首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free ion concentrations in the receptor lymph of the labellar taste hair were examined on the fleshfly Boettcherisca peregrina, making use of several kinds of ion-selective microelectrodes inserted into the outer lumen of the taste hair through its cut end. The receptor lymph was rich in Na+ and Cl- but poor in K+, that is, concentrations of free Na+, K+, Ca2+ and Cl- were (in mM) 117,24,0.2 and 109, respectively. The haemolymph of this insect had similar free ion concentrations.Next, the role of transepithelial voltage (TEV; 47.1 ± 1.0 mV), which the receptor lymph space of the taste hair had with respect to the haemolymph, was examined. The quantitative relationship between the TEV amplitudes and the impulse frequencies of the sugar receptor evoked by sucrose stimulation was determined, changing TEV with application of respiratory inhibitors to the taste hair tip or by injecting current into the outer lumen. The TEV is concluded to provide the major component of the driving electromotive force for the receptor current to flow.  相似文献   

2.
The central projection patterns of sensory cells from the wing and haltere of Drosophila, as revealed by filling their axons with cobalt, consist of dorsal components arising from small campaniform sensilla and ventral components arising from large campaniform sensilla and from bristles. All of the bristles of the wing are innervated, some singly and some multiply. All three classes of sensilla are strongly represented on the wing, but the haltere carries primarily small campaniform sensilla and has a correspondingly minute ventral projection. In bithorax mutants in which the haltere is transformed into wing, ventral components are added to the projection pattern, while the dorsal components appear as if haltere tissue were still present. Thus, the three classes of receptors not only produce different projection patterns when they develop in their native mesothoracic segment, but also behave differently in the homeotic situation. Consequently, different developmental programs are inferred for each class. When somatic recombination clones of bithorax tissue are generated in phenotypically wild-type flies, they also produce ventral projections. However, these projections of mutant fibers into wild-type ganglia differ in certain details from the projections of mutant fibers into mutant ganglia. Thus, homeotic changes are inferred to occur in the CNS of mutant flies, but these are not required for the execution of those developmental instructions carried in the genome of large campaniform and bristle sensory cells which specify that their axons should grow ventrad in the CNS.  相似文献   

3.
Summary The membrane potential of identified nerve (Retzius) cells and neuropil glial cells from 11 (±1) day-old embryos of the leechHirudo medicinalis was recorded using conventional intracellular microelectrodes. At this stage all ganglia of the segmental nervous system are formed. The membrane potential of Retzius cells was –68±4 mV (±SD,n=8), and showed a slope of 42 mV between 10 mM and 100 mM external K concentration. Retzius cells were able to fire action potentials which had a fast Na-dependent component, and, under appropriate conditions, also generated slow Ca (Ba) action potentials. The mean membrane potential of the neuropil glial cell at physiological K concentration (4 mM) was –83±5 mV (±SD,n=10), and showed a dependence of 56 mV for a tenfold change in the external K concentration (> 4mM). Neuropil glial cells showed no signs of voltage-activated excitability, but they repeatedly depolarized in the presence of 0.1 mM 5-HT.  相似文献   

4.
Summary The antennal trap setae ofLoricera pilicornis (Carabidae) with one mechanoreceptive neuron and 2 or 3 neurons of so far unknown function were characterized electrophysiologically. The setal shaft is conductive, but screens the epithelial cells against electrolytes (5 mM KCl, 200 mM CaCl2).Transepithelial resistances in the setae ranged from 180 to 490 M (25° C) and 320 to 830 M (12° C). Mechanical stimuli reduce the transepithelial voltage by maximally –13 mV (receptor potential), corresponding to (calculated) receptor currents below 30 pA. Spikes superimposed on receptor potentials can be 20 mV p/p and cause transient transeptithelial current changes that exceed the receptor current.Clamp currents greater than 110 pA inward (12° C) across the epithelium elicit positive spikes at frequencies that are essentially independent of current intensity. Outward clamp currents above 25 pA elicit negative spikes of current-dependent frequency with one to three positive smaller pulses superimposed on them. This indicates the coexistance of apical and basal spike generator sites in the sensillar neurons.We conclude: in the cell with the tubular body, mechanical stimuli elicit a receptor current and apical spikes. These spikes can render the receptor lymph cavity sufficiently negative to trigger synchronized apical spikes in the other neurons, too. The apical spikes trigger the less synchronized basal spikes in the individual neurons.Abbreviations TEV transepithelial voltage - TER transepithelial resistance  相似文献   

5.
Summary The receptor lymph of campaniform sensilla on the halteres of the blowfly, Calliphora vicina, was analyzed histochemically. Acid mucopolysaccharides were demonstrated by a test for iron-binding capacity (Hale-reaction). Further characterization by enzyme treatment showed that the receptor lymph contains hyaluronic acid and/or chondroitin sulfate. Ultrahistochemical studies gave evidence for glycoproteins in the inner and outer receptor lymph space. The significance of acid mucopolysaccharides for arthropod sensilla is discussed.  相似文献   

6.
Summary Antennal styloconic thermo-hygro sensilla of Antheraea were studied with DC-coupled transepithelial recordings. — The transepithelial voltage changed by about 2 mV · °C–1. The spike frequency of the cold cell reached 300 Hz at the onset of negative temperature steps, but only 30 Hz at static temperatures (as with metal electrodes). The cold cell spikes showed a brief afterhyperpolarization that increased with temperature. The spikes of the cold- and warm-stimulated cells facilitated each other at low temperature. Mechanical stimuli (push against the sensillum, hydrostatic pressure of < ± 50 kPa, ultrasonic vibrations 120 kHz) modified the responses of the cold- and the warm-stimulated cells. Latency of cold cell responses to ultrasonic stimulation was occasionally less than 3 ms. — The impulse frequencies of the warm and the cold cells depend on the temperature and the magnitude of temperature change. When the firing rate is high enough by either or both of these parameters, it can be forced still higher by application of clamp current (outside positive). The higher the firing rate prior to clamping, the greater the effect of the current. — By analogy with sensilla for other modalities, this relationship between frequency and clamp current strongly suggests that stimulus-dependent changes in the conductance of dendritic membranes control the excitation of the warm and cold cells.Abbreviations DC direct voltage - TER transepithelial slope resistance between recording electrode and reference electrode in the hemolymph - NTC thermistor with negative temperature coefficient - TEV transepithelial voltage between electrodes - THS thermo-hygro sensillum  相似文献   

7.
8.
Summary During anuran metamorphosis dramatic changes in morphogenesis and differentiation of epidermis occur under the influence of thyroid hormones. Modification of ionic calcium concentration also markedly alters the pattern of proliferation and differentiation in amphibian epidermal cells in vitro. The present study was designed to determine the direct effect of low (0.05 mM) and high (0.5mM) calcium (Ca2+) in the absence or presence of thyroxine (10−7 M) on epidermal cells of the body and tail tissue in vitro. When tail fin and body skin explants were maintained in low (0.05 mM) calcium for 48 h, normal ultrastructural morphology and integrity of the cells was observed in both the tissue types. When tissues were exposed to high levels of calcium (0.5mM) in culture medium, tail epidermis showed stratification, and skein cells exhibited apoptosis, both in the presence or absence of thyroid hormones. Under high calcium conditions, the body epidermis showed keratinization of apical cells, apoptosis of skein cells, and increased desmosome formation. These results suggest that (1) optimal Ca2+ concentration for larval epidermal cells is quite low (0.05 mM), (2) high Ca2+ leads to keratinization only in body epidermis, and (3) apoptosis occurred in skein cells of both the tissues at high Ca2+ concentrations (0.5mM). The present study therefore suggests that the extracellular calcium concentration regulates the process of cell death and differentiation inRana catesbeiana larval epidermis, and this effect may be similar to the effect of calcium on mammalian epidermal cells.  相似文献   

9.
Summary The purified ryanodine receptor channel of the sheep cardiac muscle sarcoplasmic reticulum (SR) membrane functions as a calcium-activated cation-selective channel under voltage-clamp conditions following reconstitution into planar phospholipid bilayers. We have investigated the effects of the tetra-alkyl ammonium (TAA) cations, (C n H2n+1)4N+ and the trimethyl ammonium cations, ethyltrimethyl ammonium and propyltrimethyl ammonium, on potassium conductance through the receptor channel. Small TAA cations (n = 1–3) and the trimethyl ammonium derivatives act as asymmetric, voltage-dependent blockers of potassium current. Quantitative analysis of the voltage dependence of block indicates that the conduction pathway of the sheep cardiac SR ryanodine receptor channel contains two distinct sites for the interaction of these small organic cations. Sites are located at approximately 50% for tetramethyl ammonium (TMA +) and 90% for tetraethyl ammonium (TEA+) and tetrapropyl ammonium (TPrA+) of the voltage drop across the channel from the cytosolic face of the protein. The chemical substitution of an ethyl or propyl group for one of the methyl groups in TMA+ increases the voltage dependence of block to a level similar to that of TEA + and TPrA+. The zero-voltage dissociation constant (K b(0)) falls with the increasing number of methyl and methylene groups for those blockers acting 90% of the way across the voltage drop. This is interpreted as suggesting a hydrophobic binding site at this point in the conduction pathway. The degree of block increases as the concentration of small TAA cations is raised. The concentration dependence of tetraethyl ammonium block indicates that the cation interacts with a single site within the conduction pathway with a K m of 9.8±1.7 mm (mean±sd) at 40 mV. Larger TAA cations (n = 4–5) do not induce voltage-dependent block of potassium current of the form seen with the smaller TAA cations. These data support the contention that the sheep cardiac SR ryanodine receptor channel may be occupied by at most one ion at a time and suggest that a large proportion of the voltage drop falls over a relatively wide region of the conduction pathway.This work was supported by funds from the Medical Research Council and the British Heart Foundation. We would like to thank Richard Montgomery for his considerable help with the chemical synthesis. We are grateful to Drs. John Chambers, Nick Price and staff for showing us the intricacies of NMR spectroscopy.  相似文献   

10.
Summary Campaniform sensilla associated with filiform hairs comprise an important receptor type of the multimodal sensory system of the cerci of crickets and cockroaches. Their axon projections were investigated using iontophoretic cobalt injection into single sensilla.In crickets (Gryllus bimaculatus, Acheta domestica), six different types of cereal campaniform sensilla projections can be distinguished on the basis of their axonal arborizations and terminations. Typically, a proportion of cereal campaniform sensilla, associated with long filiform hairs, give rise to axons that ascend as through fibres from the terminal ganglion to reach the sixth abdominal ganglion. Cereal campaniform sensilla associated with clavate hairs have projections restricted to the terminal ganglion alone.Whereas in crickets axons of cercal campaniform sensilla invade only certain segmental neuropils in the terminal ganglion, in cockroaches (Periplaneta americana) axons from cercal campaniform sensilla branch in every segmental neuropil. A proportion of cereal campaniform sensilla in this species also gives rise to through fibres to the fifth abdominal ganglion.We discuss morphological and functional interpretations of differences between crickets and cockroaches and consider the significance of this type of receptor in the context of previous studies of the cercal system.  相似文献   

11.
Nutrient culture studies frequently involve the use of balancing ions to equalize concentrations of essential nutrient elements. In a pot experiment in controlled environment with Lupinus angustifolius, growth and nodulation were assessed following calcium treatment (15 mM) using the acetate, chloride and sulphate salts in various combinations. Chloride depressed nodulation at levels higher than 20 mM; nodule mass and number were highest at the maximum sulphate concentration (13 mM). At the lowest sulphate level (2 mM), nodulation and root growth were depressed by 4 mM or higher acetate. Nodulation (dry weight and numbers of nodules) was maximized at 13 mM sulphate/4 mM chloride.  相似文献   

12.
Abstract: The effect of ionotropic excitatory amino acids and potassium on the formation of inositol phosphates elicited by the metabotropic glutamate receptor agonist (±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD) was studied in mouse cerebellar granule cells. In Mg2+-containing buffers, NMDA (50–100 µM), α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA; 10–1,000 µM), and high potassium (10–30 mM) enhanced synergistically the response to a maximally effective concentration of 500 µMtrans-ACPD. Potentiation of the trans-ACPD response was blocked by higher concentrations of NMDA (>500 µM) and potassium (>35 mM) but not by AMPA (up to 1 mM). The potentiation by NMDA of the trans-ACPD-stimulated phosphoinositide hydrolysis was blocked by d,l -2-amino-5-phosphonopentanoic acid (APV), a competitive NMDA-receptor antagonist. Under Mg2+-free conditions, the accumulation of inositol phosphates in the presence of trans-ACPD alone was equal to that attained by trans-ACPD in Mg2+-containing buffers when costimulated with maximally enhancing concentrations of NMDA (50 µM). trans-ACPD potentiated synergistically the NMDA-evoked increases in cytosolic free-Ca2+ levels in Mg2+-containing but not in Mg2+-free solutions, and moreover did not enhance the AMPA-evoked increases in cytosolic free-Ca2+ levels. The calcium ionophore A23187 caused a dose-dependent increase in inositol phosphate accumulation but did not enhance the response stimulated by trans-ACPD alone. These results demonstrate the existence of cross talk between metabotropic and ionotropic glutamate receptors in cerebellar granule cells. The exact mechanism remains unclear but appears to involve interplay of G protein-coupled phospholipase C activation and regulated elevation of cytosolic free-Ca2+ levels. This study may provide a framework for future investigations at the cellular and molecular level that clarify the functional relevance and molecular mechanisms that are described.  相似文献   

13.
We investigated the electrophysiological effect and antiarrhythmic potential of cinnamophilin (Cinn), a thromboxane A2 antagonist isolated fromCinnamomum philippinense, on rat cardiac tissues. Action potential and ionic currents in single rat ventricular cells were examined by current clamp or voltage clamp in a whole-cell configuration. In 9 episodes of ischemia-reperfusion arrhythmia, 10 µM Cinn converted 6 of them to normal sinus rhythm. Cinn suppressed the maximal rate of rise of the action potential upstroke (Vmax) and prolonged the action potential duration at 50% repolarization (APD50). Voltage clamp study showed that the suppression of Vmax by Cinn was associated with an inhibition of sodium inward current (INa, IC50=10.0 ± 0.4 µM). At 30 µM, V1/2 for the steady-state inactivation curve of INa was shifted from –84.1 ± 0.2 to –93.0 ± 0.5 mV. Cinn also reduced calcium inward current (ICa) dose-dependently with an IC50 value of 9.5 ± 0.3 µM. Cinn (10 µM) reduced the ICa with a negative shift of V1/2 for the steady-state inactivation curve of ICa from –32.2 ± 0.3 to –50.7 ± 0.4 mV. The prolongation of APD50 was associated with an inhibition of the integral of potassium outward current with IC50 values between 4.8 and 7.1 µM. At 10 µM, Cinn reduced INa without a negative shift of its voltage-dependent steady-state inactivation curves. The inhibition of transient outward current (Ito) by Cinn (3–30 µM) was associated with an acceleration of its time constant of inactivation and negative shift of its potential-dependent steady-state inactivation curves. The equilibrium dissociation constant (Kd) of Cinn to inhibit open state Ito channels, as calculated from the time constant of developing block, was 18.3 µM. The time constant of recovery of Ito from inactivation state was unaffected by Cinn. The rate constant for the relief from the depolarization-dependent block of Ito was calculated to be 23.9 ms. As compared with its effect on Ito, Cinn exerted about half the potency to block INa and ICa. These results indicate that the inhibition of INa, ICa and Ito may contribute to the antiarrhythmic activity of Cinn against ischemia-reperfusion arrhythmia.  相似文献   

14.
Isolated axons from the squid, Dosidicus gigas, were internally perfused with potassium fluoride solutions. Membrane currents were measured following step changes of membrane potential in a voltage-clamp arrangement with external isosmotic solution changes in the order: potassium-free artificial seawater; potassium chloride; potassium chloride containing 10, 25, 40 or 50, mM calcium or magnesium; and potassium-free artificial seawater. The following results suggest that the currents measured under voltage clamp with potassium outside and inside can be separated into two components and that one of them, the predominant one, is carried through the potassium system. (a) Outward currents in isosmotic potassium were strongly and reversibly reduced by tetraethylammonium chloride. (b) Without calcium or magnesium a progressive increase in the nontime-dependent component of the currents (leakage) occurred. (c) The restoration of calcium or magnesium within 15–30 min decreases this leakage. (d) With 50 mM divalent ions the steady-state current-voltage curve was nonlinear with negative resistance as observed in intact axons in isosmotic potassium. (e) The time-dependent components of the membrane currents were not clearly affected by calcium or magnesium. These results show a strong dependence of the leakage currents on external calcium or magnesium concentration but provide no support for the involvement of calcium or magnesium in the kinetics of the potassium system.  相似文献   

15.
Summary A membrane bound, potassium sensitive ATPase which occurs in the proboscis ofProtophormia terraenovae (Diptera, Calliphoridae) is described. This ATPase activity is found only in the sensilla-rich labella but not in the haustella which contain few sensilla. Density gradient centrifugation shows that the enzyme is not of mitochondrial origin. It is insensitive to sodium azide, a specific inhibitor of mitochondrial ATPases, and has a relatively low affinity to potassium: half maximal activation is reached at approximately 70 mmol/l potassium.It is suggested that the potassium activated ATPase in the labellum of the fly is an integral constituent of the electrogenic potassium pump, which may be important for the generation of receptor currents.Abbreviation TEV transepithelial voltage Supported by the Deutsche Forschungsgemeinschaft SFB 4/C4  相似文献   

16.
The receptor lymph of campaniform sensilla on the halteres of the blowfly, Calliphora vicina, was analyzed histochemically. Acid mucopolysaccharides were demonstrated by a test for iron-binding capacity (Hale-reaction). Further characterization by enzyme treatment showed that the receptor lymph contains hyaluronic acid and/or chondroitin sulfate. Ultrahistochemical studies gave evidence for glycoproteins in the inner and outer receptor lymph space. The significance of acid mucopolysaccharides for arthropod sensilla is discussed.  相似文献   

17.
1. The aim of this study was to elucidate the effect of metabolic inhibition on the membrane potential and ion conductance of rat astrocytes. The metabolic inhibitors investigated were dinitrophenol (DNP), carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP), cyanide, and oligomycin.2. Primary cultures of astroglial cells from newborn rat cerebral cortex were cultivated for 13–20 days on chamber slides. The effect of metabolic inhibitors on the cellular ATP concentration was estimated from the decrease in peak chemiluminescence from the luciferin/luciferase reaction. The membrane potential and ion conductances were measured from whole-cell recordings with the patch-clamp technique.3. After 2.0 min of incubation ATP decreased from the control level to 43%with cyanide (2 mM), 58% with DNP (1 mM), 47% with FCCP (1 M), and 69% with oligomycin (10 M).4. Under normal conditions V was –74.4±1.0 mV. DNP and FCCP both caused a rapid and reversible depolarization equivalent to a shift in the I/V curve of 8.2±1.3 and 19.7±3.8 mV, respectively. DNP decreased the slope conductance (g) by 22.1% but FCCP had no significant effect on g. In contrast, neither oligomycin nor cyanide had any significant effect on the I/V curve.5. Tetraethylammonium (TEA; 10 mM) depolarized the cells by 7.1±2.0 mV but had no significant effect on g. In the presence of TEA, DNP caused a depolarization of 52.8±3.5 mV and increased g by 45.5±9.6%. The action of FCCP was not affected by the presence of TEA.6. Perfusion of the astrocytes with a Cl free solution inhibited the action of DNP and FCCP. Thus the depolarization was only 4.2±1.5mV in DNP and 3.7±0.3 mV in FCCP, which were significantly smaller effects than in the presence of a high intracellular [Cl].7. Block of tentative KATP channels with tolbutamide (1 mM) or Cl channels with Zn2+ (1 mM) did not inhibit the depolarization caused by DNP or FCCP.8. In conclusion, DNP and FCCP have specific effects on the plasmalemma in rat astrocytes which may be due to opening of Cl channels. This effect was not seen with cyanide or oligomycin and should be considered as a possible complication when DNP and FCCP are used for metabolic inhibition.  相似文献   

18.
Summary Hemolymph was examined in young (ca. 86 days old), mature (ca. 163 days old), and old (ca. 294 days old) Aplysia for age-related changes in constituent proteins. In young, mature, and old animals protein concentrations were 1.6±0.27, 1.41±0.53, and 1.45±0.43 mg·ml-1, respectively. The copper-containing respiratory protein, hemocyanin, measured by determining the copper concentration, was found to increase significantly from young (0.98±0.51 g·ml-1) to mature (2.02±0.95 g·ml-1) Aplysia, with little change between mature and old (1.92±0.43 g·ml-1) animals. These findings were consistent with the results obtained when hemocyanin was directly measured by spectrophotometric absorption at 340 nm. Acetylcholinesterase (AChE) was present in the hemolymph of Aplysia. Its activity was highest in mature animals (3121±1627 units·mg-1) and least in old animals (1463±599 units·mg-1). Young animals had intermediate levels (2080±762 units·mg-1). SDS-PAGE revealed a distinct pattern of protein bands for hemolymph from each age group; hemolymph from the young group contained six prominent protein bands with molecular weights (MW) from 13 to 300 kDa. Hemolymph of mature and old animals exhibited four and three prominent protein bands, respectively, with MW between 45 and 300 kDa. A prominent band at 97 kDa was present in samples from the mature group, but was faint in samples from the old group and absent in samples from the young group. Under non-denaturing conditions the hemolymph protein band patterns for each group differed from the others, thereby demonstrating that the age-dependent differences in the protein profiles are intrinsic to hemolymph in vivo. Isoelectric focusing of the hemolymph samples revealed that the proteins were all acidic (pI ca. 3.0–6.5). The hemolymph from the young differed from the other two groups in having an additional acidic protein (pI ca. 4.0). A possible link between age-related changes in hemolymph proteins and age-related changes in the nervous system is proposed.Abbreviations 2-ME 2-mercaptoethanol - AChE acetylcholinesterase - FMRFamide amidated tetrapeptide containing phenylalanine, methionine, arginine and phenylalanine - MW molecular weight - PAS periodic acid-Schiff - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TRIS tris-(hydroxymethyl)-aminomethane  相似文献   

19.
In Drosophila, gustatory receptor neurons (GRNs) occur within hair‐like structures called sensilla. Most taste sensilla house four GRNs, which have been named according to their preferred sensitivity to basic stimuli: water (W cell), sugars (S cell), salt at low concentration (L1 cell), and salt at high concentration (L2 cell). Labellar taste sensilla are classified into three types, l‐, s‐, and i‐type, according to their length and location. Of these, l‐ and s‐type labellar sensilla possess these four cells, but most i‐type sensilla house only two GRNs. In i‐type sensilla, we demonstrate here that the first GRN responds to sugar and to low concentrations of salt (10–50 mM NaCl). The second GRN detects a range of bitter compounds, among which strychnine is the most potent; and also to salt at high concentrations (over 400 mM NaCl). Neither type of GRN responds to water. The detection of feeding stimulants in i‐type sensilla appears to be performed by one GRN with the combined properties of S + L1 cells, while the other GRN detects feeding inhibitors in a similar manner to bitter‐sensitive L2 cells on the legs. These sensilla thus house two GRNs having an antagonistic effect on behavior, suggesting that the expression of taste receptors is segregated across them accordingly. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

20.
Detection of force increases and decreases is important in motor control. Experiments were performed to characterize the structure and responses of tibial campaniform sensilla, receptors that encode forces through cuticular strains, in the middle leg of the stick insect (Carausius morosus). The sensilla consist of distinct subgroups. Group 6A sensilla are located 0.3 mm distal to the femoro-tibial joint and have oval shaped cuticular caps. Group 6B receptors are 1 mm distal to the joint and have round caps. All sensilla show directional, phasico-tonic responses to forces applied to the tibia in the plane of joint movement. Group 6B sensilla respond to force increases in the direction of joint extension while Group 6A receptors discharge when those forces decrease. Forces applied in the direction of joint flexion produce the reverse pattern of sensory discharge. All receptors accurately encode the rate of change of force increments and decrements. Contractions of tibial muscles also produce selective, directional sensory discharges. The subgroups differ in their reflex effects: Group 6B receptors excite and Group 6A sensilla inhibit tibial extensor and trochanteral depressor motoneurons. The tibial campaniform sensilla can, therefore, encode force increases or decreases and aid in adapting motor outputs to changes in load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号