首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu D  Jin L  Wang H  Zhao H  Zhao C  Duan C  Lu L  Wu B  Yu S  Chan P  Li Y  Yang H 《Neurochemical research》2008,33(7):1401-1409
alpha-Synuclein has been implicated in the pathogenesis of Parkinson's disease (PD). Previous studies have shown that alpha-synuclein is involved in the regulation of dopamine (DA) metabolism, possibly by down-regulating the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in DA biosynthesis. In this study, we constructed alpha-synuclein stably silenced MN9D/alpha-SYN(-) cells by vector mediated RNA interference and examined its effects on DA metabolism. We found that there were no significant differences in TH protein and mRNA levels between MN9D, MN9D/alpha-SYN(-) and MN9D/CON cells, suggesting that silencing alpha-synuclein expression does not affect TH gene expression. However, significant increases in phosphorylated TH, cytosolic 3, 4-dihydroxyphenylalanine (L-DOPA) and DA levels were observed in MN9D/alpha-SYN(-) cells. Our data show that TH activity and DA biosynthesis were enhanced by down-regulation of alpha-synuclein, suggesting that alpha-synuclein may act as a negative regulator of cytosolic DA. With respect to PD pathology, a loss of functional alpha-synuclein may result in increased DA levels in neurons that may lead to cell injury or even death.  相似文献   

2.
Drosophila melanogaster is widely used to study genetic factors causing Parkinson's disease (PD) largely because of the use of sophisticated genetic approaches and the presence of a high conservation of gene sequence/function between Drosophila and mammals. However, in Drosophila, little has been done to study the environmental factors which cause over 90% of PD cases. We used Drosophila primary neuronal culture to study degenerative effects of a well‐known PD toxin MPP+. Dopaminergic (DA) neurons were selectively degenerated by MPP+, whereas cholinergic and GABAergic neurons were not affected. This DA neuronal loss was because of post‐mitotic degeneration, not by inhibition of DA neuronal differentiation. We also found that MPP+‐mediated neurodegeneration was rescued by D2 agonists quinpirole and bromocriptine. This rescue was through activation of Drosophila D2 receptor DD2R, as D2 agonists failed to rescue MPP+‐toxicity in neuronal cultures prepared from both a DD2R deficiency line and a transgenic line pan‐neuronally expressing DD2R RNAi. Furthermore, DD2R autoreceptors in DA neurons played a critical role in the rescue. When DD2R RNAi was expressed only in DA neurons, MPP+ toxicity was not rescued by D2 agonists. Our study also showed that rescue of DA neurodegeneration by Drosophila DD2R activation was mediated through suppression of action potentials in DA neurons.  相似文献   

3.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is characterized by (1) the selective loss of dopaminergic neurons in the substantia nigra and (2) the deposition of misfolded α-synuclein (α-syn) as amyloid fibrils in the intracellular Lewy bodies in various region of the brain. Current thinking suggests that an interaction between α-syn and dopamine (DA) leads to the selective death of neuronal cells and the accumulation of misfolded α-syn. However, the exact mechanism by which this occurs is not fully defined. DA oxidation could play a key role is the pathogenesis of PD by causing oxidative stress, mitochondria dysfunction and impairment of protein metabolism. Here, we review the literature on the role of DA and its oxidative intermediates in modulating the aggregation pathways of α-syn.  相似文献   

4.
Latest results on the action of adenosine A2A receptor antagonists indicate their potential therapeutic usefulness in the treatment of Parkinson’s disease. Basal ganglia possess high levels of adenosine A2A receptors, mainly on the external surfaces of neurons located at the indirect tracts between the striatum, globus pallidus, and substantia nigra. Experiments with animal models of Parkinson’s disease indicate that adenosine A2A receptors are strongly involved in the regulation of the central nervous system. Co-localization of adenosine A2A and dopaminergic D2 receptors in striatum creates a milieu for antagonistic interaction between adenosine and dopamine. The experimental data prove that the best improvement of mobility in patients with Parkinson’s disease could be achieved with simultaneous activation of dopaminergic D2 receptors and inhibition of adenosine A2A receptors. In animal models of Parkinson’s disease, the use of selective antagonists of adenosine A2A receptors, such as istradefylline, led to the reversibility of movement dysfunction. These compounds might improve mobility during both monotherapy and co-administration with L-DOPA and dopamine receptor agonists. The use of adenosine A2A receptor antagonists in combination therapy enables the reduction of the L-DOPA doses, as well as a reduction of side effects. In combination therapy, the adenosine A2A receptor antagonists might be used in both moderate and advanced stages of Parkinson’s disease. The long-lasting administration of adenosine A2A receptor antagonists does not decrease the patient response and does not cause side effects typical of L-DOPA therapy. It was demonstrated in various animal models that inhibition of adenosine A2A receptors not only decreases the movement disturbance, but also reveals a neuroprotective activity, which might impede or stop the progression of the disease. Recently, clinical trials were completed on the use of istradefylline (KW-6002), an inhibitor of adenosine A2A receptors, as an anti-Parkinson drug.  相似文献   

5.
The importance of the role of the endocannabinoid system (ECS) in neurodegenerative diseases has grown during the past few years. Mostly because of the high density and wide distribution of cannabinoid receptors of the CB1 type in the central nervous system (CNS), much research focused on the function(s) that these receptors might play in pathophysiological conditions. Our current understanding, however, points to much diverse roles for this system. In particular, other elements of the ECS, such as the fatty acid amide hydrolase (FAAH) or the CB2 cannabinoid receptor are now considered as promising pharmacological targets for some diseases and new cannabinoids have been incorporated as therapeutic tools. Although still preliminary, recent reports suggest that the modulation of the ECS may constitute a novel approach for the treatment of Alzheimer’s disease (AD). Data obtained in vitro, as well as in animal models for this disease and in human samples seem to corroborate the notion that the activation of the ECS, through the use of agonists or by enhancing the endogenous cannabinoid tone, may induce beneficial effects on the evolution of this disease.  相似文献   

6.
“Modern” medicine and pharmacology require an effective medical drug with a single compound for a specific disease. This seams very scientific but usually has unavoidable side effects. For example, the chemical therapy to cancer can totally damage the immunological ability of the patient leading to death early than non-treatment. On the other hand, natural antioxidant drugs not only can cure the disease but also can enhance the immunological ability of the patient leading to healthier though they usually have several compounds or a mixture. For the degenerative disease such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), natural antioxidant drugs are suitable drugs, because the pathogenesis of these diseases is complex with many targets and pathways. These effects are more evidence when the clinic trial is for long term treatment. The author reviews the studies on the protecting effects of natural antioxidants on neurons in neurodegenerative diseases, especially summarized the results about protective effect of green tea polyphenols on neurons against apoptosis of cellular and animal PD models, and of genestine and nicotine on neurons against Aβ—induced apoptosis of hippocampal neuronal and transgenic mouse AD models. Special issue in honor of Dr. Akitane Mori.  相似文献   

7.
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid‐2‐related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti‐oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti‐oxidant stress and anti‐inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)‐induced DA neuronal damage was performed to investigate EA‐mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D‐enciched, MN9D‐BV‐2 and MN9D‐C6 cell co‐cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT‐induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA‐mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT‐induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA‐mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2‐dependent manner.  相似文献   

8.
In this study, new procedure with improved tandem HPLC plus ESI-MS was utilized to decipher the protective role of glutathione (GSH) against dopamine (DA) oxidation. We demonstrated that auto-oxidation of DA could produce aminochrome (AM, a cyclized DA quinone), which could be effectively abrogated by reductants, especially by GSH. Furthermore GSH was demonstrated to be able to conjugate with AM to form various conjugates via condensation reactions without enzymatic catalysis. The GSH-AM conjugates tend to aggregate, possibly mediated by conjugated AM structures, but could be inhibited by GSH. We hypothesized that proteins conjugated by AM might facilitate Lewy body formation of Parkinson’s disease (PD) in dopaminergic neurons via similar polymerization. We proposed that GSH could protect dopaminergic neurons against DA-induced toxicity via various mechanisms. The imbalance between DA oxidation and GSH protective capacity could be a key factor contributing to PD. Strategies to use GSH analogues, GSH inducers or to control DA oxidation might work to control PD onset and development.  相似文献   

9.
Several lines of evidence support the neuroprotective action of cyclooxygenase-2 (COX-2) inhibitors in various models of Parkinson’s disease (PD). In the current study, we investigated the neuroprotective properties of several COX inhibitors against 1-methyl-4-phenylpyridinium (MPP+) in neuroblastoma Neuro 2A (N-2A) cells in vitro and the protection against degeneration of substantia nigra pars compacta (SNc) dopaminergic (DA) neurons after the administration of 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) in C57/BL6 male mice. The data obtained demonstrate a lack of protective effects observed by COX 1-2 inhibitors ibuprofen and acetylsalicylic acid against MPP+ toxicity in N-2A, where piroxicam was protective in a dose dependent manner (MPP+ control: 15 ± 2% MPP+ piroxicam: 5 mM 89 ± 4%). The data also indicate a drop in mitochondrial oxygen (O2) consumption and ATP during MPP+ toxicity with no restoration of mitochondrial function concurrent to a heightened concentration of somatic ATP during piroxicam rescue. These findings indicate that the neuroprotective effects of COX inhibitors against MPP+ are not consistent, but that piroxicam may work through an unique mechanism to propel anaerobic energy metabolism. On the other hand, using mice, piroxicam (20 mg/kg) was effective against MPTP-induced dopaminergic degeneration in the (SNc) and loss of locomotive function in mice. Administering a 3 day pre-treatment of piroxicam (20 mg/kg) was effective in antagonizing the losses in SNc tyrosine hydroxylase protein expression, SNc DA concentration and associated anomaly in ambulatory locomotor activity. It was concluded from these findings that piroxicam is unique among COX inhibitors in providing very significant neuroprotection against MPP+ in vitro and in vivo.  相似文献   

10.
The role of astroglia on the survival of dopamine neurons   总被引:5,自引:0,他引:5  
Glial cells play a key role in the function of dopamine (DA) neurons and regulate their differentiation, morphology, physiological and pharmacological properties, survival, and resistance to different models of DA lesion. Several studies suggest that glial cells may be important in the pathogenesis of Parkinson’s disease (PD), a common neurodegenerative disorder characterized by degeneration of the nigrostriatal DA system. In this disease the role of glia could be due to the excessive production of toxic products such as nitric oxide (NO) or cytokines characteristic of inflammatory process, or related to a defective release of neuroprotective agents, such as small antioxidants with free radical scavenging properties or peptidic neurotrophic factors.  相似文献   

11.
The understanding of oxidative damage in different neurodegenerative diseases could enhance therapeutic strategies. Our objective was to quantify lipoperoxidation and other oxidative products as well as the activity of antioxidant enzymes and cofactors in cerebrospinal fluid (CSF) samples. We recorded data from all new patients with a diagnosis of either one of the four most frequent neurodegenerative diseases: Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD) and lateral amyotrophic sclerosis (ALS). The sum of nitrites and nitrates as end products of nitric oxide (NO) were increased in the four degenerative diseases and fluorescent lipoperoxidation products in three (excepting ALS). A decreased Cu/Zn-dependent superoxide dismutase (SOD) activity characterized the four diseases. A significantly decreased ferroxidase activity was found in PD, HD and AD, agreeing with findings of iron deposition in these entities, while free copper was found to be increased in CSF and appeared to be a good biomarker of PD.  相似文献   

12.
Parkinson’s disease (PD) is a common neurodegenerative disorder. Neuronal cell death in PD is still poorly understood, despite a wealth of potential pathogenic mechanisms and pathways. Defects in several cellular systems have been implicated as early triggers that start cells down the road toward neuronal death. These include abnormal protein accumulation, particularly of alpha-synuclein; altered protein degradation via multiple pathways; mitochondrial dysfunction; oxidative stress; neuroinflammation; and dysregulated kinase signaling. As dysfunction in these systems mounts, pathways that are more explicitly involved in cell death become recruited. These include JNK signaling, p53 activation, cell cycle re-activation, and signaling through bcl-2 family proteins. Eventually, neurons become overwhelmed and degenerate; however, even the mechanism of final cell death in PD is still unsettled. In this review, we will discuss cell death triggers and effectors that are relevant to PD, highlighting important unresolved issues and implications for the development of neuroprotective therapies.  相似文献   

13.
1. Alpha-synuclein is known to play an important role in the pathogenesis of Parkinson’s disease (PD). The pathogenicity of α-synuclein is related to its ability to form intraneuronal inclusions. The inclusions, which are found in brains of patients with PD and diffuse Lewy body disease consist partially of C-terminally truncated α-synuclein. This α-synuclein species has an increased ability to form aggregates compared to full length α-synuclein. 2. We have used an adeno-associated virus (AAV) vector system to overexpress either C-terminally truncated or full length α-synuclein containing the A53T mutation, which have both been identified in brains of familial PD patients and transgenic mouse models. Dissociated mesencephalic neurons, cerebellar granule neurons, and organotypic midbrain slice cultures were infected with AAV containing the transgene under the control of the cytomegalovirus promoter. 3. We demonstrate that viral overexpression of α-synuclein(A53T) leads to the formation of distorted neurites, intraneuritic swellings, and granular perikaryal deposits in cultured neurons. Our results indicate that these cell culture models may represent an early phase of PD reflecting pathologic neuritic alterations before significant neuronal cell loss occurs.  相似文献   

14.
1. Parkinson’s disease (PD) is considered to be an aging-related neurodegeneration of catecholamine (CA) systems [typically A9 dopamine (DA) neurons in the substantia nigra and A6 noradrenaline (NA) neurons in the locus coeruleus]. The main symptom is movement disorder caused by a DA deficiency at the nerve terminals of fibers that project from the substantia nigra to the striatum. Most PD is sporadic (sPD) without any hereditary history. sPD is speculated to be caused by some exogenous or endogenous substances that are neurotoxic toward CA neurons, which toxicity leads to mitochondrial dysfunction and subsequent oxidative stress resulting in the programmed cell death (apoptosis or autophagy) of DA neurons.2. Recent studies on the causative genes of rare familial PD (fPD) cases, such as alpha–synuclein and parkin, suggest that dysfunction of the ubiquitin–proteasome system (UPS) and the resultant accumulation of misfolded proteins and endoplasmic reticulum stress may cause the death of DA neurons.3. Activated microglia, which accompany an inflammatory process, are present in the nigro-striatum of the PD brain; and they produce protective or toxic substances, such as cytokines, neurotrophins, and reactive oxygen or nitrogen species. These activated microglia may be neuroprotective at first in the initial stage, and later may become neurotoxic owing to toxic change to promote the progression toward the death of CA neurons.4. All of these accumulating evidences on sPD and fPD points to a hypothesis that multiple primary causes of PD may be ultimately linked to a final common signal-transduction pathway leading to programmed cell death, i.e., apoptosis or autophagy, of the CA neurons.Special Issue dedicated to Dr. Julie Axelrod  相似文献   

15.
The abnormal assembly and deposition of specific proteins in the brain is the probable cause of most neurodegenerative disease afflicting the elderly. These “cerebral proteopathies” include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), prion diseases, and a variety of other disorders. Evidence is accumulating that the anomalous aggregation of the proteins, and not a loss of protein function, is central to the pathogenesis of these diseases. Thus, therapeutic strategies that reduce the production, accumulation, or polymerization of pathogenic proteins might be applicable to a wide range of some of the most devastating diseases of old age.  相似文献   

16.
Hornykiewicz O 《Amino acids》2002,23(1-3):65-70
Summary.  The article traces the development of research on the naturally occurring amino acid L-3,4-dihydroxyphenylalanine (L-dopa), from the first synthesis of its D,L racemate in 1911, and the isolation of its L-isomer from seedling of Vicia faba beans to the amino acid's successful application, from 1961 onward, as the most efficacious drug treatment of Parkinson's disease (PD). Upon its isolation from legumes in 1913, L-dopa was declared to be biologically inactive. However, two early pharmacological studies, published in 1927 and 1930 respectively, proved (in the rabbit) that D,L-dopa exerted significant effects on glucose metabolism (causing marked hyperglycemia) and on arterial blood pressure. Interest in L-dopa's biological activity increased considerably following the discovery, in 1938, of the enzyme L-dopa decarboxylase and the demonstration that in the animal and human body L-dopa was enzymatically converted to dopamine (DA), the first biologically active amine in the biosynthetic chain of tissue catecholamines. This prompted, in the 1940s, many studies, both in animals and in humans, especially concerned with the vasopressor potential of L-dopa/DA. In the 1950s, the focus of L-dopa research shifted to its potential for replenishing the experimentally depleted (by insulin or reserpine) peripheral and brain catecholamine stores and the concomitant restoration of normal function. During that period, of special interest were the observations that L-dopa reversed the reserpine-induced state of “tranquilisation” and that its decarboxylation product DA occurred in high amounts in animal and human brain, with a preferential localization in the basal ganglia. These observations set the stage for the beginning of DA studies in PD brain. In 1960, the severe brain DA deficit, confined to patients with PD was discovered, and a year later L-dopa's strong therapeutic effect in patients with PD was demonstrated. In 1967, the chronic high-dose oral L-dopa regimen was successfully introduced into clinical practice. Despite some initial doubts about L-dopa's mechanism of action in PD, it is now generally recognized that L-dopa use in PD is a classic example of a brain neurotransmitter replacement therapy. However, the DA replacement potential of L-dopa may not be its sole action of interest, as suggested by recent evidence that L-dopa may also have its own biological activity in the CNS, independent of DA. Received June 29, 2001 Accepted August 6, 2001 Published online June 17, 2002  相似文献   

17.
(1) Nicotinic acetylcholine receptors in central nervous system are thought to be new targets for Alzheimer’s disease. However, the most involved nicotinic receptor subtype in Alzheimer’s disease is unclear. α4β2 receptor is the most widely spread subtype in brain, involving in several important aspects of cognitive and other functions. We constructed cell line by transfecting human amyloid precursor protein (695) gene into SH-EP1 cells which have been transfected with human nicotinic receptor α4 subunit and β2 subunit gene, to observe effects of α4β2 receptors activation on β-amyloid, expecting to provide a new cell line for drug screening and research purpose. (2) Liposome transfection was used to express human amyloid precursor protein (695) gene in SH-EP1-α4β2 cells. Function of the transfected α4β2 receptors was tested by patch clamp. Effects of nicotine and epibatidine (selective α4β2 nicotinic receptor agonist) on β-amyloid were detected by Western blot and ELISA. Effects of nicotine and epibatidine on amyloid precursor protein (695) mRNA level were measured using real-time PCR. (3) Human amyloid precursor protein (695) gene was stably expressed in SH-EP1-α4β2 cells; Nicotine (1 μM) and epibatidine (0.1 μM) decreased intracellular and secreted β-amyloid in the cells; and activation of α4β2 receptors did not affect amyloid precursor protein (695) mRNA level. (4) These results suggest that the constructed cell line, expressing both amyloid precursor protein (695) gene and human nicotinic receptor α4 subunit and β2 subunit gene, might be useful for screening specific nicotinic receptor agonists against Alzheimer’s disease. Alteration of Aβ level induced by activation of α4β2 nAChR in our study might occur at a post-translational level.  相似文献   

18.
S L Liang  J T Pan 《Life sciences》2001,69(22):2653-2662
The possible involvement of dopamine D2 and D3 receptors in the action of dopamine (DA) on inhibiting dorsomedial arcuate nucleus (dmARN) neurons in brain slices was determined in this study. Fresh brain slices were prepared from ovariectomized, estrogen-primed Sprague-Dawley rats and used for extracellular single-unit recording. The dmARN neurons were first identified by their inhibitory responses to DA and then tested with PHNO and/or PD128907, selective D2 and D3 agonists, respectively. PD128907 in 5-50 nmole doses significantly inhibited the majority of DA-responsive dmARN neurons (86.3% of 44 units). Moreover, PHNO in 5-25 nmole doses inhibited all DA-responsive neurons tested (100% of 34 units). The inhibitory effects of PHNO and PD128907 were not only prominent; but also persisted in low Ca2+, high Mg2+ medium, indicating that they were acting directly on the recorded neuron. Pretreatment of either raclopride or U99194A, D2 and D3 receptor antagonists respectively, reversed the effects of DA in a few trials. In contrast, SKF81297, a D1 receptor agonist, induced variable responses in dmARN neurons. These results clearly indicate that DA may act through D2 and/or D3 receptors to exhibit an inhibitory effect on presumed TIDA neurons in dmARN.  相似文献   

19.
Berg D 《Neurochemical research》2007,32(10):1646-1654
A number of investigations have provided evidence for a central role of iron in the pathogenesis of Parkinson’s disease (PD). Recently it could be demonstrated that iron related changes of the substantia nigra may be one important factor contributing to the hyperechogenicity typicall visualized by transcranial sonography in idiopathic PD. Moreover, also patients with monogenetically caused PD show this hyperechogenicity, although to a lesser extent. According to numerous findings and experiments it seems plausible that iron also contributes to the pathophysiological cascades in the monogenetic forms of PD. Therefore, it is not only essential to acknowledge the pivotal role of iron for PD, but also to enhance the effort in finding therapeutic strategies to prevent the impact of iron on neurodegenerative processes. Moreover, early detection of subjects at risk is essential for the application of therapeutic strategies at a stage at which neuroprotection is still possible. Special issue dedicated to Dr. Moussa Youdim  相似文献   

20.
Aims To investigate the therapeutic effects of tyrosine hydroxylase (TH)-transfected neuronal stem cells derived from bone marrow stem cells (NdSCs-D-BMSCs) on Parkinson’s disease (PD) through different transplantation protocols, including microinjection into the cerebral ventricles (CV) and the striatum (ST). Methods After identification by enzyme digestion, the constructed plasmid pEGFP-C2-TH was transfected into 8-day-cultured NdSCs-D-BMSCs by electroporation resulting in the coexpression of green fluorescent protein (GFP) and TH. The TH-transfected cells were injected into either the right ST or CV of PD rats. The changes in locomotor activity of PD rats and the migration of transplanted cells in cerebral tissue were monitored and cerebral DA levels were assayed by high performance liquid chromatography (HPLC). Results Five days after plasmid pEGFP-C2-TH transfection into NdSCs-D-BMSCs GFP was expressed in 62.1% of the cells and the rate of co-expression with TH was 83.5%. Ten weeks following transplantation, the symptoms of PD rats in both groups were significantly improved and DA levels were restored to 46.6% and 33% of control. The transferred cells showed excellent survival rates in PD rat brains and distant migration was observed. Conclusion Both CV and ST transplantation of TH-transfected NDSCs-D-BMSCs has obvious therapeutic effects on PD rats. This study could provide evidence for future transplantation route selection, possibly leading to stem cell transplantation through lumbar puncture. Grant: National natural science grant (30270491), Outstanding Science-technology program of Guangdong Province (2000)25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号