首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To examine whether base excision repair suppresses mutations induced by oxidized deoxyribonucleotide 5'-triphosphates in the nucleotide pool, 8-hydroxy-dGTP (8-OH-dGTP) and 2-hydroxy-dATP were introduced into Escherichia coli strains deficient in endonucleases III (Nth) and VIII (Nei) and MutY, and mutations in the chromosomal rpoB gene were analyzed. The spontaneous rpoB mutant frequency was also examined in mutT/nth and mutT/nei strains, to assess the influence on the mutations induced by the endogenous 8-OH-dGTP accumulated in the mutT mutant. The mutations induced by exogenous 2-hydroxy-dATP were similar in all of the strains tested. Exogenous 8-OH-dGTP increased the rpoB mutant frequency more efficiently in the nth strain than that in the wild-type strain. The spontaneous mutant frequency in the mutT/nth strain was 2-fold higher than that in the mutT strain. These results suggest that E. coli endonuclease III also acts as a defense against the mutations caused by 8-OH-dGTP in the nucleotide pool.  相似文献   

2.
Mutation frequencies for an Escherichia coli mutT strain were measured in both aerobic and anaerobic environments. When cells were grown in a rich medium (L broth), mutation frequencies were similar in both aerobic and anaerobic conditions. In contrast, when grown in a minimal medium, mutT anaerobic mutation frequencies were reduced dramatically compared with aerobic values, which were similar to L broth frequencies. L broth mutT cultures treated with a commercial enzyme complex that reduces free oxygen in the medium also showed strongly reduced anaerobic mutation frequencies. These results indicate that the biological role of the MutT protein is to prevent oxidative damage from becoming mutagenic.  相似文献   

3.
In the current studies, we investigated base substitutions in the Bacillus subtilis mutT, mutM, and mutY DNA error-prevention system. In the wild type strain, spontaneous mutations were mainly transitions, either G:C --> A:T or A:T --> G:C. Although both transitions and transversions were observed in mutY and mutM mutants, mutM/mutY double mutants contain strictly G:C --> T:A transversions. In the mutT strain, A:T --> C:G transversion was not observed, and over-expression of the B. subtilis mutT gene had no effect on the mutation rate in the Escherichia coli mutT strain. Using 8-oxo-dGTP-induced mutagenesis, transitions especially A:T --> G:C were predominant in the wild type and mutY strains. In contrary, transversion was high on mutY and double mutant (mutM mutY). Finally, the opuBC and yitG genes were identified from the B. subtilis chromosome as mutator genes that prevented the transition base substitutions.  相似文献   

4.
MutT-related proteins degrade 8-oxo-7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP), a mutagenic substrate for DNA synthesis, in the nucleotide pool, thereby preventing DNA replication errors. During a search of GenBank EST database, we found a new member of MutT-related protein, MTH2, which possesses the 23-amino acid MutT module. The cloned mouse MTH2 (mMTH2) cDNA was expressed in Escherichia coli mutT(-) cells and the protein was purified. mMTH2 protein hydrolyzes 8-oxo-dGTP to 8-oxo-dGMP, with Km of 32 microM. Expression of cDNA for mMTH2 reduced significantly the elevated level of spontaneous mutation frequency of E. coli mutT(-) cells. Thus, MTH2 has a potential to protect the genetic material from the untoward effects of endogenous oxygen radicals. MTH2 could act as an MTH1 redundancy factor.  相似文献   

5.
Mutagenic effects of 8-hydroxy-dGTP in live mammalian cells   总被引:1,自引:1,他引:0  
The mutagenicity of an oxidized form of dGTP, 8-hydroxy-2'-deoxyguanosine 5'-triphosphate (8-OH-dGTP), was examined using COS-7 cells. 8-OH-dGTP and supF shuttle plasmid DNA were cointroduced by means of cationic liposomes, and the DNAs replicated in the cells were recovered and then transfected into Escherichia coli. 8-OH-dGTP induced A:T-->C:G substitution mutations in the COS-7 cells. This result agrees with previous observations indicating that DNA polymerases misincorporate 8-OH-dGTP opposite A in vitro, and that the oxidized deoxyribonucleotide induces A:T-->C:G transversions in E. coli. These results constitute the first direct evidence to show that 8-OH-dGTP actually induces mutations in living mammalian cells.  相似文献   

6.
One of the most predominating oxidative DNA damages, both spontaneously formed and after gamma-radiation is 7, 8-dihydro-8-oxoguanine (8oxoG). This 8oxoG is a mutagenic lesion because it can mispair with adenine instead of the correct cytosine leading to G:C to T:A transversions. In Escherichia coli (E. Coli) base excision repair (BER) is one of the most important repair systems for the repair of 8oxoG and other oxidative DNA damage. An important part of BER in E. coli is the so-called GO system which consists of three repair enzymes, MutM (Fpg), MutY and MutT which are all involved in repair of 8oxoG or 8oxoG mispairs. The aim of this study is to determine the effect of combined Fpg- and MutY-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum of the lacZalpha gene. For that purpose, non-irradiated or gamma-irradiated double-stranded (ds) M13mp10 DNA, with the lacZalpha gene inserted as mutational target sequence was transfected into an E. coli strain which is deficient in both Fpg and MutY (BH1040). The resulting mutation spectra were compared with the mutation spectra of a fpg(-) E. coli strain (BH410) and a wild type E. coli strain (JM105) which were determined in an earlier study. The results of the present study indicate that combined Fpg- and MutY-deficiency induces a large increase in G:C to T:A transversions in both the spontaneous and gamma-radiation-induced mutation spectra of BH1040 (fpg(-)mutY(-)) as compared to the fpg(-) and the wild type strain. Besides the increased levels of G:C to T:A transversions, there is also an increase in G:C to C:G transversions and frameshift mutations in both the spontaneous and gamma-radiation-induced mutation spectra of BH1040 (fpg(-)mutY(-)).  相似文献   

7.
In a search for a plant antimutator MutT protein, an Arabidopsis thaliana Nudix hydrolase with homology to the mammalian GFG protein was expressed as a hexahistidine fusion polypeptide in Escherichia coli and purified to homogeneity. Unlike the GFG protein, the A. thaliana homolog could not complement the mutT mutation in a MutT-deficient E. coli strain nor was it able to hydrolyze 8-oxo-dGTP, the main substrate of the MutT protein. Instead the recombinant protein hydrolyzed a variety of nucleoside diphosphate derivatives showing a preference for ADP-ribose, with Km and k(cat) values of 1.2 mM and 2.7 s(-1) respectively. The products of ADP-ribose hydrolysis were AMP and ribose-5-phosphate. The optimal activity was at alkaline pH (8.5) with Mg2+ (5 mM) ions as the cofactor. The protein exists as a dimmer in solution.  相似文献   

8.
The possibility that Escherichia coli MutT and human MTH1 (hMTH1) hydrolyze oxidized DNA precursors other than 8-hydroxy-dGTP (8-OH-dGTP) was investigated. We report here that hMTH1 hydrolyzed 2-hydroxy-dATP (2-OH-dATP) and 8-hydroxy-dATP (8-OH-dATP), oxidized forms of dATP, but not (R)-8,5'-cyclo-dATP, 5-hydroxy-dCTP, and 5-formyl-dUTP. The kinetic parameters indicated that 2-OH-dATP was hydrolyzed more efficiently and with higher affinity than 8-OH-dGTP. 8-OH-dATP was hydrolyzed as efficiently as 8-OH-dGTP. The preferential hydrolysis of 2-OH-dATP over 8-OH-dGTP was observed at all of the pH values tested (pH 7.2 to pH 8.8). In particular, a 5-fold difference in the hydrolysis efficiencies for 2-OH-dATP over 8-OH-dGTP was found at pH 7.2. However, E. coli MutT had no hydrolysis activity for either 2-OH-dATP or 8-OH-dATP. Thus, E. coli MutT is an imperfect counterpart for hMTH1. Furthermore, we found that 2-hydroxy-dADP and 8-hydroxy-dGDP competitively inhibited both the 2-OH-dATP hydrolase and 8-OH-dGTP hydrolase activities of hMTH1. The inhibitory effects of 2-hydroxy-dADP were 3-fold stronger than those of 8-hydroxy-dGDP. These results suggest that the three damaged nucleotides share the same recognition site of hMTH1 and that it is a more important sanitization enzyme than expected thus far.  相似文献   

9.
Since the discovery of the first E. coli mutator gene, mutT, most of the mutations inducing elevated spontaneous mutation rates could be clearly attributed to defects in DNA repair. MutT turned out to be a pyrophosphohydrolase hydrolyzing 8-oxodGTP, thus preventing its incorporation into DNA and suppresing the occurrence of spontaneous AT-->CG transversions. Most of the bacterial mutator genes appeared to be evolutionarily conserved, and scientists were continuously searching for contribution of DNA repair deficiency in human diseases, especially carcinogenesis. Yet a human MutT homologue--hMTH1 protein--was found to be overexpressed rather than inactivated in many human diseases, including cancer. The interest in DNA repair contribution to human diseases exploded with the observation that germline mutations in mismatch repair (MMR) genes predispose to hereditary non-polyposis colorectal cancer (HNPCC). Despite our continuously growing knowledge about DNA repair we still do not fully understand how the mutator phenotype contributes to specific forms of human diseases.  相似文献   

10.
11.
Nucleotide pool sanitizing enzymes Dut (dUTPase), RdgB (dITPase), and MutT (8-oxo-dGTPase) of Escherichia coli hydrolyze noncanonical DNA precursors to prevent incorporation of base analogs into DNA. Previous studies reported dramatic AT-->CG mutagenesis in mutT mutants, suggesting a considerable density of 8-oxo-G in DNA that should cause frequent excision and chromosomal fragmentation, irreparable in the absence of RecBCD-catalyzed repair and similar to the lethality of dut recBC and rdgB recBC double mutants. In contrast, we found mutT recBC double mutants viable with no signs of chromosomal fragmentation. Overproduction of the MutM and MutY DNA glycosylases, both acting on DNA containing 8-oxo-G, still yields no lethality in mutT recBC double mutants. Plasmid DNA, extracted from mutT mutM double mutant cells and treated with MutM in vitro, shows no increased relaxation, indicating no additional 8-oxo-G modifications. Our DeltamutT allele elevates the AT-->CG transversion rate 27,000-fold, consistent with published reports. However, the rate of AT-->CG transversions in our mutT(+) progenitor strain is some two orders of magnitude lower than in previous studies, which lowers the absolute rate of mutagenesis in DeltamutT derivatives, translating into less than four 8-oxo-G modifications per genome equivalent, which is too low to cause the expected effects. Introduction of various additional mutations in the DeltamutT strain or treatment with oxidative agents failed to increase the mutagenesis even twofold. We conclude that, in contrast to the previous studies, there is not enough 8-oxo-G in the DNA of mutT mutants to cause elevated excision repair that would trigger chromosomal fragmentation.  相似文献   

12.
ytkD and mutT of Bacillus subtilis encode potential 8-oxo-dGTPases that can prevent the mutagenic effects of 8-oxo-dGTP. Loss of YtkD but not of MutT increased the spontaneous mutation frequency of growing cells. However, cells lacking both YtkD and MutT had a higher spontaneous mutation frequency than cells lacking YtkD. Loss of either YtkD or MutT sensitized growing cells to hydrogen peroxide (H2O2) and t-butylhydroperoxide (t-BHP), and the lack of both proteins sensitized growing cells to these agents even more. In contrast, B. subtilis spores lacking YtkD and MutT were not sensitized to H2O2, t-BHP, or heat. These results suggest (i) that YtkD and MutT play an antimutator role and protect growing cells of B. subtilis against oxidizing agents, and (ii) that neither YtkD nor MutT protects spores against potential DNA damage induced by oxidative stress or heat.  相似文献   

13.
MutT protein of Escherichia coli hydrolyzes oxidized guanine nucleotides, 8-oxo-dGTP and 8-oxoGTP, to the corresponding monophosphates, thereby preventing misincorporation of 8-oxoguanine into DNA and RNA, respectively. Although the biological significance of the MutT has been established, how MutT protein actually works in vivo remains to be elucidated. The current study shows the molecular behavior of the MutT protein in vivo and in vitro with special reference to control of spontaneous mutagenesis. A single E. coli cell carries about 70-75 molecules of the MutT protein and that this number does not change even when the cells were cultured in anaerobic and hyper-oxidative conditions. Conditional gene silencing analyses revealed that about a half number of MutT molecules are needed for keeping the spontaneous mutation frequency at the normal level. The MutT functions are not needed under anaerobic condition, yet the level of the MutT protein in cell is kept constant, probably for preparing for sudden changes of oxygen pressure. There is a possibility that MutT functions in close association with other proteins, and evidence is presented that MutT protein can interact with some proteins in vivo.  相似文献   

14.
In Escherichia coli the mutT gene is one of several that acts to minimize mutagenesis by reactive oxygen species. The bacterial MutT protein and its mammalian homolog have been shown to catalyze in vitro the hydrolysis of the oxidized deoxyguanosine nucleotide, 8-oxo-dGTP, to its corresponding monophosphate. Thus, the protein is thought to "sanitize" the nucleotide pool by ridding the cell of a nucleotide whose incorporation into DNA would be intensely mutagenic. However, because others have shown mutT mutations to be mutagenic under some conditions of anaerobic growth, and have shown 8-oxo-dGTP to be a poor DNA polymerase substrate, there is reason to question this model. We have devised an assay for 8-oxo-dGTP in bacterial extracts. Using this assay, which involves reversed-phase high-performance liquid chromatography and electrochemical detection, we have been unable to detect 8-oxo-dGTP in extracts of three different mutT mutants of E. coli, even after growth of the bacteria in the presence of hydrogen peroxide. Our estimated upper limit for 8-oxo-dGTP content of these bacteria is about 200 molecules/cell, corresponding to a concentration of about 0.34 microm. When 8-oxo-dGTP was added at 0.34 microm to an in vitro DNA replication system primed with a DNA template that permits scoring of replication errors and with the four normal dNTPs at their estimated intracellular concentrations, there was no detectable effect upon the frequency of replication errors. These findings lead us to question the conclusion that 8-oxo-dGTP is the most significant physiological substrate for the MutT protein.  相似文献   

15.
Nohmi T  Kim SR  Yamada M 《Mutation research》2005,591(1-2):60-73
Chromosome DNA is continuously exposed to various endogenous and exogenous mutagens. Among them, oxidation is one of the most common threats to genetic stability, and multiple DNA repair enzymes protect chromosome DNA from the oxidative damage. In Escherichia coli, three repair enzymes synergistically reduce the mutagenicity of oxidized base 8-hydroxy-guanine (8-OH-G). MutM DNA glycosylase excises 8-OH-G from 8-OH-G:C pairs in DNA and MutY DNA glycosylase removes adenine incorporated opposite template 8-OH-G during DNA replication. MutT hydrolyzes 8-OH-dGTP to 8-OH-dGMP in dNTP pool, thereby reducing the chance of misincorporation of 8-OH-dGTP by DNA polymerases. Simultaneous inactivation of MutM and MutY dramatically increases the frequency of spontaneous G:C to T:A mutations, and the deficiency of MutT leads to the enhancement of T:A to G:C transversions more than 1000-fold over the control level. In humans, the functional homologues of MutM, MutY and MutT, i.e., OGG1, MUTYH (MYH) and MTH1, contribute to the protection of genomic DNA from oxidative stress. Interestingly, several polymorphic forms of these proteins exist in human populations, and some of them are suggested to be associated with cancer susceptibility. Here, we review the polymorphic forms of OGG1, MUTYH and MTH1 involved in repair of 8-OH-G and 8-OH-dGTP, and discuss the significance of the polymorphisms in the maintenance of genomic integrity. We also summarize the polymorphic forms of human DNA polymerase eta, which may be involved in damage tolerance and mutagenesis induced by oxidative stress.  相似文献   

16.
MutT-related proteins, including the Escherichia coli MutT and human MutT homologue 1 (MTH1) proteins, degrade 8-oxo- 7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP) to a monophosphate, thereby preventing mutations caused by the misincorporation of 8-oxoguanine into DNA. Here, we report that human cells have another mechanism for cleaning up the nucleotide pool to ensure accurate DNA replication. The human Nudix type 5 (NUDT5) protein hydrolyses 8-oxo-dGDP to monophosphate with a Km of 0.77 µM, a value considerably lower than that for ADP sugars, which were originally identified as being substrates of NUDT5. NUDT5 hydrolyses 8-oxo-dGTP only at very low levels, but is able to substitute for MutT when it is defective. When NUDT5 is expressed in E. coli mutT cells, the increased frequency of spontaneous mutations is decreased to normal levels. Considering the enzymatic parameters of MTH1 and NUDT5 for oxidized guanine nucleotides, NUDT5 might have a much greater role than MTH1 in preventing the occurrence of mutations that are caused by the misincorporation of 8-oxoguanine in human cells.  相似文献   

17.
We have previously reported that the majority of base substitution mutations of the Escherichia coli supF gene induced by riboflavin mediated photosensitization were G:C to C:G changes, in addition to G:C to T:A changes which were probably caused by 8-hydroxyguanine (oh(8)Gua), in wild type and mutM mutator mutant strains. This implies that lesions other than oh(8)Gua are produced by riboflavin-photosensitization. G:C to C:G base substitutions have been found in the mutations induced by ionizing radiation and reactive oxygen species, as well as spontaneous mutation. To characterize the G:C to C:G mutation, riboflavin- photosensitized plasmid DNA carrying the supF gene was left at room temperature for 5 h in the dark before transfection. The delayed transfection gave a mutational spectrum different from that for immediate transfection. G:C to C:G transversions significantly increased in mutY mutator strain, in which the transversion was not detected in the immediate transfection. Lesions causing G:C to C:G changes increased during 5-h holding after photosensitization and MutY protein presumably takes part in this type of base change mutation.  相似文献   

18.
The T4 bacteriophage gene e.1 was cloned into an expression vector and expressed in Escherichia coli, and the purified protein was identified as a Nudix hydrolase active on FAD, adenosine 5'-triphospho-5'-adenosine (Ap(3)A), and ADP-ribose. Typical of members of the Nudix hydrolases, the enzyme has an alkaline pH optimum (pH 8) and requires a divalent cation for activity that can be satisfied by Mg(2+) or Mn(2+). For all substrates, AMP is one of the products, and unlike most of the other enzymes active on Ap(3)A, the T4 enzyme hydrolyzes higher homologues including Ap(4-6)A. This is the first member of the Nudix hydrolase gene superfamily identified in bacterial viruses and the only one present in T4. Although the protein was predicted to be orthologous to E. coli MutT on the basis of a sequence homology search, the properties of the gene and of the purified protein do not support this notion because of the following. (a) The purified enzyme hydrolyzes substrates not acted upon by MutT, and it does not hydrolyze canonical MutT substrates. (b) The e.1 gene does not complement mutT1 in vivo. (c) The deletion of e.1 does not increase the spontaneous mutation frequency of T4 phage. The properties of the enzyme most closely resemble those of Orf186 of E. coli, the product of the nudE gene, and we therefore propose the mnemonic nudE.1 for the T4 phage orthologue.  相似文献   

19.
The coexistence effects of multiple kinds of oxidized deoxyribonucleotides were examined using an SV40 origin-dependent in vitro replication system with a HeLa extract. Oxidized dGTP and dATP, 8-hydroxy-2'-deoxyguanosine 5'-triphosphate (8-OH-dGTP) and 2-hydroxy-2'-deoxyadenosine 5'-triphosphate (2-OH-dATP), were used in this study. The mutation frequency synergistically increased when the two oxidized deoxyribonucleotides were together in the reaction. 2-OH-dATP enhanced the mutagenicity of 8-OH-dGTP, since the induced mutations were A.T --> C.G transversions. The contribution of the highly error-prone DNA polymerase eta was unlikely, since similar results were observed with an XP-V cell extract. The possible involvement of 2-hydroxyadenine in the complementary (template) strand was excluded on the basis of experiments using plasmids containing 2-hydroxyadenine as templates in the reactions with 8-OH-dGTP. 2-OH-dATP suppressed hydrolysis of 8-OH-dGTP, suggesting that the inhibition of the MTH1 protein played the major role in the enhancement. These results highlight the importance of specific hydrolysis of 8-OH-dGTP for the suppression of its induced mutation.  相似文献   

20.
8-oxo-dGTP is generated in the nucleotide pool by direct oxidation of dGTP or phosphorylation of 8-oxo-dGDP. It can be incorporated into DNA during replication, which would result in mutagenic consequences. The frequency of spontaneous mutations remains low in cells owing to the action of enzymes degrading such mutagenic substrates. Escherichia coli MutT and human MTH1 hydrolyze 8-oxo-dGTP to 8-oxo-dGMP. Human NUDT5 as well as human MTH1 hydrolyze 8-oxo-dGDP to 8-oxo-dGMP. These enzymes prevent mutations caused by misincorporation of 8-oxo-dGTP into DNA. In this study, we identified a novel MutT homolog (NDX-1) of Caenorhabditis elegans that hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP. NDX-1 did not hydrolyze 8-oxo-dGTP, 2-hydroxy-dATP or 2-hydroxy-dADP. Expression of NDX-1 significantly reduced spontaneous A:T to C:G transversions and mitigated the sensitivity to a superoxide-generating agent, methyl viologen, in an E. coli mutT mutant. In C. elegans, RNAi of ndx-1 did not affect the lifespan of the worm. However, the sensitivity to methyl viologen and menadione bisulfite of the ndx-1-RNAi worms was enhanced compared with that of the control worms. These facts indicate that NDX-1 is involved in sanitization of 8-oxo-dGDP and plays a critical role in defense against oxidative stress in C. elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号