首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Type B leukemogenic virus (TBLV), a mouse mammary tumor virus (MMTV) variant, often induces T-cell leukemias and lymphomas by c-myc activation following viral DNA integration. Transfection assays using a c-myc reporter plasmid indicated that the TBLV long terminal repeat (LTR) enhancer is necessary for T-cell-specific increases in basal reporter activity. The sequence requirements for this effect were studied using mutations of the 62-bp enhancer region in an MMTV LTR reporter vector. Deletion of a nuclear factor A-binding site dramatically reduced reporter activity in Jurkat T cells. However, a 41-bp enhancer missing the RUNX1 site still retained minimal enhancer function. DNA affinity purification using a TBLV enhancer oligomer containing the RUNX1 binding site followed by mass spectrometry resulted in the identification of ALY. Subsequent experiments focused on the reconstitution of enhancer activity in epithelial cells. ALY overexpression synergized with RUNX1B on TBLV enhancer activity, and synergism required the RUNX1B-binding site. A predicted c-Myb binding site in the enhancer was confirmed after c-myb overexpression elevated TBLV LTR reporter activity, and overexpression of c-Myb and RUNX1B together showed additive effects on reporter gene levels. ALY also synergized with c-Myb, and coimmunoprecipitation experiments demonstrated an interaction between ALY and c-Myb. These experiments suggest a central role for ALY in T-cell enhancer function and oncogene activation.  相似文献   

2.
3.
4.
5.
We have assayed the ability of segments of the simian virus 40 (SV40) 72-base-pair (bp) repeat enhancer region to activate gene expression under the control of the SV40 early promoter and to compete for trans-acting enhancer-binding factors of limited availability in vivo in monkey CV-1 or human HeLa cells. The bacterial chloramphenicol acetyltransferase and the herpes simplex virus type 1 thymidine kinase genes were used as reporters in these assays. A 94-bp sequence located between SV40 nucleotides 179 and 272, including one copy of the 72-bp repeat, has been termed the minimal enhancer in previous studies. In the present study, we found that the 20-bp origin-proximal region located between nucleotides 179 and 198 was dispensable, since its removal caused only a slight reduction in enhancer activity. However, the deletion of another 4 bp up to nucleotide 202 abolished the enhancer activity. We propose that the minimal enhancer is a 74-bp sequence located between nucleotides 199 and 272, including 52 bp of one copy of the 72-bp repeat and a 22-bp adjacent sequence up to the PvuII site at 272. The nonamer 5'-AAGT/CATGCA-3', which we term the K core, occurred as a tandem duplication around the SphI site at nucleotide 200, and we found that this duplication was essential for enhancement and factor-binding activities. A heterologous core element (which we term the C core), 5'-GTGGA/TA/TA/TG-3', identified earlier (G. Khoury and P. Gruss, Cell 33:313-314, 1983; Weiher et al., Science 219:626-631, 1983) also occurred in duplicate, with one of the copies located within the 22-bp sequence near nucleotide 272 present outside the 72-bp repeat. We provide direct evidence that this 22-bp sequence augments enhancer activity considerably. We also found that in addition to the heterologous interaction occurring normally between the K and C cores within the minimal enhancer, certain homologous interactions were also permitted provided there was proper spacing between the elements.  相似文献   

6.
It has been suggested that hepatitis B virus (HBV) binds to a receptor on the plasma membrane of human hepatocytes via the pre-S1 domain of the large envelope protein as an initial step in HBV infection. However, the nature of the receptor remains controversial. In an attempt to identify a cell surface receptor for HBV, purified recombinant fusion protein of the pre-S1 domain of HBV with glutathione S-transferase (GST), expressed in Escherichia coli, was used as a ligand. The surface of human hepatocytes or HepG2 cells was biotinylated, and the cell lysate (precleared lysate) which did not bind to GST and glutathione-Sepharose beads was used as a source of receptor molecules. The precleared lysate of the biotinylated cells was incubated with the GST-pre-S1 fusion protein, and the bound proteins were visualized by Western blotting and enhanced chemiluminescence. An approximately 80-kDa protein (p80) was shown to bind specifically to the pre-S1 domain of the fusion protein. The receptor binding assay using serially or internally deleted segments of pre-S1 showed that amino acid residues 12 to 20 and 82 to 90 are essential for the binding of pre-S1 to p80. p80 also bound specifically to the pre-S1 of native HBV particles. Analysis of the tissue and species specificity of p80 expression in several available human primary cultures and cell lines of different tissue origin showed that p80 expression is not restricted to human hepatocytes. Taken together the results suggest that p80 may be a component of the viral entry machinery.  相似文献   

7.
A cell surface protein that binds avian hepatitis B virus particles.   总被引:6,自引:10,他引:6       下载免费PDF全文
K Kuroki  R Cheung  P L Marion    D Ganem 《Journal of virology》1994,68(4):2091-2096
We have identified a 180-kDa cellular glycoprotein (gp180) that binds with high affinity to duck hepatitis B virus (DHBV) particles. The protein was detected by coprecipitating labeled duck hepatocyte proteins with virions or recombinant DHBV envelope proteins, using nonneutralizing monoclonal antibodies to the virion envelope. Binding of gp180 requires only the pre-S region of the viral large envelope protein, since recombinant fusion proteins bearing only this region efficiently coprecipitate gp180. The DHBV-gp180 interaction is blocked by two independent neutralizing monoclonal antibodies. The protein is found on both internal and surface membranes of the cell, and the species distribution of gp180 binding activity mirrors the known host range of DHBV infection. Functional gp180 is expressed in a wide variety of tissues in susceptible ducks.  相似文献   

8.
It has been previously shown that herpes simplex virus type 1 (HSV-1) infection of HeLa cells results in augmentation of gene expression directed by the human immunodeficiency virus (HIV) long terminal repeat (LTR). This effect is presumably mediated by protein interactions with the LTR. We have used two different assays of DNA-protein interactions to study the HSV-induced activation of the HIV LTR. Activation of the HIV LTR is associated with increased protein binding to LTR sequences in a region including the NF-kappa B/core enhancer and the Sp1 binding sequences as monitored by an exonuclease protection assay. Gel retardation assays demonstrated that HSV-1 infection resulted in the induction of a nuclear factor(s) that binds to the NF-kappa B/core enhancer sequence. In addition to the activation of the HIV LTR, HSV induction of NF-kappa B activity may be important for the regulation of HSV gene expression during a herpesvirus infection.  相似文献   

9.
We have previously identified a protein factor, PEBP2 (polyomavirus enhancer-binding protein), in the nuclear extract from mouse NIH 3T3 cells which binds to the sequence motif, PEA2, located within the polyomavirus enhancer A element. Upon cellular transformation with activated oncogene c-Ha-ras, this factor frequently undergoes drastic molecular modifications into an altered form having a considerably reduced molecular size. In this study, the altered form, PEBP3, was purified to near homogeneity. The purified PEBP3 comprised two sets of families of polypeptides, alpha-1 to alpha-4 and beta-1 to beta-2, which were 30 to 35 kilodaltons and 20 to 25 kilodaltons in size, respectively. Both kinds of polypeptides possessed DNA-binding activities with exactly the same sequence specificity. Individual alpha or beta polypeptides complexed with DNA showed faster gel mobilities than did PEBP3. However, the original gel retardation pattern was restored when alpha and beta polypeptides were mixed together in any arbitrary pair. These observation along with the results of UV- and chemical-cross-linking studies led us to conclude that PEBP3 is a heterodimer of alpha and beta subunits, potentially having a divalent DNA-binding activity. Furthermore, PEBP3 was found to bind a second, hitherto-unnoticed site of the polyomavirus enhancer that is located within the B element and coincides with the sequence previously known as the simian virus 40 enhancer core homology. From comparison of this and the original binding sites, the consensus sequence for PEBP3 was defined to be PuACCPuCA. These findings provided new insights into the biological significance of PEBP3 and PEBP2.  相似文献   

10.
An avian influenza H5N1 virus that binds to a human-type receptor   总被引:6,自引:2,他引:6       下载免费PDF全文
Avian influenza viruses preferentially recognize sialosugar chains terminating in sialic acid-alpha2,3-galactose (SAalpha2,3Gal), whereas human influenza viruses preferentially recognize SAalpha2,6Gal. A conversion to SAalpha2,6Gal specificity is believed to be one of the changes required for the introduction of new hemagglutinin (HA) subtypes to the human population, which can lead to pandemics. Avian influenza H5N1 virus is a major threat for the emergence of a pandemic virus. As of 12 June 2007, the virus has been reported in 45 countries, and 312 human cases with 190 deaths have been confirmed. We describe here substitutions at position 129 and 134 identified in a virus isolated from a fatal human case that could change the receptor-binding preference of HA of H5N1 virus from SAalpha2,3Gal to both SAalpha2,3Gal and SAalpha2,6Gal. Molecular modeling demonstrated that the mutation may stabilize SAalpha2,6Gal in its optimal cis conformation in the binding pocket. The mutation was found in approximately half of the viral sequences directly amplified from a respiratory specimen of the patient. Our data confirm the presence of H5N1 virus with the ability to bind to a human-type receptor in this patient and suggest the selection and expansion of the mutant with human-type receptor specificity in the human host environment.  相似文献   

11.
The hepatitis B virus enhancer can be dissected into multiple functional elements, one of which is the E element. We show here that the E element binds multiple nuclear proteins that are essential for its enhancer activity. These findings, together with the ability of this element to respond to at least two different viral transactivators, suggest that the E element is an enhancer modulator capable of binding different factors and responding to multiple stimuli.  相似文献   

12.
13.
All hepadnaviruses known so far have a very limited host range, restricted to their natural hosts and a few closely related species. This is thought to be due mainly to sequence divergence in the large envelope protein and species-specific differences in host components essential for virus propagation. Here we report an infection of cranes with a novel hepadnavirus, designated CHBV, that has an unexpectedly broad host range and is only distantly evolutionarily related to avihepadnaviruses of related hosts. Direct DNA sequencing of amplified CHBV DNA as well a sequencing of cloned viral genomes revealed that CHBV is most closely related to, although distinct from, Ross' goose hepatitis B virus (RGHBV) and slightly less closely related to duck hepatitis B virus (DHBV). Phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from RGHBV and DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This is the first report of a rather broad host range of an avihepadnavirus. Our data imply either usage of similar or identical entry pathways and receptors by DHBV and CHBV, unusual host and virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation.  相似文献   

14.
Elf-1 binds to a critical element in a second CD4 enhancer.   总被引:11,自引:6,他引:11       下载免费PDF全文
  相似文献   

15.
16.
We previously identified a protein (p67) in the yeast, Saccharomyces cerevisiae, that specifically recognizes nuclear localization sequences. We report here the partial purification of p67, and the isolation, sequencing, and disruption of the gene (NSR1) encoding this protein. p67 was purified using an affinity column conjugated with a peptide containing the histone H2B nuclear localization sequence from yeast. Using antibodies against p67 we have cloned the gene for this protein. The protein encoded by the NSR1 gene recognizes the wild-type H2B nuclear localization sequence, but does not recognize a mutant H2B sequence that is incompetent for nuclear localization in vivo. Interestingly, the NSR1 protein has two RNA recognition motifs, as well as an acidic NH2 terminus containing a series of serine clusters, and a basic COOH terminus containing arg-gly repeats. We have confirmed the nuclear localization of p67 by immunofluorescence and found that a restricted portion of the nucleus is highlighted. We have also shown that NSR1 (p67) is required for normal cell growth.  相似文献   

17.
S Perri  D Ganem 《Journal of virology》1996,70(10):6803-6809
The terminal regions of hepatitis B virus (HBV) pregenomic RNA (pgRNA) harbors sites governing many essential functions in the viral life cycle, including polyadenylation, translation, RNA encapsidation, and DNA synthesis. We have examined the binding of host proteins to a 170-nucleotide region from the 5' end of HBV pgRNA; a large portion of this region is duplicated at the 3' end of this terminally redundant RNA. By UV cross-linking labeled RNA to HepG2 cell extracts, we have identified a 65-kDa factor (p65) of nuclear origin which can specifically bind to this region. Two discrete binding sites were identified within this region; in vitro cross-competition experiments suggest that the same factor binds to both elements. One binding site (termed UBS) overlaps a portion of the highly conserved stem-loop structure (epsilon), while the other site (termed DBS) maps 35 nucleotides downstream of the hexanucleotide polyadenylation sequence. Both binding sites are highly pyrimidine rich and map to regions previously found to be important in the regulation of viral polyadenylation. However, functional analysis of mutant binding sites in vivo indicates that p65 is not involved in the polyadenylation of HBV pgRNA. Potential roles for the factor in viral replication in vivo are discussed.  相似文献   

18.
Type B leukemogenic virus (TBLV) is a variant of mouse mammary tumor virus (MMTV) that causes T-cell lymphomas in mice. We have constructed a TBLV-MMTV hybrid, pHYB-TBLV, in which 756 bp of the C3H MMTV long terminal repeat (LTR) was replaced with 438 bp of the TBLV LTR. Intraperitoneal injection of pHYB-TBLV transfectants consistently resulted in T-cell lymphomas in 50% of injected weanling BALB/c mice with an average latency period of 5.7 (+/- 1.5) months. Transfectants of pHYB-TBLV containing a double-frameshift mutation in the truncated superantigen gene (sag) induced T-cell lymphomas with similar incidences, latency periods, and phenotypes, suggesting that cis-acting elements in the TBLV LTR determine disease specificity.  相似文献   

19.
Herpes simplex virus type 1 utilizes cell surface heparan sulfate as receptors to infect target cells. The unique heparan sulfate saccharide sequence offers the binding site for viral envelope proteins and plays critical roles in assisting viral infections. A specific 3-O-sulfated heparan sulfate is known to facilitate the entry of herpes simplex virus 1 into cells. The 3-O-sulfated heparan sulfate is generated by the heparan sulfate d-glucosaminyl-3-O-sulfotransferase isoform 3 (3-OST-3), and it provides binding sites for viral glycoprotein D (gD). Here, we report the purification and structural characterization of an oligosaccharide that binds to gD. The isolated gD-binding site is an octasaccharide, and has a binding affinity to gD around 18 microm, as determined by affinity coelectrophoresis. The octasaccharide was prepared and purified from a heparan sulfate oligosaccharide library that was modified by purified 3-OST-3 enzyme. The molecular mass of the isolated octasaccharide was determined using both nanoelectrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. The results from the sequence analysis suggest that the structure of the octasaccharide is a heptasulfated octasaccharide. The proposed structure of the octasaccharide is DeltaUA-GlcNS-IdoUA2S-GlcNAc-UA2S-GlcNS-IdoUA2S-GlcNH(2)3S6S. Given that the binding of 3-O-sulfated heparan sulfate to gD can mediate viral entry, our results provide structural information about heparan sulfate-assisted viral entry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号