首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study the influence of speed of contraction on the interplay between recruitment and firing rate of motor units (MUs) was assessed. The surface electromyographic (sEMG) signal was recorded in nine healthy subjects from the right biceps brachii using a linear electrode array during ramp isometric contractions (from 0 to 100% of the maximal voluntary force, MVC) at 5, 10, and 20% MVC s(-1) (ramp phase), followed by 10 s of sustained MVC (hold phase). The median frequency (MDF), Root Mean Square (RMS) and conduction velocity (CV) of sEMG, were computed on adjacent epochs covering a force range of 5% MVC each. Full motor unit recruitment (FMUR) point was assessed as the force level at which MDF reached its maximum value; the MDF decay during the hold phase was taken as an index of localized muscle fatigue. At 5% MVC s(-1), FMUR was reached at 52.3% MVC. At 10%MVC s(-1) FMUR was achieved at 58% MVC; while at 20% MVC s(-1) FMUR point was located at 77% MVC, being statistically different from 5 and 10% MVCs(-1) ramps (p<0.05). The MDF decay was steeper at higher speed. CV modifications mirrored those reported for MDF. The RMS increased in a curvilinear fashion and the maximum value was always attained during the hold phase. Our findings suggest that MU recruitment strategies are significantly related to the speed of contraction even in a single muscle.  相似文献   

2.
The repeatability of initial value and rate of change of mean spectral frequency (MNF), average rectified values (ARV) and muscle fiber conduction velocity (CV) was investigated in the dominant biceps brachii of ten normal subjects during sustained isometric voluntary contractions. Four levels of contraction were studied: 10%, 30%, 50% and 70% of the maximal voluntary contraction level (MVC). Each contraction was repeated three times in each of three different days for a total of nine contractions/level/subject and 90 contractions per level across the ten subjects. Repeatability was investigated using the Intraclass Correlation Coefficient (ICC) and the standard error of the mean (SEM) of the estimates for each subject. Contrary to observations in other muscles, CV estimates appeared to be very repeatable both within and between subjects. CV showed a small but significant increase when contraction force increased from 10% to 50% MVC but no change for further increase of force. As force increased, MNF showed a slight decrease possibly related to a wider spreading of the CV values. The rate of time decrement of MNF and CV increased with the level of contraction. The normalized decrement (% of initial value per second) was in general higher for MNF than for CV and was more repeatable between subjects at 10% MVC than at 70% MVC. A final observation is that a resting time of 5 minutes may not be sufficient after a contraction at 50% or 70% MVC.  相似文献   

3.
Different behaviours of the EMG power spectrum across increasing force levels have been reported for the masseter muscle. A factor that could explain these different behaviours may be the type of contraction used, as was recently shown for certain upper limb muscles5. The purpose of this study was to compare, between two types of isometric contractions, the behaviour of EMG power spectrum statistics (median frequency (MF) and mean power frequency (MPF)) obtained across increasing force levels. Ten women exerted, while biting in the intercuspal position, three 5 s ramp contractions that increased linearly from 0 to 100% of the maximal voluntary contraction (MVC). They also completed three step contractions (constant EMG amplitude) at each of the following levels: 20, 40, 60 and 80% MVC. EMG signals from the masseter muscle were recorded with miniature surface electrodes. The RMS, as well as the MPF and MF of the power spectrum were calculated at 20, 40, 60 and 80% MVC for each type of contraction. As expected, the RMS values showed similar increases with increasing levels of effort for both types of contractions. Different behaviours for both MPF (contraction*force interaction, ANOVA, P<0.05) and MF (contraction*force interaction, ANOVA, P>0.05) across increasing levels of effort were found between the two types of contraction. The use of step contractions gave rise to a decrease of both MPF and MF with increasing force, while the use of ramp contractions gave rise to an increase in both statistics up to at least 40% MVC followed by a decrease at higher force levels. These findings suggest that the type of contraction used does influence the behaviour of the spectral statistics across increasing force levels and that this could explain the differences obtained in previous studies for the masseter muscle.  相似文献   

4.
It has been proposed that the mean power frequency (MPF) of the electromyogram (EMG) power spectrum increases gradually with force of contraction and that this increase is a function of the fiber-type content of the muscle investigated and the inter-electrode distance (IED) used when recording the EMG signals. In order to test these hypotheses, the values of the MPF of two elbow extensor muscles, triceps brachii (TB, 65% fast twitch fibers) and anconeus (AN, 65% slow twitch fibers), were compared at different levels of contraction. Subjects (n = 13) produced ten static ramp elbow extensions [0-100% maximum voluntary contraction (MVC)]. EMG signals of each muscle were recorded with two pairs of surface miniature electrodes having IEDs of 6 mm and 30 mm respectively. MPFs were obtained at each of the following levels: 10, 20, 40, 60, 80 and 100% MVC. Statistical analyses indicated that the MPF of AN increased significantly (P less than 0.05) up to 60% MVC. In contrast, the MPF values for TB showed no significant change across different levels of contraction (P greater than 0.05). Since skinfold was on average 3.2 times thicker over TB than over AN it is suggested that the low-pass filtering effect of the skin could have prevented the observation of an increase of the MPF for TB. It thus appears that changes of the MPF with the level of force, as disclosed by surface electrode recordings, is specific to each muscle. Consequently one has to account for factors such as thickness of the skinfold when it comes to the determination of the fiber-type content of different muscles within a subject.  相似文献   

5.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

6.
This study determines whether changes in the EMG values of two important muscles of the shoulder and neck region, the anterior deltoid and the upper trapezius, are due to changes in torque production or due to fatigue processes during sustained activity. Contractions at 20, 40, 60, 80 and 100% MVC were performed during a flexion of the arm in the sagittal plane at 90 degrees, to examine the relation between torque and EMG. A sustained contraction at 20% MVC was performed to endurance point in the same position. RMS, a new parameter called activity, (ACT), and MPF of the deltoid anterior and the upper trapezius were analysed. The amplitude values correlated highly with increasing torque production, both for the deltoid muscle (range r = 0.95-0.96), and the trapezius muscle (range r = 0.83-0.87), whereas no significant difference was found for MPF. For the endurance task, the decrease in MPF was far more pronounced for the deltoid than for the trapezius, whereas the opposite occurred with RMS (P < or = 0.01). Furthermore, there was no significant difference over time for the ACT values of the deltoid, whereas there were significant increases in ACT for the trapezius (P < or = 0.01). The RMS/ACT ratio correlated highly (r = 0.81) with the MPF. Regression coefficients of these parameters differed significantly for the trapezius muscle but not for the deltoid muscle. Therefore, the RMS/ACT ratio may be extremely important in analysing the fatigue effects during sustained efforts, independent of torque variations, which can influence indicators of fatigue.  相似文献   

7.
The aim of this study was to compare mechanomyogram (MMG) recorded by a condenser microphone (MIC) and an accelerometer (ACC) during submaximal isometric, concentric and eccentric contractions in 14 males. The maximal voluntary force (MVC) of the biceps brachii was measured. The subjects were asked to do short duration isometric, concentric and eccentric contraction at 10%, 30%, 50%, 70% MVC twice. For the concentric and eccentric contraction, the subject bent his arm for 3s (concentric) then held it for 3s and extended (eccentric) during 3s. The normalized root mean square (RMS) and mean power frequency (MPF) increased linearly with increased force for both transducers. There was a correlation between MIC MPF and ACC MPF at 10%, 30%, 50% MVC, and between MIC RMS and ACC RMS at 30% MVC during isometric contractions. There was significantly higher MPF for the ACC than for the MIC in concentric and eccentric modes, while the RMS did not differ among transducers in the three contraction modes. The RMS and MPF values coefficient of variations were significantly larger during anisometric contractions compared with isometric contractions and were lower for the accelerometer than for the microphone. The present results obtained during isometric, concentric and eccentric contractions of increased intensity showed that the information contained in microphone- and accelerometer-based MMG signals is different despite similar trends. It can be concluded that at low-moderate movement velocity, concentric contractions can be investigated by means of accelerometer and microphone.  相似文献   

8.
The aim of this study was to investigate the long term reliability of surface electromyography (sEMG) measurements in adults with cystic fibrosis (CF). Eighteen healthy subjects (CO) and sixteen adults with CF were tested on two occasions, six weeks apart. sEMG was recorded from the rectus femoris, vastus lateralis and vastus medialis obliquus muscles during maximal voluntary contraction (MVC) and 50% MVC until exhaustion. Quadriceps muscle activity during 50% MVC was described using four measures (initial, final, normalized and slope values) for both frequency and time domain. Relative (ICC) and absolute (SEM) reliabilities were applied to asses test-retest reliability. In CF group, median frequency (MDF) values for 100% MVC and initial, final and normalized final MDF for 50% MVC demonstrated moderate to very high relative reliability (ICC = 0.60–0.91) and low variability (SEM = 5.5–13%). MDF slope showed large variability in both groups. Root mean square (RMS) values were not reproducible in both groups whatever the intensity of exercise and can not be recommended as outcomes parameters. In conclusion, sEMG measurements during maximal and submaximal isometric contractions could be valid and reliable tools for clinical applications in cystic fibrosis patients but mainly in the frequency domain and from rectus femoris.  相似文献   

9.
The purpose of this study was to examine the patterns for the mechanomyographic (MMG) and electromyographic (EMG) amplitude and mean power frequency (MPF) vs. torque relationships during submaximal to maximal isometric and isokinetic muscle actions. Seven men (mean +/- SD age, 22.4 +/- 1.3 years) volunteered to perform isometric and concentric isokinetic leg extension muscle actions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) and peak torque (PT) on a Cybex II dynamometer. A piezoelectric MMG recording sensor was placed between bipolar surface EMG electrodes on the vastus medialis. Polynomial regression and separate 1-way repeated-measures analysis of variance were used to analyze the EMG amplitude, MMG amplitude, EMG MPF, and MMG MPF data for the isometric and isokinetic muscle actions. For the isometric muscle actions, EMG amplitude (R(2) = 0.999) and MMG MPF (R(2) = 0.946) increased to MVC, mean MMG amplitude increased to 60% MVC and then plateaued, and mean EMG MPF did not change (p > 0.05) across torque levels. For the isokinetic muscle actions, EMG amplitude (R(2) = 0.988) and MMG amplitude (R(2) = 0.933) increased to PT, but there were no significant mean changes with torque for EMG MPF or MMG MPF. The different torque-related responses for EMG and MMG amplitude and MPF may reflect differences in the motor control strategies that modulate torque production for isometric vs. dynamic muscle actions. These results support the findings of others and suggest that isometric torque production was modulated by a combination of recruitment and firing rate, whereas dynamic torque production was modulated primarily through recruitment.  相似文献   

10.
Average muscle fibre conduction velocity (CV) measured with multichannel surface electrodes decreases with time during sustained isometric contraction. Based on this property, CV is considered a candidate for an objective index to localized muscular fatigue. CV, however, also depends on many other factors that include muscle temperature and voluntary contraction force. In this paper, the effect of contraction force on CV was studied by defining not only the target force level but also the whole force trajectory. The contraction was isometric and lasted 14 s. The target force was set at four levels from 30% to 90% of the maximal voluntary contraction (MVC). Three typical muscles were studied in seven healthy male subjects. In the vastus lateralis, CV increased with contraction force in many cases. In the biceps brachii, CV decreased rapidly with time before the contraction force reached the target levels of 70% or 90% MVC. At these force levels, CV was smaller than that at 50% MVC. CV in the biceps consequently showed no apparent dependence on the contraction force. The tibialis anterior showed intermediate change in CV between the vastus lateralis and the biceps brachii. These results indicate that CV basically increases with contraction force, but this relationship becomes unclear when CV decreases rapidly with time.  相似文献   

11.
PURPOSE: Aim of this work is to compare mechanical and myoelectric manifestations of fatigue during an isometric contraction at 80% of maximal voluntary contraction (MVC) in a population of eight anorexic female patients (AN: 24.9+/-6.5 years, mean+/-SD) with respect to a group of seven healthy female subjects (CO: 30.0+/-6.6 years, mean+/-SD). METHODS: sEMG signals were recorded, using a linear electrode array (eight channels, 10mm apart), from vastus lateralis muscle of the dominant side. MVC, endurance time, initial value and rate of change of the EMG variables [conduction velocity (CV), mean power frequency (MNF), average rectified value (ARV)] were studied during the fatiguing contractions. RESULTS: Absolute and relative (normalized with respect to the body weight) knee torque values and endurance times were found not statistically different between the two groups. Similarly, EMG amplitude initial values and rate of change and MNF initial values were found not significantly different between the two groups. CV initial values and CV rate of change were found greater in healthy than in pathological subjects (AN CV: 3.74+/-0.86m/s, CO CV: 4.96+/-0.64m/s, p=0.004; AN CV rate of change: 0.006+/-0.015m/s2, CO CV rate of change: -0.006+/-0.007m/s2, p=0.006, mean+/-SD). Contrary to expectations MNF rate of changes in the AN group (-0.35+/-0.16Hz/s) was found greater than in the CO group (-0.17+/-0.13Hz/s, p=0.004, Mann-Whitney U test, mean+/-SD). CONCLUSIONS: CV values and their rate of change were compatible with a predominance of type I fibres (and/or with an hypotrophy of type II fibres) and/or with a lower sub-cutaneous tissue thickness with respect to CO group, as described in the literature with this pathology. The behaviour of MNF during sustained contractions, opposite to that of CV, suggests an altered central control strategy aimed to increase mechanical force output increasing the level of synchronization of motor units. This study confirms the capability of sEMG to assess muscle condition during severe malnutrition suggesting further studies to assess if sEMG can be used to monitor the effect of re-feeding and rehabilitation treatments.  相似文献   

12.
The purpose of this study was to examine the effects of interelectrode distance (IED) on the absolute and normalized electromyographic (EMG) amplitude and mean power frequency (MPF) versus isokinetic and isometric torque relationships for the biceps brachii muscle. Ten adults [mean+/-SD age=22.0+/-3.4 years] performed submaximal to maximal, isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects performed randomly ordered, submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Surface EMG signals were recorded simultaneously from bipolar electrode arrangements placed over the biceps brachii muscle with IEDs of 20, 40, and 60mm. Absolute and normalized EMG amplitude (muVrms and %max) increased linearly with torque during the isokinetic and isometric muscle actions (r(2) range=0.988-0.998), but there were no significant changes for absolute or normalized EMG MPF (Hz or %max) from 10% to 100% PT and MVC. In some cases, there were significant (p<0.05) differences among the three IED arrangements for absolute EMG amplitude and MPF values, but not for the normalized values. These findings suggested that for the biceps brachii muscle, IEDs between 20 and 60mm resulted in similar patterns for the EMG amplitude or MPF versus dynamic and isometric torque relationships. Furthermore, unlike the absolute EMG amplitude and MPF values, the normalized EMG data were not influenced by changes in IED between 20 and 60mm. Thus, normalized EMG data can be compared among previous studies that have utilized different IED arrangements.  相似文献   

13.
The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC).

Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC>70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions.  相似文献   


14.
The purpose of this study was to determine the effect of gender on changes in electromyographic (EMG) signal characteristics of the quadriceps muscles with increasing force and with fatigue. A total of fourteen healthy adults (seven men, seven women) participated in the study. Subjects had to perform isometric ramp contractions in knee extension with the force gradually increasing from 0 to 100% of the maximal voluntary contraction (MVC) in a 6-s period. Subjects then performed a fatigue task, consisting of a sustained maximum isometric knee extension contraction held until force decreased below 50% of the pre-fatigue MVC. Subjects also performed a single ramp contraction immediately after the fatigue task. The Root Mean Square (RMS) amplitude, mean power frequency (MPF) and median frequency (MF) of EMG signals obtained from the vastus lateralis, vastus medialis and rectus femoris were calculated at nine different force levels from the ramp contractions (10, 20, 30, 40, 50, 60, 70, 80 and 90% MVC), as well as every 5 s during the fatigue task. The main results were a more pronounced increase in EMG RMS amplitude for the three muscles and in MPF for the VL muscle with force in men compared with women. No significant effect of gender was found with regards to fatigue. These observations most likely reflect a moderately greater type II fiber content and/or area in the VL muscle of men compared to that of women.  相似文献   

15.
目的:探讨肌肉疲劳过程中sEMG功率谱变化与H 的关系以及可能存在的其它影响因素.方法:利用肌肉进行疲劳收缩结束后,短时间内肌肉pH值尚无明显改变的特性,观察恢复期30 s内s EMG功率谱的变化规律.八名男性受试者,以肱二头肌为目标肌肉,负荷强度为60%MVC,静态持续负荷至疲劳点后,在恢复期以同样负荷分别观察2 s、4 s、6 s、8 s、10 s、20 s、30 s时的sEMG信号特征.结果:肱二头肌在以60%MVC静态疲劳负荷过程中MPF呈线性下降.在疲劳负荷后的恢复期,MPF恢复极其迅速,运动结束后仅2 s,MPF已恢复到整个下降范围的26.5%;至30 s,MPF已恢复到整个下降范围的87.7%.结论:由[H ]增加引起的肌纤维动作电位传导速度下降不是决定sEMG功率谱左移的唯一因素,提示sEMG功率谱左移可能与神经源性的中枢机制的作用有关.  相似文献   

16.
The purpose of this study was to evaluate muscle fatigue using electromyogram (EMG) and acoustic myogram (AMG) signals of the shoulder and arm muscles during sustained holding tasks, with the elbow at different angles and at different levels of maximum voluntary contraction (MVC). The EMG and AMG of four muscles, including the upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR), were recorded during experiments using 10 healthy young males. The experiments were conducted under 9 pairs of conditions: 3 elbow angles (120 degrees, 90 degrees, and 60 degrees) and *3 levels of %MVC (20%, 40%, and 60%). Subjects were instructed to hold a weight equal to the designated %MVC at designated joint angles and asked to maintain that condition for as long as possible until exhaustion. Joint angles were also recorded by the electrogoniometers. The analysis of variance revealed that there was no significant effect of elbow angle on the mean MVC or on the endurance time. Elbow angle showed a significant effect on mean power frequency (MPF) of EMG in DL, BB, and BR, and a significant effect on root mean square (RMS) of EMG in four muscles. In BB and BR, MPF of EMG at 120 degrees was found to be significantly lower than 90 degrees and 60 degrees, respectively. There was a significant main effect of elbow angle on MPF of AMG for TP at 20% MVC; for DL at 20% and 40% MVC; for BB at 40% and 60% MVC; and for BR at the three levels of %MVC. The results showed that the range MPF of AMG for DL, BB, and BR was between 32 to 46 Hz, whereas that for TP was from 49 to 83 Hz. There was a significant effect of elbow angle on RMS of AMG in all four muscles in all experiments. At 20% MVC, a progressive increase in RMS of AMG was observed with time. In contrast, at 40% and 60% MVC, RMS showed very different behavior; specifically, it was found that RMS of AMG at 20% MVC significantly increased with increase of elbow angle. We conclude that RMS of AMG has a good and clear correlation with elbow angle at a low level of contraction.  相似文献   

17.
To investigate the behavior of mechanomyogram (MMG) and electromyogram (EMG) signals in the time and frequency domains during sustained isometric contraction, MMG and surface EMG were obtained simultaneously from four muscles: upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR) of 10 healthy male subjects. Experimental conditions consisted of 27 combinations of 9 postures [3 shoulder angles (SA): 0 degree, 30 degrees, 60 degrees and 3 elbow angles (EA): 120 degrees, 90 degrees, 60 degrees] and 3 contraction levels: 20%, 40%, and 60% of maximum voluntary contraction (MVC). Subjective evaluations of fatigue were also assessed using the Borg scale at intervals of 60, 30, and 10 sec at 20%, 40%, and 60% MVC tests, respectively. The mean power frequency (MPF) and root mean square (RMS) of both signals were calculated. The current study found clear and significant relationships among physiological and psychological parameters on the one hand and SA and EA on the other. EA's effect on MVC was found to be significant. SA had a highly significant effect on both endurance time and Borg scale. In all experimental conditions, significant correlations were found between the changes in MPF and RMS of EMG in BB with SA and EA (or muscle length). In all four muscles, MMG frequency content was two or three times lower than EMG frequency content. During sustained isometric contraction, the EMG signal showed the well-known shift to lower frequencies (a continuous decrease from onset to completion of the contraction). In contrast, the MMG spectra did not show any shift, although its form changed (generally remaining about constant). Throughout the contraction, increased RMS of EMG was found for all tests, whereas in the MMG signal, a significant progressive increase in RMS was observed only at 20% MVC in all four muscles. This supports the hypothesis that the RMS amplitude of the MMG signal produced during contraction is highly correlated with force production. Possible explanations for this behavioral difference between the MMG and EMG signals are discussed.  相似文献   

18.
This paper presents a novel method to quantify spatial changes in muscle activation pattern by multi-channel surface electromyography (MCSEMG) in order to investigate motor unit recruitment variation. The method is based on non-uniform distributions of motor units that cause spatial inhomogeneous muscle activation. To evaluate the method, 15 subjects performed three isometric elbow flexion contractions consisting of slow sinusoidal changes in force ranging from 0% to 80% of the maximal voluntary contraction. MCSEMG electrodes were placed in a 10 x 13 grid over the biceps brachii muscle. From all channels, root mean square (RMS) values of bipolar leadings were computed over 0.5 s epochs over the whole recording. Thereafter, correlation coefficients were calculated between the RMS values at one epoch, with the RMS values at another epoch. Results showed consistent spatial changes in the distribution of RMS at different contraction levels up to 80% of maximal voluntary contraction and when comparing increasing and decreasing contractions at the same force level. These findings are reproducible within and between subjects, and in agreement with physiological phenomena and therefore indicate that the spatial inhomogeneities of motor unit properties in the biceps brachii muscle can be used to study changes in motor unit recruitment.  相似文献   

19.
The objective of this study was to determine the frequency profile, median frequency (MF) and mean power frequency (MPF) of trunk muscles in an isometric graded maximal voluntary contraction (MVC) in isometric axial trunk rotation from a neutral upright seated posture. Twelve young healthy subjects (seven males, five females) were instrumented with surface electrodes on their external obliques, internal obliques, rectus abdominis, pectoralis, latissimus dorsi and erector spinae at T10 and L3 levels bilaterally. These subjects were stabilized in seated posture in an axial rotation tester (AROT) and asked to perform a graded isometric contraction of their maximal value to both right and left directions from a neutral posture within a period of 10s. EMG from all 14 channels were sampled at 1 kHz at 10% intervals of MVC from 10% to MVC. These samples were subjected to fast Fourier transform analysis. The frequency profile plots demonstrated the power of muscles involved in agonistic and antagonistic activity. However, the frequency composition showed little difference between them. The MF was higher in agonists of the same muscle. The MPF was always higher than MF. Both values were generally insignificantly different between different levels of contraction. However, with increasing level of contraction there was increase in power.  相似文献   

20.
Peripheral fatigue and muscle cooling induce similar effects on sarcolemmal propagation properties. The aim of the study was to assess the combined effects of muscle temperature (Tm) manipulation and fatigue on skeletal muscle electrical and mechanical characteristics during isometric contraction. After maximum voluntary contraction (MVC) assessment, 16 participants performed brief and sustained isometric tasks of different intensities in low (Tm(L)), high (Tm(H)) and neutral (Tm(N)) temperature conditions, before and after a fatiguing exercise (6s on/4s off at 50% MVC, to the point of fatigue). During contraction, the surface electromyogram (EMG) and force were recorded from the biceps brachii muscle. The root mean square (RMS) and conduction velocity (CV) were calculated off-line. After the fatiguing exercise: (i) MVC decreased similarly in all Tm conditions (P<0.05), while EMG RMS did not change; and (ii) CV decreased to a further extent in Tm(L) compared to Tm(N) and Tm(H) in all brief and sustained contractions (P<0.05). The larger CV drop in Tm(L) after fatigue suggests that Tm(L) and fatigue have a combined and additional effect on sarcolemmal propagation properties. Despite these changes, force generating capacity was not affected by Tm manipulation. A compensatory mechanism has been proposed to explain this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号