首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of cAMP and calcium in the induction of ornithine decarboxylase (ODC, E.C.4.1.1.17) activity in the osteogenic sarcoma cell line, UMR 106-01, was studied, with particular interest for parathyroid hormone (PTH). PTH and forskolin dose-dependently induced the ODC activity and the cAMP production. Protein synthesis is involved in the effect of PTH and forskolin on ODC activity but not on cAMP production. Using quin2 we showed that 20 nM PTH and 10 microM forskolin increased the intracellular ionized calcium concentration ([Ca2+]i), thereby offering the possibility for calcium to play a role as cellular mediator in the action of PTH and forskolin in bone. Data obtained with A23187 showed that solely an increase of the [Ca2+]i is not sufficient to stimulate basal or potentiate PTH- and forskolin-induced ODC activity. However, the effects of calcium channel blockers and EGTA on basal and PTH- and forskolin-induced ODC activity point to a specific role for calcium. Moreover, the effects of calcium channel blockers and EGTA on basal and PTH- and forskolin-induced cAMP production indicate that the involvement of calcium in the induction of ODC activity is primarily located at another site than the adenylate cyclase. These data indicate that calcium is involved in the control of basal ODC activity. Furthermore, these data suggest that both cAMP and calcium are involved in the induction of ODC activity by PTH and forskolin. More precisely, ODC activity in UMR 106-01 cells can be induced by PTH and forskolin via a calcium-dependent cAMP messenger system.  相似文献   

2.
The activity of ornithine decarboxylase [EC 4.1.1.17] (ODC) in mouse L cells in the confluent state was induced within 4 hr by cyclic AMP (cAMP) or by insulin. During growth of L cells the concentration of cAMP increased first, then induction of ODC occurred and finally the cell number increased: the levels of cAMP and ODC increased only transitorily and returned to the basal levels when the cells become confluent. In growing cultures, however, the presence of cAMP reduced induction of ODC and cell growth. These results suggest that cAMP is involved in induction of ODC and that its concentration may be important for enzyme induction as well as for cell growth. Actinomycin D with or without these inducers stimulated induction of ODC in L cells, whereas cycloheximide inhibited it, suggesting that these hormones affect the translational level of ODC synthesis. The effect of actinomycin D on induction of ODC was much greater in non-growing cells than in growing cells. It was also found that the half life of ODC was 81 min in non-growing cells and 112 min in growing cells. This suggests that turnover of the enzyme is more rapid in the non-growing than in the growing state and that there may be an RNA fraction which controls its turnover and which also has a very short half life.  相似文献   

3.
Parathyroid hormone (PTH) greatly increased the level of adenosine 3', 5' cyclic monophosphate (cAMP) in rabbit costal chondrocytes in culture 2 minutes after its addition. PTH, as well as N6 O2' dibutyryl adenosine 3', 5' cyclic monophosphate (DBcAMP) and 8 Bromo adenosine 3', 5' cyclic monophosphate (8 Br-cAMP) induced ornithine decarboxylase (ODC; L-ornithine carboxylyase; EC 4.1.1.17), which reached a maximum 4 hours after their addition. Neither cAMP, N6 O2' dibutyryl guanosine 3', 5' cyclic monophosphate (DBcGMP), nor sodium butyrate increased the activity of the enzyme. PTH had no effect on DNA synthesis, while DBcAMP and 8 Br-cAMP decreased DNA synthesis. Expression of the differentiated phenotype of chondrocytes in culture was also induced by PTH, DBcAMP, and 8 Br-cAMP, but not by cAMP, DBcGMP, or sodium butyrate, as judged by morphological change. Glycosaminoglycan synthesis, a characteristic of the cartilage phenotype, began to increase 8 hours after addition of PTH or DBcAMP, reaching a plateau 32 hours after their addition. These findings suggest that PTH induces increase of ODC activity and expression of the differentiated phenotype of chondrocytes through increase of cAMP and that induction of OCD is closely related to expression of the differentiated phenotype of chondrocytes.  相似文献   

4.
Ornithine decarboxylase activity (ODC) increased about 7 fold 6--8 h following 10mM asparagine (ASN) addition to confluent cultures that had been previously serum deprived and then placed in a salts/glucose medium. Optimal concentrations of dibutyryl cAMP (dB cAMP) when incubated with the ASN caused up to a 50 fold increase in the activity of this enzyme after 7--8 h. The enhancement of ODC activity by ASN and dB cAMP was not sensitive to continuous (0--7 h) treatment with actinomycin D but similar treatment with cycloheximide depressed enzyme activity 40--60%. The synergistic stimulation of ODC activity by dB cAMP added with ASN was dose dependent and the dB cAMP stimulation of ODC activity displayed an absolute requirement for ASN when cells were maintained in the salts/glucose medium. The addition of dB cAMP always further enhanced ODC activity above the levels produced by addition of various levels of ASN (1 to 40mM) to the salts/glucose medium. Other agents which elevated cAMP levels such as 1-methyl-3-isobutylxanthine (IBMX) also enhanced ODC activity when administered with ASN. Additionally, treatment with sodium butyrate at concentrations ranging from 0.001mM to 5.0mM did not elevate ODC activity above the activity obtained with ASN alone. Addition of dB cAMP at various times after placing cells in salts/glucose medium with ASN further stimulated ODC activity only when added during the first 3-4 h. These results demonstrate the involvement of cAMP in the ASN mediated stimulation of ODC activity using cells maintained in a salts/glucose medium.  相似文献   

5.
6.
7.
8.
Both retinoids and the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibit expression of the differentiated phenotype by rabbit costal chondrocytes in culture, as judged by morphological changes and decreased sulfation of glycosaminoglycans (GAG). However, the inhibition of the differentiated phenotype of chondrocytes in TPA-treated cells is restored by parathyroid hormone (PTH), while the inhibition by retinoids is not [Takigawa et al. (1982) Mol. Cell. Biochem. 42, 145-153; Takigawa et al. (1983) Cell Differ. 13, 283-291]. In the present study, we examined the difference between TPA-treated chondrocytes and retinoic acid-treated chondrocytes to determine the mechanism of the restoration of the differentiated phenotype in de-differentiated cells treated with TPA. PTH increased the activity of ornithine decarboxylase [ODC; EC 4.1.1.17], a rate limiting enzyme of polyamine biosynthesis, and proteoglycan synthesis in chondrocytes pretreated with TPA as well as in normal chondrocytes. The maximal stimulations of ODC activity and GAG synthesis were observed 4 h and 24-36 h, respectively, after addition of PTH. The dose-response curve for ODC induction by PTH was parallel to that of PTH-stimulated proteoglycan synthesis both in TPA-treated chondrocytes and in normal chondrocytes. PTH also increased the intracellular cyclic AMP level after 2 min in TPA-treated cells as in normal cells. Addition of dibutyryl cyclic AMP (DBcAMP) induced ODC and restored proteoglycan synthesis in TPA-treated cells. The dose-response curve for induction of ODC by DBcAMP was parallel to that of DBcAMP-stimulated proteoglycan synthesis in both TPA-treated chondrocytes and normal chondrocytes. On the other hand, the increases by PTH in the intracellular cyclic AMP level, ODC activity, and proteoglycan synthesis were inhibited in chondrocytes pretreated with a combination of TPA and retinoic acid as well as in those pretreated with retinoic acid alone. TPA stimulated the syntheses of DNA and RNA in chondrocytes but did not increase the cyclic AMP level or ODC activity. PTH and DBcAMP inhibited the syntheses of DNA and RNA both in TPA-treated cells and in normal cells. These results suggest that ODC induction mediated by elevation of cyclic AMP plays an important role in re-differentiation of de-differentiated cells pretreated with these agents.  相似文献   

9.
Sodium arsenite proved effective in preventing the induction of ornithine decarboxylase (ODC) activity elicited by dilution of Friend erythroleukemia cells in fresh medium. A 50 per cent inhibition was produced at approximately 1 microM arsenite and complete inhibition was obtained at concentrations above 10 microM. However, addition of arsenite 5 h after cell dilution, i.e. when ODC was already induced, appeared to stabilize the enzyme. The half-life of ODC activity, measured after cycloheximide treatment, increased almost six-fold after addition of sodium arsenite. Agents known to provoke oxidative alteration of the thiol-redox status in cells, also caused a similar effect on the induction and stability of ODC.  相似文献   

10.
Summary Parathyroid hormone (PTH) increases the cyclic AMP level in rabbit costal chondrocytes in culture. PTH, dibutyryl cyclic AMP (DBcAMP), and 8-bromo cyclic AMP (8-Br cAMP) induce ornithine decarboxylase (ODC) and expression of the differentiated phenotype of chondrocytes in this cell system. On the other hand, retinoids inhibit expression of the differentiated phenotype of chondrocytes. In the present study, the effects of PTH, DBcAMP, and 8-Br cAMP on rabbit costal chondrocytes pretreated with retinoids were examined.PTH did not increase the cellular cyclic AMP level in de-differentiated cells that had been pretreated with retinyl acetate or retinoic acid for three days, but it did increase the cyclic AMP level four days after removal of retinoids. PTH did not stimulate ODC activity or expression of the differentiated phenotype of chondrocytes in the de-differentiated state. On the other hand, DBcAMP or 8-Br cAMP stimulated expression of the differentiated phenotype of chondrocytes even in de-differentiated cells, as judged by morphological and bistological changes of the cells and increase in glycosaminoglycan synthesis. Cyclic AMP analogues also induced ODC in these cells.  相似文献   

11.
Cultures preincubated in a growth restricted salts/glucose medium in the presence and absence of ornithine decarboxylase (ODC) activating factors were then incubated under ideal growth conditions to study the influence of these factors on cell growth. Incubation of confluent cultures in a salts/glucose medium alone did not induce ODC or change the other biochemical parameters investigated. However, if cultures were incubated in the salts/glucose medium supplemented with asparagine (ASN) and agents that increase cellular cAMP levels then ODC was induced after 6–8 h. This primary induction in the salts/glucose medium resulted in altered and delayed ODC induction during growth stimulation and also caused a delay in (3H) thymidine incorporation without affecting (3H) uridine and (3H) leucine incorporation. These results demonstrate that incubation of cultures in a salts/glucose media with ASN and dibutyryl cAMP (dBcAMP) causes refractory ODC induction and altered (3H) thymidine incorporation upon growth challenge with complete medium. These effects were not observed when cells were preincubated in a salts/glucose medium alone.  相似文献   

12.
In the present communication, an experimental approach is utilized that facilitates the study of biochemical processes induced in B cells after their interaction with Th cells. In this approach, Th cell clones are stimulated for 18 h upon anti-CD3-coated plates, fixed with paraformaldehyde, and added at a 2 to 3:1 ratio to small, resting B cells (isolated from Percoll gradients). Th cells not stimulated on anti-CD3-coated plates, but fixed with paraformaldehyde, serve as controls for these experiments. The activated, fixed Th cells induce a transient, sixfold increase in B cell levels of cAMP, as well as an increase in B cell expression of ornithine decarboxylase (ODC) activity. This enzyme initiates the synthesis of polyamines and has been shown to be increased as cells enter the growth phase. In addition, previous studies have shown that the cellular levels of ODC activity are controlled by a multi-tiered regulatory cascade. To examine this aspect, polyclonally stimulated B cells were studied. Such cells demonstrated a gradual increase in ODC mRNA levels that peaked between 6 and 15 h and can be partially explained by a three- to fourfold increase in mRNA stability but not by changes in the enzyme affinity for substrate. The increase in ODC mRNA occurs in the absence of protein synthesis, suggesting that the ODC gene is a member of the immediate/early gene family. Finally, the early increase in ODC mRNA was enhanced in cells in which cAMP levels were artificially elevated, suggesting the possibility that the cAMP-dependent signaling pathway participates during the regulation of this gene expression. The significance of these experimental results concerning the process of B cell activation is discussed.  相似文献   

13.
This report examines the effect of hypotonic stress on ornithine decarboxylase (ODC) activity and ODC mRNA concentrations in LLC-PK1 cells. Earle's balanced salts solution minus glucose (EBSS-G) with decreasing concentrations of NaCl was utilized as the ODC induction medium. Hypotonic EBSS-G increased both the concentration of ODC mRNA and the specific activity of ODC in LLC-PK1 cells. Actinomycin D and cycloheximide prevented the increase in enzyme activity resulting from hypotonic stress. Actinomycin D was also a potent inhibitor of ODC mRNA expression resulting from hypotonic stress. Cycloheximide had very little effect on the induction of ODC mRNA in cells incubated in hypotonic EBSS-G. The magnitude of the increase in both ODC mRNA concentrations and enzyme activity was dependent on the incubation time in hypotonic media. The increase in ODC mRNA concentrations preceded the elevation in enzyme activity. ODC mRNA concentrations and the specific activity of ODC increased as a function of decreasing media osmolarity. The addition of putrescine, spermidine, and spermine to EBSS-G containing reduced NaCl suppressed the increase in LLC-PK1 ODC activity related to hypotonic stress. In contrast, these polyamines did not prevent the increase in ODC mRNA resulting from hypotonic shock. Furthermore, it was demonstrated that hypotonic stress increases ODC mRNA levels and enzyme activity in four additional cell lines from two different species. Based on these results it is suggested that one or more signal transducers associated with cell volume expansion enhance expression of the ODC gene.  相似文献   

14.
Ornithine decarboxylase (ODC, EC 4.1.1.17) activity is induced in the RAW264 macrophage-like cell line by bacterial lipopolysaccharide (LPS). As little as 0.1 ng/ml LPS promoted an increase in ODC activity, while maximal ODC activity (30-fold above control) was induced with 1.0 microgram/ml LPS. An increase in ODC activity was detectable within 90 min of LPS addition. The LPS-induced increase in ODC activity was prevented by inhibitors of protein and RNA synthesis. The induction of the enzyme by LPS was not dependent on prostaglandin production. However, PGE2 (1 microgram/ml) and 8-bromo-cyclic AMP (1 mM), neither of which had an effect on ODC activity when added alone, each acted synergistically to enhance the LPS induction of ODC activity. Enzyme induction was not associated with an alteration in Km for ornithine, which remained constant at 0.04 mM. The extent of the increase in ODC in response to LPS increased with increasing cellular density. This relationship was dependent not on absolute cell density of the monolayer but on the cell number in relation to medium volume, and this dependence could be extrapolated to the origin. Addition of conditioned media from LPS-stimulated but not unstimulated cultures enhanced the ODC increase in sparsely plated cultures in response to a maximal concentration of LPS. The addition of polymyxin B, a reagent that blocks the effects of LPS, including the increase in ODC activity, did not totally inhibit the conditioned medium stimulation. This data indicates that two signals, LPS and a LPS-induced mediator, are involved in the induction of ODC activity in RAW264 cells.  相似文献   

15.
We investigated the regulation of collagenase-3 expression in normal, differentiating rat osteoblasts. Fetal rat calvarial cell cultures showed an increase in alkaline phosphatase activity reaching maximal levels between 7-14 days post-confluence, then declining with the onset of mineralization. Collagenase-3 mRNA was just detectable after proliferation ceased at day 7, increased up to day 21, and declined at later ages. Postconfluent cells maintained in non-mineralizing medium expressed collagenase-3 but did not show the developmental increase exhibited by cells switched to mineralization medium. Cells maintained in non-mineralizing medium continued to proliferate; cells in mineralization medium ceased proliferation. In addition, collagenase-3 mRNA was not detected in subcultured cells allowed to remineralize. These results suggest that enhanced accumulation of collagenase-3 mRNA is triggered by cessation of proliferation or acquisition of a mineralized extracellular matrix and that other factors may also be required. After initiation of basal expression, parathyroid hormone (PTH) caused a dose-dependent increase in collagenase-3 mRNA. Both the cyclic adenosine monophosphate (cAMP) analogue, 8-bromo-cAMP (8-Br-cAMP), and the protein kinase C (PKC) activator, phorbol myristate acetate, increased collagenase-3 expression, while the calcium ionophore, ionomycin, did not, suggesting that PTH was acting through the protein kinase A (PKA) and PKC pathways. Inhibition of protein synthesis with cycloheximide caused an increase in basal collagenase-3 expression but blocked the effect of PTH, suggesting that an inhibitory factor prevents basal expression while an inductive factor is involved with PTH action. In summary, collagenase-3 is expressed in mineralized osteoblasts and cessation of proliferation and initiation of mineralization are triggers for collagenase-3 expression. PTH also stimulates expression of the enzyme through both PKA and PKC pathways in the mineralizing osteoblast.  相似文献   

16.
Changes in both synthesis rate and degradation rate of ornithine decarboxylase (ODC) were pursued in primary cultures of adult rat hepatocytes during the process of ODC induction caused by asparagine and glucagon and also during the process of rapid ODC decay caused by putrescine. The synthesis rate of ODC was determined by [35S]methionine incorporation into the enzyme, which was separated afterwards by immunoprecipitation and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The degradation rate of ODC was determined by following the decay of prelabeled ODC. The enzyme induction caused by asparagine (10 mM) and glucagon (1 microM) was due both to an increase in the synthesis rate and to a decrease in the degradation rate. Addition of 10 mM putrescine caused a rapid decay of ODC activity, which was faster than ODC decay in the presence of cycloheximide. This rapid decay in ODC activity was accompanied by slightly slower decay in ODC protein, which was due both to partial suppression of ODC synthesis and to several fold acceleration of ODC degradation.  相似文献   

17.
Ornithine decarboxylase (ODC; EC 4.1.1.17) is a highly inducible, rate-limiting enzyme of the polyamine pathway. We have studied the mechanisms that lead to the induction of ODC activity in response to electrical stimulation in three brain regions. Hippocampal ODC activity was found to exhibit much larger elevations than that of the neocortex and the cerebellum. The levels of ODC gene expression were also followed to examine its relationship to the existing regional differences in ODC activity. In the neocortex, there was an elevation of both the ODC mRNA and enzyme activity. However, the hippocampal ODC mRNA level was not increased by electroconvulsive shock. Furthermore, the effects of hormonal changes and seizures on these regional differences in ODC induction were also examined. Adrenalectomy did not affect ODC activity, but pretreatment with the anticonvulsant MK-801 caused a depression of the induced levels of enzyme activity. Our data suggest that ODC activity in all the brain regions studied is directly elevated by electrically stimulated seizures. However, this induced ODC activity may or may not involve enhanced gene expression.  相似文献   

18.
19.
Epidermal growth factor (EGF) and prostaglandins (PGs) have been implicated in the regulation of a number of developmental processes in the mammalian embryonic palate. Normal palatal ontogenesis is dependent on the presence and quite possibly on the interaction of various hormones and growth factors. The interaction between EGF and PGs in regulation of murine embryonic palate mesenchymal (MEPM) cell growth and differentiation was therefore investigated by monitoring the activity of ornithine decarboxylase (ODC), the principle and rate limiting enzyme of polyamine biosynthesis. ODC activity is tightly coupled to the proliferative and differentiative state of eukaryotic cells and therefore serves as a reliable indicator of such cellular functions. Treatment of confluent cultures of MEPM cells with EGF (1-50 ng/ml) resulted in a dose-related increase in ODC activity, while similar treatment with either PGE2 or PGF2 alpha (at concentrations up to 1 microM) did not elicit a dose-dependent increase in enzyme activity. Concurrent treatment of MEPM cells with EGF (20 ng/ml) and either PGE2 or PGF2 alpha (0.1-10000 nM) resulted in a marked prostaglandin dose-dependent induction of ODC activity, suggesting a strong cooperative interaction between these factors. ODC activity was maximal by 4 to 8 hr and could be completely inhibited by preincubation of the cells with actinomycin D or cycloheximide, indicating that de novo synthesis of RNA and protein is necessary for enzyme induction. Stimulation of ODC activity by EGF and PGE2 in these cells was not positively correlated with the level of cellular DNA synthesis but did result in a ninefold increase in the synthesis of extracellular glycosaminoglycans (GAGs), a key macromolecular family implicated in palatal morphogenesis. Stimulation of GAG synthesis was significantly inhibited by the administration of 5 mM DFMO (an irreversible inhibitor of ODC), indicating that the marked increase in GAG production was dependent, in part, on the induction of ODC activity by EGF and PGE2. Qualitative analysis of the palatal GAGs indicated that synthesis of several major classes of GAGs was stimulated. Collectively these data demonstrate a cooperative interaction between EGF and PGs in the induction of ODC activity. Such activity may serve to regulate the synthesis of GAGs, which are instrumental in mammalian palatal ontogenesis.  相似文献   

20.
In this work deviation of liver metabolism by cytokines, especially recombinant human interleukin 1-alpha (rhIL1-alpha), was investigated. Administration of rhIL1-alpha or recombinant human tumor necrosis factor (rhTNF/cachectin) to normal mice resulted in rapid, dose-dependent induction of high liver ornithine decarboxylase (ODC) activity. The effects of these cytokines on liver ODC were not indirect effects mediated by eicosanoids. The induction of liver ODC by rhIL1-alpha was at least partly a direct effect on hepatocytes, and was due to increase in de novo synthesis of the enzyme protein after increase in ODC mRNA. No specific protein was required for increase in the level of ODC-mRNA. On IL1 treatment, actinomycin D caused superinduction of liver ODC, which was at least partly due to increased stability of the ODC enzyme, because actinomycin D doubled the apparent half-life (from 50 to 95 min). Daily administration of 2 x 10(3) U of rhIL1-alpha to mice for 3 days also caused decrease in the level of the differentiated type of pyruvate kinase isozyme (PK-L) and marked increase in that of the prototype isozyme (PK-M2) in the liver, but did not cause significant change in the isozyme patterns of the kidney, thymus, and spleen. RhIL1-alpha also induced hypertrophy of the spleen. These results indicate that rhIL1-alpha causes metabolic deviation of the liver similar to that in tumor-bearing hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号