首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phagophore nucleates from a subdomain of the endoplasmic reticulum (ER) termed the omegasome and also makes contact with other organelles such as mitochondria, Golgi complex, plasma membrane and recycling endosomes during its formation. We have used serial block face scanning electron microscopy (SB-EM) and electron tomography (ET) to image phagophore biogenesis in 3 dimensions and to determine the relationship between the phagophore and surrounding organelles at high resolution. ET was performed to confirm whether membrane contact sites (MCSs) are evident between the phagophore and those surrounding organelles. In addition to the known contacts with the ER, we identified MCSs between the phagophore and membranes from putative ER exit sites, late endosomes or lysosomes, the Golgi complex and mitochondria. We also show that one phagophore can have simultaneous MCSs with more than one organelle. Future membrane flux experiments are needed to determine whether membrane contacts also signify lipid translocation.  相似文献   

2.
Membranes of mammalian subcellular organelles contain defined amounts of specific phospholipids that are required for normal functioning of proteins in the membrane. Despite the wide distribution of most phospholipid classes throughout organelle membranes, the site of synthesis of each phospholipid class is usually restricted to one organelle, commonly the endoplasmic reticulum (ER). Thus, phospholipids must be transported from their sites of synthesis to the membranes of other organelles. In this article, pathways and subcellular sites of phospholipid synthesis in mammalian cells are summarized. A single, unifying mechanism does not explain the inter‐organelle transport of all phospholipids. Thus, mechanisms of phospholipid transport between organelles of mammalian cells via spontaneous membrane diffusion, via cytosolic phospholipid transfer proteins, via vesicles and via membrane contact sites are discussed. As an example of the latter mechanism, phosphatidylserine (PS) is synthesized on a region of the ER (mitochondria‐associated membranes, MAM) and decarboxylated to phosphatidylethanolamine in mitochondria. Some evidence is presented suggesting that PS import into mitochondria occurs via membrane contact sites between MAM and mitochondria. Recent studies suggest that protein complexes can form tethers that link two types of organelles thereby promoting lipid transfer. However, many questions remain about mechanisms of inter‐organelle phospholipid transport in mammalian cells.  相似文献   

3.
Several recent works show structurally and functionally dynamic contacts between mitochondria, the plasma membrane, the endoplasmic reticulum, and other subcellular organelles. Many cellular processes require proper cooperation between the plasma membrane, the nucleus and subcellular vesicular/tubular networks such as mitochondria and the endoplasmic reticulum. It has been suggested that such contacts are crucial for the synthesis and intracellular transport of phospholipids as well as for intracellular Ca2+ homeostasis, controlling fundamental processes like motility and contraction, secretion, cell growth, proliferation and apoptosis. Close contacts between smooth sub-domains of the endoplasmic reticulum and mitochondria have been shown to be required also for maintaining mitochondrial structure. The overall distance between the associating organelle membranes as quantified by electron microscopy is small enough to allow contact formation by proteins present on their surfaces, allowing and regulating their interactions. In this review we give a historical overview of studies on organelle interactions, and summarize the present knowledge and hypotheses concerning their regulation and (patho)physiological consequences.  相似文献   

4.

Background  

In eukaryotic cells, the membrane compartments that constitute the exocytic pathway are traversed by a constant flow of lipids and proteins. This is particularly true for the endoplasmic reticulum (ER), the main "gateway of the secretory pathway", where biosynthesis of sterols, lipids, membrane-bound and soluble proteins, and glycoproteins occurs. Maintenance of the resident proteins in this compartment implies they have to be distinguished from the secretory cargo. To this end, they must possess specific ER localization determinants to prevent their exit from the ER, and/or to interact with receptors responsible for their retrieval from the Golgi apparatus. Very few information is available about the signal(s) involved in the retention of membrane type II protein in the ER but it is generally accepted that sorting of ER type II cargo membrane proteins depends on motifs mainly located in their cytosolic tails.  相似文献   

5.
Two multisubunit protein complexes for membrane protein insertion were recently identified in the endoplasmic reticulum (ER): the guided entry of tail anchor proteins (GET) complex and ER membrane complex (EMC). The structures of both of their hydrophobic core subunits, which are required for the insertion reaction, revealed an overall similarity to the YidC/Oxa1/Alb3 family members found in bacteria, mitochondria, and chloroplasts. This suggests that these membrane insertion machineries all share a common ancestry. To test whether these ER proteins can functionally replace Oxa1 in yeast mitochondria, we generated strains that express mitochondria-targeted Get2–Get1 and Emc6–Emc3 fusion proteins in Oxa1 deletion mutants. Interestingly, the Emc6–Emc3 fusion was able to complement an Δoxa1 mutant and restored its respiratory competence. The Emc6–Emc3 fusion promoted the insertion of the mitochondrially encoded protein Cox2, as well as of nuclear encoded inner membrane proteins, although was not able to facilitate the assembly of the Atp9 ring. Our observations indicate that protein insertion into the ER is functionally conserved to the insertion mechanism in bacteria and mitochondria and adheres to similar topological principles.

Redirecting the core subunits of the protein membrane insertion complex EMC into mitochondria rescues cells deficient for the mitochondrial Oxa1 system; this supports the hypothesis that the machinery for protein insertion into the ER membrane is functionally analogous to the YidC/Oxa1/Alb3 family of bacteria, mitochondria and chloroplasts.  相似文献   

6.

Background  

Alamethicin is a membrane-active peptide isolated from the beneficial root-colonising fungus Trichoderma viride. This peptide can insert into membranes to form voltage-dependent pores. We have previously shown that alamethicin efficiently permeabilises the plasma membrane, mitochondria and plastids of cultured plant cells. In the present investigation, tobacco cells (Nicotiana tabacum L. cv Bright Yellow-2) were pre-treated with elicitors of defence responses to study whether this would affect permeabilisation.  相似文献   

7.
We have dissected the molecular determinants involved in targeting the protein serine kinase PSKH1 to the endoplasmic reticulum (ER), the Golgi apparatus, and the plasma membrane (PM). Given this intracellular localization pattern, a potential role of PSKH1 in the secretory pathway was explored. The amino-terminal of PSKH1 revealed a striking similarity to the often acylated Src homology domain 4 (SH4)-harboring nonreceptor tyrosine kinases. Biochemical studies demonstrated that PSKH1 is myristoylated on glycine 2 and palmitoylated on cysteine 3. Dual amino-terminal acylation targets PSKH1 to Golgi as shown by colocalization with beta-COP and GM130, while nonpalmitoylated (myristoylated only) PSKH1 targets intracellular membranes colocalizing with protein disulphide isomerase (PDI, a marker for ER). Immunoelectron microscopy revealed that the dually acylated amino-terminal domain (in fusion with EGFP) was targeted to Golgi membranes as well as to the plasma membrane (PM), suggesting that the amino-terminal domain provides PSKH1 with membrane specificity dependent on its fatty acylation status. Subcellular fractionation by sucrose gradient analysis confirmed the impact of dual fatty acylation on endomembrane targeting, while cytosol and membrane fractioning revealed that myristoylation but not palmitoylation was required for general membrane association. A minimal region required for proper Golgi targeting of PSKH1 was identified within the first 29 amino acids. Expression of a PSKH1 mutant where the COOH-terminal kinase domain was swapped with green fluorescent protein and cysteine 3 was exchanged with serine resulted in disassembly of the Golgi apparatus as visualized by redistribution of beta-COP and GM130 to a diffuse cytoplasmic pattern, while leaving the tubulin skeleton intact. Our results suggest a structural and regulatory role of PSKH1 in maintenance of the Golgi apparatus, a key organelle within the secretory pathway.  相似文献   

8.
本研究利用透射电子显微镜观察热胁迫下羽叶薰衣草腺毛超微结构变化,结果表明:40℃热胁48h后,腺毛细胞中参与合成与分泌的主要细胞器受到严重破坏。质体变形,缺少基质和嗜锇物质;线粒体缺少嵴,液泡化严重;小泡不正常地融合在一起,并靠细胞壁分布;内质网呈链条状,片层似球形,核糖体显著地附在内质网片层上;细胞核出现大量的纤维状颗粒物质;分泌时期的质膜和细胞器膜等扭曲变形。说明热胁迫影响腺毛的发育与精油的分泌,从而进一步影响精油的产量和质量。  相似文献   

9.

Background

Brain lipid peroxidation has long been considered a potential therapeutic target for Alzheimer's disease (AD). β-sitosterol (BS), a plant sterol that is prevalent in plant plasma membrane, has been suggested to have antioxidant activity. Previous studies have demonstrated that dietary BS can enter the brain and accumulates in the plasma membrane of brain cells. However, it is unknown whether and how BS exerts its antioxidant activity in plasma membrane.

Methods

To incorporate BS into the plasma membrane in vitro, HT22 cells and primarily cultured hippocampal cells were supplemented with BS using 2-hydroxypropyl-β-cyclodextrin (HPβCD) as a carrier. The present study then tested the antioxidant effect of membrane BS against glucose oxidase (GOX)-induced oxidative stress and lipid peroxidation, and whether the antioxidant effect of membrane BS was associated with estrogen receptor (ER)-mediated phosphatidyl inositol 3-kinase (PI3K)/glycogen synthase kinase 3 (GSK3β) signaling.

Results

Incorporation of BS into cell membrane prevented GOX-induced oxidative stress and lipid peroxidation, which could be suppressed by the ER antagonists and PI3K inhibitor. Additional experiments showed that incorporation of BS into cell membrane induced an up-regulation of PI3K activity and a recruitment of PI3K to lipid rafts, which could be inhibited by the ER antagonist. Membrane BS also increased the expression of p-GSK3β, which could be suppressed in the presence of the ER antagonist and PI3K inhibitor.

General significance

Given that BS is prevalent in foods such as plant oil, the results provide a better understanding of the beneficial effects of these BS-enriched nutrients on neurodegenerative diseases such as AD.  相似文献   

10.
The endoplasmic reticulum (ER) is a large, continuous membrane-bound organelle comprised of functionally and structurally distinct domains including the nuclear envelope, peripheral tubular ER, peripheral cisternae, and numerous membrane contact sites at the plasma membrane, mitochondria, Golgi, endosomes, and peroxisomes. These domains are required for multiple cellular processes, including synthesis of proteins and lipids, calcium level regulation, and exchange of macromolecules with various organelles at ER-membrane contact sites. The ER maintains its unique overall structure regardless of dynamics or transfer at ER-organelle contacts. In this review, we describe the numerous factors that contribute to the structure of the ER.The endoplasmic reticulum (ER) is a dynamic organelle responsible for many cellular functions, including the synthesis of proteins and lipids, and regulation of intracellular calcium levels. This review focuses on the distinct and complex morphology of the ER. The structure of the ER is complex because of the numerous distinct domains that exist within one continuous membrane bilayer. These domains are shaped by interactions with the cytoskeleton, by proteins that stabilize membrane shape, and by a homotypic fusion machinery that allows the ER membrane to maintain its continuity and identity. The ER also contains domains that contact the plasma membrane (PM) and other organelles including the Golgi, endosomes, mitochondria, lipid droplets, and peroxisomes. ER contact sites with other organelles and the PM are both abundant and dispersed throughout the cytoplasm, suggesting that they too could influence the overall architecture of the ER. As we will discuss here, ER shape and distribution are regulated by many intrinsic and extrinsic forces.  相似文献   

11.

Background  

Peroxisomes are ubiquitous eukaryotic organelles involved in various oxidative reactions. Their enzymatic content varies between species, but the presence of common protein import and organelle biogenesis systems support a single evolutionary origin. The precise scenario for this origin remains however to be established. The ability of peroxisomes to divide and import proteins post-translationally, just like mitochondria and chloroplasts, supports an endosymbiotic origin. However, this view has been challenged by recent discoveries that mutant, peroxisome-less cells restore peroxisomes upon introduction of the wild-type gene, and that peroxisomes are formed from the Endoplasmic Reticulum. The lack of a peroxisomal genome precludes the use of classical analyses, as those performed with mitochondria or chloroplasts, to settle the debate. We therefore conducted large-scale phylogenetic analyses of the yeast and rat peroxisomal proteomes.  相似文献   

12.
Plasmodium falciparum, similar to many other apicomplexan parasites, contains an apicoplast, a plastid organelle of secondary endosymbiotic origin. Nuclear‐encoded proteins are targeted to the apicoplast by a bipartite topogenic signal consisting of (i) an endoplasmic reticulum (ER)‐type N‐terminal secretory signal peptide, followed by (ii) a plant‐like transit peptide. Although the signals responsible for transport of most proteins to the apicoplast are well described, the route of trafficking from the ER to the outermost apicoplast membrane is still a matter of debate. Current models of trafficking to the apicoplast suggest that proteins destined for this organelle are, on entry into the lumen of the ER, diverted from the default secretory pathway to a specialized vesicular system which carries proteins directly from the ER to the outer apicoplast membrane. Here, we have re‐examined this trafficking pathway. By titrating wild‐type and mutant apicoplast transit peptides against different ER retrieval sequences and studying protein transport in a brefeldin A‐resistant parasite line, we generated data which suggest a direct involvement of the Golgi in traffic of soluble proteins to the P. falciparum apicoplast.  相似文献   

13.
The intraerythrocytic location of the malaria parasite necessitates modification of the host cell. These alterations are mediated either directly or indirectly by parasite proteins exported to specific compartments within the host cell. However, little is known about how the parasite specifically targets proteins to locations beyond its plasma membrane. Mark Wiser, Norbert Lanners and Richard Bafford here propose an alternative secretory pathway for the export of parasite proteins into the host erythrocyte. The first step of this pathway is probably an endoplasmic reticulum (ER)-like organelle that is distinct from the normal ER. Possible mechanisms of protein trafficking in the infected erythrocyte are also discussed. The proposed ER-like organelle and alternative secretory pathway raise many questions about the cell biology of protein export and trafficking in Plasmodium.  相似文献   

14.
《The Journal of cell biology》1993,123(6):1403-1419
Digital, video-enhanced fluorescence microscopy and spectrofluorometry were used to follow the internalization into the yeast Saccharomyces cerevisiae of phosphatidylcholine molecules labeled on one acyl chain with the fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD). Two pathways were found: (1) transport by endocytosis to the vacuole and (2) transport by a non-endocytic pathway to the nuclear envelope and mitochondria. The endocytic pathway was inhibited at low temperature (< 2 degrees C) and by ATP depletion. Mutations in secretory (SEC) genes that are necessary for membrane traffic through the secretory pathway (including SEC1, SEC2, SEC4, SEC6, SEC7, SEC12, SEC14, SEC17, SEC18, and SEC21) almost completely blocked endocytic uptake. In contrast, mutations in the SEC63, SEC65, or SEC11 genes, required for translocation of nascent secretory polypeptides into the ER or signal peptide processing in the ER, only slightly reduced endocytic uptake. Phospholipid endocytosis was also independent of the gene encoding the clathrin heavy chain, CHC1. The correlation of biochemical analysis with fluorescence microscopy indicated that the fluorescent phosphatidylcholine was degraded in the vacuole and that degradation was, at least in part, dependent on the vacuolar proteolytic cascade. The non-endocytic route functioned with a lower cellular energy charge (ATP levels 80% reduced) and was largely independent of the SEC genes. Non-endocytic transport of NBD-phosphatidylcholine to the nuclear envelope and mitochondria was inhibited by pretreatment of cells with the sulfhydryl reagents N-ethylmaleimide and p- chloromercuribenzenesulfonic acid, suggesting the existence of protein- mediated transmembrane transfer (flip-flop) of phosphatidylcholine across the yeast plasma membrane. These data establish a link between lipid movement during secretion and endocytosis in yeast and suggest that phospholipids may also gain access to intracellular organelles through non-endocytic, protein-mediated events.  相似文献   

15.

Background  

To maintain organelle integrity, resident proteins must segregate from itinerant cargo during secretory transport. However, Golgi resident enzymes must have intimate access to secretory cargo in order to carry out glycosylation reactions. The amount of cargo and associated membrane may be significant compared to the amount of Golgi membrane and resident protein, but upon Golgi exit, cargo and resident are efficiently sorted. How this occurs in live cells is not known.  相似文献   

16.
In this study, we examined the contribution of the four different pathways of phosphatidylethanolamine (PE) synthesis in the yeast Saccharomyces cerevisiae to the supply of this phospholipid to the plasma membrane. These pathways of PE formation are decarboxylation of phosphatidylserine (PS) by (i) phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria and (ii) phosphatidylserine decarboxylase 2 (Psd2p) in a Golgi/vacuolar compartment, (iii) incorporation of exogenous ethanolamine and ethanolamine phosphate derived from sphingolipid catabolism via the CDP-ethanolamine pathway in the endoplasmic reticulum (ER), and (iv) synthesis of PE through acylation of lyso-PE catalyzed by the acyl-CoA-dependent acyltransferase Ale1p in the mitochondria associated endoplasmic reticulum membrane (MAM). Deletion of PSD1 and/or PSD2 led to depletion of total cellular and plasma membrane PE level, whereas mutation in the other pathways had practically no effect. Analysis of wild type and mutants, however, revealed that all four routes of PE synthesis contributed not only to PE formation but also to the supply of PE to the plasma membrane. Pulse-chase labeling experiments with L[3H(G)]serine and [14C]ethanolamine confirmed the latter finding. Fatty acid profiling demonstrated a rather balanced incorporation of PE species into the plasma membrane irrespective of mutations suggesting that all four pathways of PE synthesis provide at least a basic portion of “correct” PE species required for plasma membrane biogenesis. In summary, the PE level in the plasma membrane is strongly influenced by total cellular PE synthesis, but fine tuned by selective assembly mechanisms.  相似文献   

17.

Background  

Outer membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery.  相似文献   

18.

Background  

Cyanelles, the peptidoglycan-armored plastids of glaucocystophytes, occupy a unique bridge position in between free-living cyanobacteria and chloroplasts. In some respects they side with cyanobacteria whereas other features are clearly shared with chloroplasts. The Sec translocase, an example for "conservative sorting" in the course of evolution, is found in the plasma membrane of all prokaryotes, in the thylakoid membrane of chloroplasts and in both these membrane types of cyanobacteria.  相似文献   

19.
20.

Background  

In eukaryotic cells, directional transport between different compartments of the endomembrane system is mediated by vesicles that bud from a donor organelle and then fuse with an acceptor organelle. A family of integral membrane proteins, termed soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, constitute the key machineries of these different membrane fusion events. Over the past 30 years, the yeast Saccharomyces cerevisiae has served as a powerful model organism for studying the organization of the secretory and endocytic pathways, and a few years ago, its entire set of SNAREs was compiled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号