced albeit more efficiently translocated in response to insulin in food-deprived rats. GLUT-1, GLUT-3, and GLUT-5, minor isoforms in skeletal muscle, were found increased in food-deprived rats. The rise in these minor glucose carriers, as well as the improvement in GLUT-4 recruitment, is probably insufficient to account for the insulin-induced increase in the uptake of glucose in undernourished rats, thereby suggesting possible changes in other steps required for glucose metabolism.  相似文献   

11.
To gain better insight into the insulin secretory activity of fetal beta cells in response to glucose, the expression of glucose transporter 2 (GLUT-2), glucokinase and mitochondrial glycerol phosphate dehydrogenase (mGDH) were studied. Expression of GLUT-2 mRNA and protein in pancreatic islets and liver was significantly lower in fetal and suckling rats than in adult rats. The glucokinase content of fetal islets was significantly higher than of suckling and adult rats, and in liver the enzyme appeared for the first time on about day 20 of extrauterine life. The highest content of hexokinase I was found in fetal islets, after which it decreased progressively to the adult values. Glucokinase mRNA was abundantly expressed in the islets of all the experimental groups, whereas in liver it was only present in adults and 20-day-old suckling rats. In fetal islets, GLUT-2 and glucokinase protein and their mRNA increased as a function of increasing glucose concentration, whereas reduced mitochondrial citrate synthase, succinate dehydrogenase and cytochrome c oxidase activities and mGDH expression were observed. These findings, together with those reported by others, may help to explain the decreased insulin secretory activity of fetal beta cells in response to glucose.  相似文献   

12.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   

13.
The aim of our study was to develop a method for selection of subpopulations of insulin producing RINm cells with higher resistance to beta cell toxins. Cells, resistant to streptozotocin (RINmS) and alloxan (RINmA), were obtained by repeated exposure of parental RINm cells to these two toxins, while the defense capacity, was estimated by the MTT colorimetric method, and [3H]-thymidine incorporation assay. We found that RINmS and RINmA displayed higher resistance to both streptozotocin (STZ) and alloxan (AL) when compared to the parental RINm cells. In contrast, no differences in sensitivity to hydrogen peroxide were found between toxin selected and parental cells. Partial protection from the toxic effect of STZ and AL was obtained only in the parental RINm cells after preincubation of cells with the unmetabolizable 3- O-methyl-glucose. The possibility that GLUT-2 is involved in cell sensitivity to toxins was confirmed by Western blot analysis, which showed higher expression of GLUT-2 in parental RINm compared to RINmS and RINmA cells. In addition to the higher cell defense property evidenced in the selected cells, we also found higher insulin content and insulin secretion in both RINmS and RINmA cells when compared to the parental RINm cells. In conclusion, STZ and AL treatment can be used for selection of cell sub-populations with higher cell defense properties and hormone production. The different GLUT-2 expression in parental and re sistant cells suggest involvement of GLUT-2 in mechanisms of cell response to different toxins.  相似文献   

14.
In type 2 diabetes, beta-cells become glucose unresponsive, contributing to hyperglycemia. To address this problem, we recently created clonal insulin-producing cell lines from the INS-1 insulinoma line, which exhibit glucose responsiveness ranging from poor to robust. Here, mechanisms that determine secretory performance were identified by functionally comparing glucose-responsive 832/13 beta-cells with glucose-unresponsive 832/2 beta-cells. Thus, insulin secretion from 832/13 cells maximally rose 8-fold in response to glucose, whereas 832/2 cells responded only 1.5-fold. Insulin content in both lines was similar, indicating that differences in stimulus-secretion coupling account for the differential secretory performance. Forskolin or isobutylmethylxanthine markedly enhanced insulin secretion from 832/13 but not from 832/2 cells, suggesting that cAMP is essential for the enhanced secretory performance of 832/13 cells. Indeed, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, rp-isomer (Rp-8-Br-cAMPS) an inhibitor of protein kinase A (PKA), inhibited insulin secretion in response to glucose with or without forskolin. Interestingly, whereas forskolin markedly increased cAMP in 832/2 cells, 832/13 cells exhibited only a marginal rise in cAMP. This suggests that 832/13 cells are more sensitive to cAMP. Indeed, the cAMP-induced exocytotic response in patch-clamped 832/13 cells was 2-fold greater than in 832/2 cells. Furthermore, immunoblotting revealed that expression of the catalytic subunit of PKA was 2-fold higher in 832/13 cells. Moreover, when the regulatory subunit of PKA was overexpressed in 832/13 cells, to reduce the level of unbound and catalytically active kinase, insulin secretion and PKA activity were blunted. Our findings show that cAMP-PKA signaling correlates with secretory performance in beta-cells.  相似文献   

15.
Previous work has revealed that insulin is secreted in the tear film; its mRNA is expressed in the lachrymal gland (LG) and its receptor in tissues of the ocular surface. To test the hypothesis of insulin production in the LG, we compared normal and diabetic rats for: (1) the presence of insulin and C-peptide, (2) glucose- and carbachol-induced insulin secretion ex-vivo, and (3) biochemical and histological characteristics of diabetic LG that would support this possibility. Four weeks after streptozotocin injection, blood and tears were collected from streptozotocin-diabetic male Wistar rats. Insulin levels in the tear film rose after glucose stimulation in diabetic rats, but remained unchanged in the blood. Ex vivo static secretion assays demonstrated that higher glucose and 200 microM carbachol significantly increased mean insulin levels from LG samples of both groups. Insulin and C-peptide were expressed in LG of diabetic rats as determined by RIA. Comparable synaptophysin immune staining and peroxidase activity in the LG of both groups suggest that the structure and function of these tissues were maintained. These findings provide evidence of insulin production by LG. Higher expression of reactive oxygen species scavengers may prevent oxidative damage to LG compared to pancreatic beta-cells.  相似文献   

16.
Amylin has been co-secreted from pancreatic islet beta-cells in constant proportion with insulin in some studies. We measured basal and glucose-stimulated amylin and insulin secretion from isolated perfused pancreases of normal and diabetic fatty Zucker rats. Glucose concentrations in the perfusion buffer were increased then decreased in small steps to mimic physiologic changes occurring after a meal. The absolute rate of amylin secretion and the molar ratio of amylin to insulin secreted from diabetic pancreases increased dramatically when infused glucose concentrations fell. Similar changes also occurred in normal pancreases, although the absolute change in amylin secretion was smaller. These studies provide the first evidence that (i) there is a mechanism within the pancreas whereby independent secretion of amylin and insulin can occur; (ii) the molar ratio of amylin to insulin secreted from both normal and diabetic pancreases can vary over a wide range; and (iii) there are important differences in the kinetics of amylin and insulin secretion or their coupling to stimulation by glucose between the isolated pancreases of normal rats and those with genetically transmitted insulin resistance and diabetes mellitus.  相似文献   

17.
Vglycin, a natural 37-residue polypeptide isolated from pea seeds in which six half-cysteine residues are embedded in three pairs of disulfide bonds, is resistant to digestive enzymes and has antidiabetic potential. To investigate the pharmacological activity of Vglycin in vivo and to examine the mechanisms involved, the therapeutic effect of Vglycin in diabetic rats was examined. Diabetes was induced in Wistar rats by high-fat diet and multiple streptozotocin intraperitoneal injections. Diabetic rats were treated daily with Vglycin for 4 weeks. Body weight, food intake, fasting plasma glucose and insulin levels were assayed weekly. Glucose and insulin tolerance tests were conducted on Day 29. Subsequently, levels of p-Akt in the liver and pancreas and cleaved PARP, Pdx-1 and insulin in the pancreas were detected by immunoblotting. The morphology of the pancreas and the insulin expression in the pancreas were analyzed by hematoxylin–eosin staining and immunohistochemistry, respectively. Furthermore, human liver-derived cell lines were used to explore the in vitro effects of Vglycin on insulin sensitivity and glucose uptake. Chronic treatment with Vglycin normalized fasting glucose levels in diabetic rats. The improvement in glucose homeostasis and the increased insulin sensitivity mediated by restored insulin signaling likely contributed to decreased food intake and reduced body weight. Vglycin protected pancreatic cells from damage by streptozotocin. Although insulin synthesis and secretion in impaired β-cell were not significantly elevated, islets morphology was improved in the Vglycin-treated groups. These results suggest that Vglycin could be useful in Type 2 diabetes for restoring impaired insulin signaling, glucose tolerance and pancreatic function.  相似文献   

18.
Effects of streptozotocin on a clonal isolate of rat insulinoma cells   总被引:1,自引:0,他引:1  
Cytotoxic effects and DNA damage caused by streptozotocin, a potent beta-cell toxin and an important chemotherapeutic agent, in an insulin-secreting clonal isolate of a rat insulinoma cell line were evaluated. Cytotoxicity was monitored by phase-contrast microscopy and measurement of insulin release into the culture medium. DNA damage and repair were assessed by changes in nucleoid sedimentation rates. The insulinoma cells were resistant to streptozotocin toxicity as compared to normal rat beta-cells. They were also resistant to the stimulatory effects of glucose on insulin release. However, streptozotocin did cause DNA damage that was both dose- and time-dependent. Comparative analysis of streptozotocin-induced DNA damage and that produced by the aglycone N-methyl-N-nitrosourea revealed greater damage with the latter. Thus, streptozotocin, like N-methyl-N-nitrosourea, may enter these cells by passive diffusion rather than selective transport. DNA repair studies indicate that the nicks caused by streptozotocin are sealed and that the DNA is again supercoiled by 14 h. Therefore, overt toxicity may be avoided by a decreased drug uptake compared to normal beta-cells and efficient repair mechanisms. These studies suggest that an active glucose-sensing mechanism is necessary to enhance streptozotocin cytotoxicity in both normal and neoplastic beta-cells.  相似文献   

19.
Endocrine cells are continually regulating the balance between hormone biosynthesis, secretion, and intracellular degradation to ensure that cellular hormone stores are maintained at optimal levels. In pancreatic beta-cells, intracellular insulin stores in beta-granules are mostly upheld by efficiently up-regulating proinsulin biosynthesis at the translational level to rapidly replenish the insulin lost via exocytosis. Under normal circumstances, intracellular degradation of insulin plays a relatively minor janitorial role in retiring aged beta-granules, apparently via crinophagy. However, this mechanism alone is not sufficient to maintain optimal insulin storage in beta-cells when insulin secretion is dysfunctional. Here, we show that despite an abnormal imbalance of glucose/glucagon-like peptide 1 regulated insulin production over secretion in Rab3A(-/-) mice compared with control animals, insulin storage levels were maintained due to increased intracellular beta-granule degradation. Electron microscopy analysis indicated that this was mediated by a significant 12-fold up-regulation of multigranular degradation vacuoles in Rab3A(-/-) mouse islet beta-cells (P 相似文献   

20.
Phorbol esters were used to investigate the action of protein kinase C (PKC) on insulin secretion from pancreatic beta-cells. Application of 80 nM phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, had little effect on glucose (15 mM)-induced insulin secretion from intact rat islets. In islets treated with bisindolylmaleimide (BIM), a PKC inhibitor, PMA significantly reduced the glucose-induced insulin secretion. PMA decreased the level of intracellular Ca(2+) concentration ([Ca(2+)](i)) elevated by the glucose stimulation when tested in isolated rat beta-cells. This inhibitory effect of PMA was not prevented by BIM. PMA inhibited glucose-induced action potentials, and this effect was not prevented by BIM. Further, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, produced an effect similar to PMA. In the presence of nifedipine, the glucose stimulation produced only depolarization, and PMA applied on top of glucose repolarized the cell. When applied at the resting state, PMA hyperpolarized beta-cells with an increase in the membrane conductance. Recorded under the voltage-clamp condition, PMA reduced the magnitude of Ca(2+) currents through L-type Ca(2+) channels. BIM prevented the PMA inhibition of the Ca(2+) currents. These results suggest that activation of PKC maintains glucose-stimulated insulin secretion in pancreatic beta-cells, defeating its own inhibition of the Ca(2+) influx through L-type Ca(2+) channels. PKC-independent inhibition of electrical excitability by phorbol esters was also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号