首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap1p, the general amino acid permease of Saccharomyces cerevisiae, is regulated by intracellular sorting decisions that occur in either Golgi or endosomal compartments. Depending on nitrogen source, Gap1p is transported to the plasma membrane, where it functions for amino acid uptake, or to the vacuole, where it is degraded. We found that overexpression of Bul1p or Bul2p, two nonessential components of the Rsp5p E3-ubiquitin ligase complex, causes Gap1p to be sorted to the vacuole regardless of nitrogen source. The double mutant bul1Delta bul2Delta has the inverse phenotype, causing Gap1p to be delivered to the plasma membrane more efficiently than in wild-type cells. In addition, bul1Delta bul2Delta can reverse the effect of lst4Delta, a mutation that normally prevents Gap1p from reaching the plasma membrane. Evaluation of Gap1p ubiquitination revealed a prominent polyubiquitinated species that was greatly diminished in a bul1Delta bul2Delta mutant. Both a rsp5-1 mutant and a COOH-terminal truncation of Gap1p behave as bul1Delta bul2Delta, causing constitutive delivery of Gap1p to the plasma membrane and decreasing Gap1p polyubiquitination. These results indicate that Bul1p and Bul2p, together with Rsp5p, generate a polyubiquitin signal on Gap1p that specifies its intracellular targeting to the vacuole.  相似文献   

2.
Intracellular sorting of the general amino acid permease (Gap1p) in Saccharomyces cerevisiae depends on availability of amino acids such that at low amino acid concentrations Gap1p is sorted to the plasma membrane, whereas at high concentrations Gap1p is sorted to the vacuole. In a genome-wide screen for mutations that affect Gap1p sorting we identified deletions in a subset of components of the ESCRT (endosomal sorting complex required for transport) complex, which is required for formation of the multivesicular endosome (MVE). Gap1p-GFP is delivered to the vacuolar interior by the MVE pathway in wild-type cells, but when formation of the MVE is blocked by mutation, Gap1p-GFP efficiently cycles from this compartment to the plasma membrane, resulting in unusually high permease activity at the cell surface. Importantly, cycling of Gap1p-GFP to the plasma membrane is blocked by high amino acid concentrations, defining recycling from the endosome as a major step in Gap1p trafficking under physiological control. Mutations in LST4 and LST7 genes, previously identified for their role in Gap1p sorting, similarly block MVE to plasma membrane trafficking of Gap1p. However, mutations in other recycling complexes such as the retromer had no significant effect on the intracellular sorting of Gap1p, suggesting that Gap1p follows a genetically distinct pathway for recycling. We previously found that Gap1p sorting from the Golgi to the endosome requires ubiquitination of Gap1p by an Rsp5p ubiquitin ligase complex, but amino acid abundance does not appear to significantly alter the accumulation of polyubiquitinated Gap1p. Thus the role of ubiquitination appears to be a signal for delivery of Gap1p to the MVE, whereas amino acid abundance appears to control the cycling of Gap1p from the MVE to the plasma membrane.  相似文献   

3.
The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4- ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.  相似文献   

4.
The high capacity general amino acid permease, Gap1p, in Saccharomyces cerevisiae is distributed between the plasma membrane and internal compartments according to availability of amino acids. When internal amino acid levels are low, Gap1p is localized to the plasma membrane where it imports available amino acids from the medium. When sufficient amino acids are imported, Gap1p at the plasma membrane is endocytosed and newly synthesized Gap1p is delivered to the vacuole; both sorting steps require Gap1p ubiquitination. Although it has been suggested that identical trans-acting factors and Gap1p ubiquitin acceptor sites are involved in both processes, we define unique requirements for each of the ubiquitin-mediated sorting steps involved in delivery of Gap1p to the vacuole upon amino acid addition. Our finding that distinct ubiquitin-mediated sorting steps employ unique trans-acting factors, ubiquitination sites on Gap1p, and types of ubiquitination demonstrates a previously unrecognized level of specificity in ubiquitin-mediated protein sorting.  相似文献   

5.
In Saccharomyces cerevisiae, when a rich nitrogen source such as ammonium is added to the culture medium, the general amino acid permease Gap1p is ubiquitinated by the yeast Nedd4-like ubiquitin ligase Rsp5p, followed by its endocytosis to the vacuole. The arrestin-like Bul1/2p adaptors for Rsp5p specifically mediate this process. In this study, to investigate the downregulation of Gap1p in response to environmental stresses, we determined the intracellular trafficking of Gap1p under various stress conditions. An increase in the extracellular ethanol concentration induced ubiquitination and trafficking of Gap1p from the plasma membrane to the vacuole in wild-type cells, whereas Gap1p remained stable on the plasma membrane under the same conditions in rsp5A401E and Δend3 cells. A 14C-labeled citrulline uptake assay using a nonubiquitinated form of Gap1p (Gap1pK9R/K16R) revealed that ethanol stress caused a dramatic decrease of Gap1p activity. These results suggest that Gap1p is inactivated and ubiquitinated by Rsp5p for endocytosis when S. cerevisiae cells are exposed to a high concentration of ethanol. It is noteworthy that this endocytosis occurs in a Bul1/2p-independent manner, whereas ammonium-triggered downregulation of Gap1p was almost completely inhibited in Δbul1/2 cells. We also found that other environmental stresses, such as high temperature, H2O2, and LiCl, also promoted endocytosis of Gap1p. Similar intracellular trafficking caused by ethanol occurred in other plasma membrane proteins (Agp1p, Tat2p, and Gnp1p). Our findings suggest that stress-induced quality control is a common process requiring Rsp5p for plasma membrane proteins in yeast.  相似文献   

6.
Membrane trafficking of the general amino acid permease (Gap1) of Saccharomyces cerevisiae is under nitrogen regulation. In cells growing on proline or urea as the sole nitrogen source, newly synthesized Gap1 is delivered to the plasma membrane, where it accumulates. Upon addition of NH(4)(+), a preferential nitrogen source, Gap1 is endocytosed and targeted to the vacuole, where it is degraded. This down-regulation requires ubiquitination of the permease, and this ubiquitination is dependent on the essential Npi1/Rsp5 ubiquitin ligase. In this study, we investigated the role of the Npr1 kinase in the regulation of Gap1 trafficking. We show that Npr1 is required for stabilization of Gap1 at the plasma membrane: when an npr1(ts) mutant growing on proline is shifted to the restrictive temperature, Gap1 down-regulation is triggered, as it is when NH(4)(+) is added to wild-type cells. The fate of newly synthesized Gap1 en route to the plasma membrane is also under Npr1 control: in an npr1Delta mutant, neosynthesized Gap1 is sorted from the Golgi to the vacuole without passing via the plasma membrane. Similar direct sorting of neosynthesized Gap1 to the vacuole was observed in wild-type cells grown on NH(4)(+). Finally, Gap1 is phosphorylated in NPR1 cells, but this phosphorylation is not strictly dependent on Npr1. Our results show that Npr1 kinase plays a central role in the physiological control of Gap1 trafficking and that this control is exerted not only on Gap1 present at the plasma membrane but also on Gap1 late in the secretory pathway. Npr1 belongs to a subgroup of protein kinases, some of which are reported to exert a positive control on the activity of other permeases. We propose that these kinases also function as regulators of permease trafficking.  相似文献   

7.
K. J. Roberg  S. Bickel  N. Rowley    C. A. Kaiser 《Genetics》1997,147(4):1569-1584
The SEC13 gene was originally identified by temperature-sensitive mutations that block all protein transport from the ER to the Golgi. We have found that at a permissive temperature for growth, the sec13-1 mutation selectively blocks transport of the nitrogen-regulated amino acid permease, Gap1p, from the Golgi to the plasma membrane, but does not affect the activity of constitutive permeases such as Hip1p, Can1p, or Lyp1p. Different alleles of SEC13 exhibit different relative effects on protein transport from the ER to the Golgi, or on Gap1p activity, indicating distinct requirements for SEC13 function at two different steps in the secretory pathway. Three new genes, LST4, LST7, and LST8, were identified that are also required for amino acid permease transport from the Golgi to the cell surface. Mutations in LST4 and LST7 reduce the activity of the nitrogen-regulated permeases Gap1p and Put4p, whereas mutations in LST8 impair the activities of a broader set of amino acid permeases. The LST8 gene encodes a protein composed of WD-repeats and has a close human homologue. The LST7 gene encodes a novel protein. Together, these data indicate that SEC13, LST4, LST7, and LST8 function in the regulated delivery of Gap1p to the cell surface, perhaps as components of a post-Golgi secretory-vesicle coat.  相似文献   

8.
Clathrin-coated vesicles mediate the transport of the soluble vacuolar protein CPY from the TGN to the endosomal/prevacuolar compartment. Surprisingly, CPY sorting is not affected in clathrin deletion mutant cells. Here, we have investigated the clathrin-independent pathway that allows CPY transport to the vacuole. We find that CPY transport is mediated by the endosome and requires normal trafficking of its sorting receptor, Vps10p, the steady state distribution of which is not altered in chc1 cells. In contrast, Vps10p accumulates at the cell surface in a chc1/end3 double mutant, suggesting that Vps10p is rerouted to the cell surface in the absence of clathrin. We used a chimeric protein containing the first 50 amino acids of CPY fused to a green fluorescent protein (CPY-GFP) to mimic CPY transport in chc1. In the absence of clathrin, CPY-GFP resides in the lumen of the vacuole as in wild-type cells. However, in chc1/sec6 double mutants, CPY-GFP is present in internal structures, possibly endosomal membranes, that do not colocalize with the vacuole. We propose that Vps10p must be transported to and retrieved from the plasma membrane to mediate CPY sorting to the vacuole in the absence of clathrin-coated vesicles. In this circumstance, precursor CPY may be captured by retrieved Vps10p in an early or late endosome, rather than as it normally is in the trans-Golgi, and delivered to the vacuole by the normal VPS gene-dependent process. Once relieved of cargo protein, Vps10p would be recycled to the trans-Golgi and then to the cell surface for further rounds of sorting.  相似文献   

9.
The coatomer (COPI) complex mediates Golgi to ER recycling of membrane proteins containing a dilysine retrieval motif. However, COPI was initially characterized as an anterograde-acting coat complex. To investigate the direct and primary role(s) of COPI in ER/Golgi transport and in the secretory pathway in general, we used PCR-based mutagenesis to generate new temperature-conditional mutant alleles of one COPI gene in Saccharomyces cerevisiae, SEC21 (γ-COP). Unexpectedly, all of the new sec21 ts mutants exhibited striking, cargo-selective ER to Golgi transport defects. In these mutants, several proteins (i.e., CPY and α-factor) were completely blocked in the ER at nonpermissive temperature; however, other proteins (i.e., invertase and HSP150) in these and other COPI mutants were secreted normally. Nearly identical cargo-specific ER to Golgi transport defects were also induced by Brefeldin A. In contrast, all proteins tested required COPII (ER to Golgi coat complex), Sec18p (NSF), and Sec22p (v-SNARE) for ER to Golgi transport. Together, these data suggest that COPI plays a critical but indirect role in anterograde transport, perhaps by directing retrieval of transport factors required for packaging of certain cargo into ER to Golgi COPII vesicles. Interestingly, CPY–invertase hybrid proteins, like invertase but unlike CPY, escaped the sec21 ts mutant ER block, suggesting that packaging into COPII vesicles may be mediated by cis-acting sorting determinants in the cargo proteins themselves. These hybrid proteins were efficiently targeted to the vacuole, indicating that COPI is also not directly required for regulated Golgi to vacuole transport. Additionally, the sec21 mutants exhibited early Golgi-specific glycosylation defects and structural aberrations in early but not late Golgi compartments at nonpermissive temperature. Together, these studies demonstrate that although COPI plays an important and most likely direct role both in Golgi–ER retrieval and in maintenance/function of the cis-Golgi, COPI does not appear to be directly required for anterograde transport through the secretory pathway.  相似文献   

10.
11.
In yeast, ubiquitin plays a central role in proteolysis of a multitude of proteins and serves also as a signal for endocytosis of many plasma membrane proteins. We showed previously that ubiquitination of the general amino acid permease (Gap1) is essential to its endocytosis followed by vacuolar degradation. These processes occur when NH(4)(+), a preferential source of nitrogen, is added to cells growing on proline or urea, i.e. less favored nitrogen sources. In this study, we show that Gap1 is ubiquitinated on two lysine residues in the cytosolic N terminus (positions 9 and 16). A mutant Gap1 in which both lysines are mutated (Gap1(K9K16)) remains fully stable at the plasma membrane after NH(4)(+) addition. Furthermore, each of the two lysines harbors a poly-ubiquitin chain in which ubiquitin is linked to the lysine 63 of the preceding ubiquitin. The Gap1(K9) and Gap1(K16) mutants, in which a single lysine is mutated, are down-regulated in response to NH(4)(+) although more slowly. In proline-grown cells lacking Npr1, a protein kinase involved in the control of Gap1 trafficking, newly synthesized Gap1 is sorted from the Golgi to the vacuole without passing through the plasma membrane (accompanying article, De Craene, J.-O., Soetens, O., and André, B. (2001) J. Biol. Chem. 276, 43939-43948). We show here that ubiquitination of Gap1 is also required for this direct sorting to the vacuole. In an npr1Delta mutant, neosynthesized Gap1(K9K16) is rerouted to and accumulates at the plasma membrane. Finally, Bul1 and Bul2, two proteins interacting with Npi1/Rsp5, are essential to ubiquitination and down-regulation of cell-surface Gap1, as well as to sorting of neosynthesized Gap1 to the vacuole, as occurs in an npr1Delta mutant. Our results reveal a novel role of ubiquitin in the control of Gap1 trafficking, i.e. direct sorting from the late secretory pathway to the vacuole. This result reinforces the growing evidence that ubiquitin plays an important role not only in internalization of plasma membrane proteins but also in their sorting in the endosomes and/or trans-Golgi.  相似文献   

12.
In S. cerevisiae lacking SHR3, amino acid permeases specifically accumulate in membranes of the endoplasmic reticulum (ER) and fail to be transported to the plasma membrane. We examined the requirements of transport of the permeases from the ER to the Golgi in vitro. Addition of soluble COPII components (Sec23/24p, Sec13/31p, and Sar1p) to yeast membrane preparations generated vesicles containing the general amino acid permease. Gap1p, and the histidine permease, Hip1p. Shr3p was required for the packaging of Gap1p and Hip1p but was not itself incorporated into transport vesicles. In contrast, the packaging of the plasma membrane ATPase, Pma1p, and the soluble yeast pheromone precursor, glycosylated pro alpha factor, was independent of Shr3p. In addition, we show that integral membrane and soluble cargo colocalize in transport vesicles, indicating that different types of cargo are not segregated at an early step in secretion. Our data suggest that specific ancillary proteins in the ER membrane recruit subsets of integral membrane protein cargo into COPII transport vesicles.  相似文献   

13.
It was known that the uptake of tryptophan is reduced in the yeast erg6 mutant, which is defective in a late step of ergosterol biosynthesis. Here, we show that this is because the high affinity tryptophan permease Tat2p is not targeted to the plasma membrane. In wild-type cells, the plasma membrane localization of Tat2p is regulated by the external tryptophan concentration. Tat2p is transported from the Golgi apparatus to the vacuole at high tryptophan, and to the plasma membrane at low tryptophan. However, in the erg6 mutant, Tat2p is missorted to the vacuole at low tryptophan. The plasma membrane targeting of Tat2p is dependent on detergent-insoluble membrane domains, suggesting that sterol affects the sorting through the organization of lipid rafts. The erg6 mutation also caused missorting to the multivesicular body pathway in late endosomes. Thus, sterol composition is crucial for protein sorting late in the secretory pathway. Tat2p is subject to polyubiquitination, which acts as a vacuolar-targeting signal, and the inhibition of this process suppresses the Tat2p sorting defects of the erg6 mutant. The sorting mechanisms of Tat2p that depend on both sterol and ubiquitin will be discussed.  相似文献   

14.
Detergent-resistant membrane (DRM) fractions enriched in ergosterol and sphingolipids can be isolated from yeast cells and have been proposed to represent the biochemical equivalents of lipid rafts. Most yeast plasma membrane proteins studied for their detergent solubility have been found in DRMs, except for the Hxt1 and Gap1 permeases. We here compared Gap1 detergent solubility in wild-type and various mutant cells under conditions promoting cell surface accumulation or ubiquitin-dependent down-regulation of the permease. We show that Gap1 present at the plasma membrane is associated with DRMs. This association occurs at the Golgi level. In the absence of sphingolipid neosynthesis, Gap1 fails to accumulate at the plasma membrane and is missorted to the vacuolar lumen. Furthermore, the presence of Gap1 at the plasma membrane correlates perfectly with its association with DRMs, whatever the activity or ubiquitination state of the permease and regardless of whether it has reached the cell surface via normal secretion, after recycling, or upon missorting to the vacuole before rerouting to the plasma membrane. Finally, we show that Hxt1 present at the cell surface is also associated with DRMs. We discuss a model where yeast plasma membrane proteins are systematically associated with sphingolipid/ergosterol-enriched microdomains when located at the cell surface.  相似文献   

15.
Sorting of membrane proteins between compartments of the secretory pathway is mediated in part by their transmembrane domains (TMDs). In animal cells, TMD length is a major factor in Golgi retention. In yeast, the role of TMD signals is less clear; it has been proposed that membrane proteins travel by default to the vacuole, and are prevented from doing so by cytoplasmic signals. We have investigated the targeting of the yeast endoplasmic reticulum (ER) t-SNARE Ufe1p. We show that the amino acid sequence of the Ufe1p TMD is important for both function and ER targeting, and that the requirements for each are distinct. Targeting is independent of Rer1p, the only candidate sorting receptor for TMD sequences currently known. Lengthening the Ufe1p TMD allows transport along the secretory pathway to the vacuole or plasma membrane. The choice between these destinations is determined by the length and composition of the TMD, but not by its precise sequence. A longer TMD is required to reach the plasma membrane in yeast than in animal cells, and shorter TMDs direct proteins to the vacuole. TMD-based sorting is therefore a general feature of the yeast secretory pathway, but occurs by different mechanisms at different points.  相似文献   

16.
The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane.  相似文献   

17.
Mutations in the S. cerevisiae VPS29 and VPS30 genes lead to a selective protein sorting defect in which the vacuolar protein carboxypeptidase Y (CPY) is missorted and secreted from the cell, while other soluble vacuolar hydrolases like proteinase A (PrA) are delivered to the vacuole. This phenotype is similar to that seen in cells with mutations in the previously characterized VPS10 and VPS35 genes. Vps10p is a late Golgi transmembrane protein that acts as the sorting receptor for soluble vacuolar hydrolases like CPY and PrA, while Vps35p is a peripheral membrane protein which cofractionates with membranes enriched in Vps10p. The sequences of the VPS29, VPS30, and VPS35 genes do not yet give any clues to the functions of their products. Each is predicted to encode a hydrophilic protein with homologues in the human and C. elegans genomes. Interestingly, mutations in the VPS29, VPS30, or VPS35 genes change the subcellular distribution of the Vps10 protein, resulting in a shift of Vps10p from the Golgi to the vacuolar membrane. The route that Vps10p takes to reach the vacuole in a vps35 mutant does not depend upon Sec1p mediated arrival at the plasma membrane but does require the activity of the pre-vacuolar endosomal t-SNARE, Pep12p. A temperature conditional allele of the VPS35 gene was generated and has been found to cause missorting/secretion of CPY and also Vps10p to mislocalize to a vacuolar membrane fraction at the nonpermissive temperature. Vps35p continues to cofractionate with Vps10p in vps29 mutants, suggesting that Vps10p and Vps35p may directly interact. Together, the data indicate that the VPS29, VPS30, and VPS35 gene products are required for the normal recycling of Vps10p from the prevacuolar endosome back to the Golgi where it can initiate additional rounds of vacuolar hydrolase sorting.  相似文献   

18.
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) on transport vesicles and target membranes are crucial for vesicle targeting and fusion. They form SNARE complexes, which contain four α-helical SNARE motifs contributed by three or four different SNAREs. Most SNAREs function only in a single transport step. The yeast SNARE Vti1p participates in four distinct SNARE complexes in transport from the trans Golgi network to late endosomes, in transport to the vacuole, in retrograde transport from endosomes to the trans Golgi network and in retrograde transport within the Golgi. So far, all vti1 mutants investigated had mutations within the SNARE motif. Little is known about the function of the N-terminal domain of Vti1p, which forms a three helix bundle called Habc domain. Here we generated a temperature-sensitive mutant of this domain to study the effects on different transport steps. The secondary structure of wild type and vti1-3 Habc domain was analyzed by circular dichroism spectroscopy. The amino acid exchanges identified in the temperature-sensitive vti1-3 mutant caused unfolding of the Habc domain. Transport pathways were investigated by immunoprecipitation of newly synthesized proteins after pulse-chase labeling and by fluorescence microscopy of a GFP-tagged protein cycling between plasma membrane, early endosomes and Golgi. In vti1-3 cells transport to the late endosome and assembly of the late endosomal SNARE complex was blocked at 37°C. Retrograde transport to the trans Golgi network was affected while fusion with the vacuole was possible but slower. Steady state levels of SNARE complexes mediating these steps were less affected than that of the late endosomal SNARE complex. As different transport steps were affected our data demonstrate the importance of a folded Vti1p Habc domain for transport.  相似文献   

19.
C R Cowles  W B Snyder  C G Burd    S D Emr 《The EMBO journal》1997,16(10):2769-2782
More than 40 vacuolar protein sorting (vps) mutants have been identified which secrete proenzyme forms of soluble vacuolar hydrolases to the cell surface. A subset of these mutants has been found to show selective defects in the sorting of two vacuolar membrane proteins. Under non-permissive conditions, vps45tsf (SEC1 homolog) and pep12/vps6tsf (endosomal t-SNARE) mutants efficiently sort alkaline phosphatase (ALP) to the vacuole while multiple soluble vacuolar proteins and the membrane protein carboxypeptidase yscS (CPS) are no longer delivered to the vacuole. Vacuolar localization of ALP in these mutants does not require transport to the plasma membrane followed by endocytic uptake, as double mutants of pep12tsf and vps45tsf with sec1 and end3 sort and mature ALP at the non-permissive temperature. Given the demonstrated role of t-SNAREs such as Pep12p in transport vesicle recognition, our results indicate that ALP and CPS are packaged into distinct transport intermediates. Consistent with ALP following an alternative route to the vacuole, isolation of a vps41tsf mutant revealed that at non-permissive temperature ALP is mislocalized while vacuolar delivery of CPS and CPY is maintained. A series of domain-swapping experiments was used to define the sorting signal that directs selective packaging and transport of ALP. Our data demonstrate that the amino-terminal 16 amino acid portion of the ALP cytoplasmic tail domain contains a vacuolar sorting signal which is responsible for the active recognition, packaging and transport of ALP from the Golgi to the vacuole via a novel delivery pathway.  相似文献   

20.
M Seeger  G S Payne 《The EMBO journal》1992,11(8):2811-2818
We have investigated the role of clathrin in vacuolar protein sorting using yeast strains harboring a temperature-sensitive allele of clathrin heavy chain (chc1-ts). After a 5 min incubation at the non-permissive temperature (37 degrees C), the chc1-ts strains displayed a severe defect in the sorting of lumenal vacuolar proteins. Sorting of a vacuolar membrane protein, alkaline phosphatase, and transport to the surface of a cell wall protein, was not affected at 37 degrees C. In chc1-ts cells incubated at 37 degrees C, secretion of the missorted lumenal vacuolar protein carboxypeptidase Y (CPY) was blocked by the sec1 mutation which prevents fusion of secretory vesicles to the plasma membrane. Unexpectedly, chc1-ts cells incubated for extended periods at 37 degrees C regained the ability to sort CPY. Cells carrying deletions of the CHC1 gene (chc1 delta) also sorted CPY to the vacuole even when subjected to temperature shifts. Vacuolar delivery of CPY in chc1 delta cells was not blocked by sec1 suggesting that transport does not occur by secretion and endocytosis. These results provide in vivo evidence that clathrin plays a role in the Golgi complex in sorting of vacuolar proteins from the secretory pathway. With time, however, yeast cells lacking functional clathrin heavy chains are able to adapt in a way that allows restoration of vacuolar protein sorting in the Golgi complex. These conclusions clarify previous studies of chc1 delta cells which raised the possibility that clathrin is not involved in vacuolar protein sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号