首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vasoactive intestinal polypeptide (VIP) is released into the portal circulation by a meal stimulus, but is rapidly cleared from plasma. Although it is known to bind to receptors on liver cells, the role of the liver in the clearance of VIP is not clearly defined. We therefore studied the disappearance of VIP in recirculating and in single pass isolated perfused rat liver (IPRL) preparations. Disappearance of added VIP was rapid in recirculating IPRL experiments with a half life of ca. 30 min. In single-pass steady-state studies in which livers were perfused at 16 ml/min for 30 min, clearance of VIP was complete (16 ml/min) at concentrations of 500 fmol/ml, but clearance fell to 3 and 1 ml/min at perfusate concentrations of 8 and 40 pmol/ml respectively. Further experiments to evaluate whether VIP was disappearing in perfusate itself demonstrated substantial metabolism of VIP in perfusate which had previously been circulated through a liver for 90 min. The products of metabolism were identical to those found in the IPRL. We conclude that VIP is rapidly cleared as it passes through the isolated perfused rat liver model with a significant proportion of clearance attributable to release of a peptidase from the liver into the perfusate.  相似文献   

2.
Summary An immunohistochemical study for islet amyloid polypeptide (IAPP) was made on the gastrointestinal (GI) tract and pancreas of man and rat, using antisera raised against a synthetic peptide of C-terminal human IAPP (24–37) and a synthetic peptide of rat IAPP (18–37). A large number of IAPP-immunoreactive cells were found in the pyloric antrum, and a small number in the body of the stomach in both man and rat. Cytoplasmic processes extended out from the bipolar peripheral region of the immunoreactive cells, rather like neuronal processes, and some appeared to make contact with other immunoreactive cells. In addition, small numbers of immunoreactive cells were also seen in the duodenum and rectum, whereas they were absent from the jejunum, ileum and large intestine. An examination was made for evidence of colocalization of IAPP-immunoreactive material with material immunoreactive for gastrin, somatostatin, vasoactive intestinal polypeptide, pancreatic polypeptide, insulin, and glucagon, but none was found. IAPP-immunoreactive cells were also found in the pancreas of non-diabetic and non-insulin-dependent diabetic patients, but they were completely absent from a patient with insulin-dependent diabetes mellitus despite the presence of IAPP in the plasma. The results of these studies suggest that the peptide may have a biological role in situ in the GI tract and, in addition to the pancreas, may be a possible source of plasma IAPP.  相似文献   

3.
Vasoactive intestinal peptide (VIP) was tested in order to determine its hypnogenic properties in cats. VIP was administered intraventricularly in doses of 10 and 100 ng and compared to Ringer controls. In addition the dose of 100 ng was tested in cats pretreated with 150 mg/kg of chloramphenicol (CAP). The results showed that the 100 ng dose of VIP had small but significant REM enhancing properties, but that it did not protect the animals from the specific REM inhibiting properties of CAP. The results suggest that VIP may participate in the regulation of REM sleep.  相似文献   

4.
The effects of vasoactive intestinal polypeptide (VIP) microinjected uni- or bilaterally into the CA1 hippocampal area of male Wistar rats at a dose of 10, 50 and 100 ng on exploratory behavior were examined. VIP microinjected bilaterally at a high dose (100 ng) significantly decreased the horizontal movements, while at low doses (10 and 50 ng) had no effect on the exploratory activity. Microinjections of VIP into the left hippocampal CA1 area at doses 50 and 100 ng suppressed the exploratory activity, while right-side VIP administration at a dose 100 ng significantly increased horizontal movements compared to the respective controls. Vertical activity was stimulated only by VIP administered into the right hippocampal CA1 area at the three doses used. Neither bilateral nor left injections of VIP induced changes in the vertical movements. The main finding was the presence of hippocampal asymmetry in exploratory behavior to unilateral microinjections of VIP depending on the dose and the microinjected hemisphere.  相似文献   

5.
Summary Location, distribution and density of nerve fibers immunoreactive to neuropeptide tyrosine, vasoactive intestinal polypeptide and substance P were studied in the reproductive tract of the female rat and compared with acetylcholinesterase-positive (cholinergic) and noradrenergic nerves. Plexuses of all types of fibers were present in the vagina, uterine cervix, uterine horn and oviduct. In the tubular reproductive organs all of these types of nerve fibers appeared to innervate vascular and non-vascular smooth muscle and nearly all types of fibers formed plexuses subjacent to the epithelium lining the organs. Individual fibers of all classes appeared to innervate fascicles of smooth muscle in the mesometrium of the uterine horn. A few acetylcholinesterase-positive and substance P-immunoreactive fibers were present in the ovary but no vasoactive intestinal polypeptide-immunoreactive nerves were observed. Noradrenergic and neuropeptide tyrosine-immunoreactive nerves were numerous in the ovary where they were seen in the interstitial gland tissue and associated with follicles and blood vessels. It is suggested that these nerves may influence hemodynamic events and non-vascular smooth muscle in such functions as transport of sperm and ova and parturition. Substance P-immunoreactive nerve fibers are likely to be sensory fibers that could have roles in neurohormonal reflexes.  相似文献   

6.
Guo MM  Huang MH  Wang CH  Tang CW 《生理学报》2007,59(2):163-168
本文旨在探讨猕猴发育过程中血管活性肠肽(vasoactive intestinal polypeptide,VIP)及其受体在肠肝组织的变化。通过手术途径获得胚胎6月、新生2 d、新生45 d和成年猕猴的回肠、肝脏、门静脉和外周血等标本,应用放射免疫分析法测定各标本中的VIP含量;通过免疫组化方法观察VIP在肠、肝组织内的分布;利用原位杂交法检测VIP受体1(VIP receptor 1,VIPR1)的表达。结果显示:(1)胚胎6月的猕猴小肠VIP含量为(20.7±14.3)ng/mg蛋白;小肠绒毛根部及黏膜下层可见少量的VIP阳性染色颗粒;在发育过程中,小肠VIP含量逐渐增加,成年期时达(514.8±49.2)ng/mg蛋白,较胚胎6月显著增加(P<0.01)。(2)成年猕猴小肠VIP主要分布于绒毛隐窝部、黏膜下层神经及环、纵行肌间神经丛及环行肌,在发育过程中相应部位的VIPR1表达逐渐上调。(3)肝脏在发育过程中VIP及VIPR1含量逐渐降低。(4)发育的各个时期,小肠组织的VIP含量均明显高于肝脏组织,门静脉VIP水平也始终高于外周血。结果提示,小肠绒毛隐窝部、黏膜下层神经及环、纵行肌间神经内VIP及VIPR1含量足在出生以后才迅速增加的;不论是在胚胎还是成年期,VIP均不在肝中代谢和分解,VIPR1仅见于胚胎肝脏血管。  相似文献   

7.
Summary The presence and distribution of nerve fibers expressing immunoreactivity to the neuropeptides vasoactive intestinal polypeptide, peptide HI and cholecystokinin was examined in stretch-prepared rat iris whole mounts. By use of antiserum to vasoactive intestinal polypeptide an irregular, relatively sparse network of varicose, intensely fluorescent fibers was observed innervating both the dilator plate and the sphincter area. Positive fibers were present also in the ciliary body and the choroid membrane. Surprisingly, a large variation in the amount of vasoactive intestinal polypeptide-positive nerves was seen among irides. Furthermore, an uneven distribution of fluorescent nerve fibers was observed within individual irides. Thus, some areas had a relatively dense innervation, whereas others were devoid of immunoreactive nerve fibers. A similar fiber system was detected using antiserum to peptide HI. In all probability, vasoactive intestinal polypeptide and peptide HI coexist within the same nerve population. A denser and more regular network of cholecystokinin-positive fibers was found in normal rat irides. Such fibers were also present in the sphincter area and in high density in the choroid membrane. Neither extirpation of the superior cervical nor the ciliary ganglion caused any detectable decrease in amount of either vasoactive intestinal polypeptide/peptide HI- or cholecystokinin-positive fibers. However, capsaicin, which in the iris causes permanent disappearance of substance-P fibers, had a similar effect on cholecystokinin-positive fibers, whereas no effect was noted on the vasoactive intestinal polypeptide/peptide HI fiber network. It is concluded that the rat iris contains a network of vasoactive intestinal polypeptide/peptide HI-positive nerves that does not originate in either the superior cervical or the ciliary ganglion, and most probably also not in the trigeminal ganglion, and a cholecystokinin-positive network that probably originates in the trigeminal ganglion.  相似文献   

8.
Summary Scattered vasoactive intestinal polypeptide (VIP) — immunoreactive nerves were found in the striated muscle of the hind limb of the cat, where they usually were associated with small blood vessels. VIP-immunoreactive nerves were also demonstrated in the sciatic nerve; after nerve ligation an abundance of intensely immunoreactive VIP fibres were seen proximal to the ligation. Intraarterial infusion of VIP into the isolated hind limb of the cat had dramatic effects on different sections of the vascular bed. Thus, VIP dilated the resistance vessels leading to a marked increment in muscle blood flow. VIP also relaxed the capacitance vessels causing regional pooling of blood; it increased the capillary surface area available for fluid exchange. Infusions of VIP at a dose of 8 g/min significantly inhibited the vasoconstriction induced by electrical stimulation of the regional sympathetic nerves. It is suggested that local nervous release of VIP may act as a modulator of vascular tone in skeletal muscle.  相似文献   

9.
The effect of prostaglandin D2 (PGD2) on vasoactive intestinal polypeptide (VIP) release from the hypothalamus was examined by determining plasma VIP levels in rat hypophysial portal blood. Intraventricular injection of PGD2 (5 micrograms/rat) caused a 3-fold increase in the concentration of plasma VIP in hypophysial portal blood in anesthetized rats. A PGD2 metabolite, 13,14-dihydro-15-keto PGD2, did not affect VIP levels in portal blood. The flow rate of hypophysial portal blood was not changed after the injection of PGD2. The intraventricular injection of PGD2, but not PGD2 metabolite, resulted in an increase in peripheral plasma prolactin (PRL) levels in the rat. These findings suggest that PGD2 plays a stimulatory role in regulating VIP release from the hypothalamus into hypophysial portal blood and causes PRL secretion from the pituitary in rats.  相似文献   

10.
Summary The distribution of vasoactive intestinal polypeptide (VIP) immunoreactivity has been studied in the mammalian heart and compared with that of neurotensin and substance P by use of light-microscopic peroxidase-antiperoxidase immunohistochemistry. VIP-immunoreactive cell bodies are present in intracardiac ganglia in various locations. VIP-immunoreactive nerve fibers predominate in the atria and the conduction system but are rare in the ventricles and occur in cardiac ganglia, endocardium, and epicardium. VIP-ergic nerves supply the coronary vasculature having a preference for the microvasculature and the nodal cells of the sinuatrial node. The large vessels of the heart and periarterial cardiac glomera also receive a VIP-immunoreactive nerve supply. There is partial co-distribution with neurotensin- and substance P-immunoreactive nerve fibers but no co-location in identical nerve fibers is detectable. The VIP-ergic cardiac innervation, which is probably predominantly intrinsic, may stem from postganglionic parasympathetic neurons and is less substantial than the more homogeneous neurotensin-ergic and substance P-ergic nervous supply which is probably extrinsic. The occurrence of an extrinsic VIP-ergic cardiac innervation cannot be excluded however. The differential histotopography of the multitarget cardiac nerves containing the cardiovascular active peptides VIP, neurotensin and substance P may suggest multiple and complex peptide-peptide and peptide-classical transmitter interactions. These may contribute to the regulation of various cardiac functions.  相似文献   

11.
Vasoactive intestinal peptide (VIP) is a putative neurotransmitter in both the brain and peripheral tissues. To define possible target tissues of VIP we have used quantitative receptor autoradiography to localize and quantify the distribution of 125I-VIP receptor binding sites in the canine gastrointestinal tract. While the distribution of VIP binding sites was different for each segment examined, specific VIP binding sites were localized to the mucosa, the muscularis mucosa, the smooth muscle of submucosal arterioles, lymph nodules, and the circular and longitudinal smooth muscle of the muscularis externa. These results identify putative target tissues of VIP action in the canine gastrointestinal tract. In correlation with physiological data, VIP sites appear to be involved in the regulation of a variety of gastrointestinal functions including epithelial ion transport, gastric secretion, hemodynamic regulation, immune response, esophageal, gastric and intestinal motility.  相似文献   

12.
发育过程中肝脏血管活性肠肽及其受体量的变化   总被引:3,自引:2,他引:1  
Wang L  Tang CW  Wang CH  Li X 《生理学报》2005,57(3):379-383
已有的研究观察到,胚胎肝脏中血管活性肠肽(vasoactiveintestinalpolypeptide,VIP)及其受体(vasoactiveintesti-nalpolypeptidereceptor,VIPR)与造血干细胞生长和肝脏发育有关。本研究旨在了解发育过程中肝VIP及VIPR量的动态变化。采用放射免疫分析法、生物分子相互作用系统和RT-PCR等技术检测了各发育阶段大鼠肝组织VIP浓度、VIP受体结合量及VIP受体表达亚型,实验观察到胎鼠和新生鼠肝脏VIP浓度显著低于未成年鼠及成年鼠肝脏VIP浓度(P<0.05)。发育尚未成熟时(胎鼠、新生鼠、未成年鼠),肝VIPR表达均明显高于成年鼠(P<0.05),表明大鼠在发育过程中肝脏VIP与VIP受体量呈相反的变化趋势。大鼠发育各时期,肝脏均表达VIPR-1。这些结果部分解释了肝脏发育、肝脏造血转移等重要生理现象。  相似文献   

13.
Extracts of liver, kidney and brain contain an enzyme that is highly specific for degradation of vasoactive intestinal polypeptide (VIP). The Michaelis constants (Km's) appear to be nearly identical in all three tissues, averaging about 10?5 mol/liter. The Vmax for kidney and liver are about the same but that for cerebral cortex is about two-fold lower. Since the relative Vmax in the three organs differ for insulin and VIP, it is concluded that it is unlikely that the same enzyme is responsible for the degradation of both peptides.  相似文献   

14.
Summary The localization of vasoactive intestinal polypeptide (VIP) in the hypothalamus of the quail has been studied by means of light- and electron-microscopic immunohistochemistry. Numerous VIP-immunoreactive perikarya are distributed in the caudal portion of the nucleus infundibularis (n. tuberis) and nucleus mamillaris lateralis, and sparse in the preoptic area, nucleus supraopticus and nucleus paraventricularis. Dense localization of immunoreactive-VIP fibers is observed in the external layer of the median eminence, in close contact with the primary portal capillaries. The main origins of these fiber terminals are VIP-immunoreactive perikarya of the nucleus infundibularis. These neurons are spindle or bipolar and extend one process to the ventricular surface and another to the external layer of median eminence. They are CSF-contacting neurons and apparently constitute the tubero-hypophysial tract that links the third ventricle and the hypophysial portal circulation. VIP-reactive neurons in the nucleus mamillaris lateralis also project axons to the external layer of the median eminence, constituting the posterior bundle of the tuberohypophysial tract. Numerous VIP-immunoreactive perikarya occur also in the nucleus accumbens/pars posterior close to the lateral ventricle. They are also CSF-contacting neurons extending a process to the lateral ventricle. There are moderate distributions of VIP-reactive fibers in the area ventralis and in the area septalis.Ultrastructurally, the immunoreactive products against VIP are found in the elementary granules, 75–115 nm in diameter, within the nerve fibers in the median eminence.This investigation was supported by Scientific Research Grants No. 00556196, No. 56360027 and No. 56760183 from the Ministry of Education of Japan to Professor Mikami and Mr. Yamada  相似文献   

15.
Summary Thermic lesions in the medial septum of adult rats result in dark degeneration of terminal boutons in the stratum moleculare and hilus of the area dentata. While most of the degenerating terminals are in synaptic contact with non-reactive cells, part of them end on dendrites of VIP-like immunoreactive neurons.  相似文献   

16.
Neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactive nerves were demonstrated in 21-day-old embryonic pancreatic tissue fragments transplanted into the anterior eye chamber of rats for 22, 45 and 109 days and in 60-day-old normal adult pancreas using immunohistochemical technique. In normal adult tissue, NPY-positive neurons lie close to the basal and lateral walls of the acinar cells. NPY-containing nerve fiber plexuses were found around blood vessels. VIP-immunopositive nerves were also discernible in the outer parts of the islets of Langerhans and on pancreatic ducts. In the transplants, it is not only the neural elements that survived but also the pancreatic ducts and the endocrine cells. VIP- and NPY-positive neurons were found in the stroma of the surviving pancreatic tissue. The distribution of these neural elements is similar to that of normal tissue in the surviving pancreatic ducts but different with regards to the acinar tissue. This study confirms that intrinsic nerves can survive and synthesize polypeptides even after 109 days of transplantation into the anterior eye chamber.  相似文献   

17.
Intracerebroventricular (ICV) injection of pituitary adenylate cyclase-activating polypeptide-38 (PACAP) or vasoactive intestinal peptide (VIP) inhibits feeding in chicks. However, the underlying anorexigenic mechanism(s) has not yet been investigated. The present study investigated whether these peptides influence the activity of corticotrophin-releasing factor (CRF) neural pathways in the brain of chicks. Firstly, we found that ICV injections of PACAP and VIP increased plasma corticosterone concentrations. The corticosterone-releasing effect of PACAP was completely attenuated by co-injection of astressin, a CRF receptor antagonist, but this effect was only partial for VIP. These results demonstrated that CRF neurons mediate the actions of PACAP and, to a lesser extent, VIP, and suggest that the signaling mechanisms differ between the two peptides. This difference may arise from the two peptides interacting with different receptors because the corticosterone-releasing effect of PACAP, but not VIP, was completely attenuated by co-injection of PACAP (6–38), a PACAP receptor antagonist. Finally, we examined the effect of ICV co-injection of astressin on the anorexigenic effects of PACAP and VIP and found that the effects of both peptides were attenuated by astressin. Overall, the present study suggests that the anorexigenic effects of PACAP and VIP are mediated by the activation of CRF neurons.  相似文献   

18.
Recent experiments conducted in this laboratory have shown that intravenous infusions of vasoactive intestinal polypeptide (VIP) induced significant increases in plasma progesterone (P) in female rabbits. The purpose of this study was to determine the organ source of this P and to clarify the mechanisms by which it is induced. Intravenous infusions of VIP (37.5, 75, and 150 pmol/kg per min for 60 min) produced acute dose-dependent increases in plasma P in intact estrous rabbits. In ovariectomized (OVX) animals, VIP infusion (75 pmol/kg per min) produced a P increase of the same magnitude. In animals both OVX and adrenalectomized (ADX), this VIP effect was eliminated. The only significant change noted in luteotropic hormone (LH) or follicle stimulating hormone (FSH) was a decrease in FSH immediately following VIP infusion (150 pmol/kg). VIP infusion significantly increased plasma cortisol in intact and OVX animals, but not in OVX/ADX animals. It is concluded that VIP primarily stimulates the adrenal component of P secretion in the rabbit, via mechanisms independent of LH or FSH.  相似文献   

19.
E. Wechsung  A. Houvenaghel 《Peptides》1994,15(8):1373-1376
The influence of intravenous infusion of VIP, 150 and 300 pmol/kg/min, on gastrointestinal electrical activity was studied in conscious piglets with electrodes implanted in the wall of the antrum pylori, duodenum, jejunum, and ileum. Both doses resulted in a decrease in antral electrical activity. In the small intestine, only the lower dose caused a shortening of the irregular spiking activity phase in the jejunum and ileum. In the jejunum this resulted in a reduction of the MMC interval. It may be concluded that the prevailing effect of VIP is an inhibition of gastrointestinal electrical activity in the piglet.  相似文献   

20.
Summary The pathway of nerves with vasoactive intestinal polypeptide(VIP)-like immunoreactivity to the major cerebral arteries was studied in rats by means of the indirect immunofluorescent method. The fibers are densely distributed in the ethmoidal nerves and in the adventitia of both the external and internal ethmoidal arteries. Section of both ethmoidal nerves and external ethmoidal arteries before they enter the cranial cavity induced a marked reduction of VIP-like immunoreactive fibers in the walls of the vessels of the circle of Willis and its major branches. However, section of the external ethmoidal artery alone did not result in visible changes of the nerves around major cerebral arteries. The present study suggests that VIP-like immunoreactive fibers surrounding major cerebral arteries of the rat arise from fibers in the ethmoidal nerve showing immunoreactivity to VIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号