首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of desheptapeptide (B24–B30) insulin (DHPI) in a new crystal form (form B) has been determined and refined to 0.2 nm resolution. The crystals were obtained under the same crystallization condition as previously reported crystal form (form A). The overall structures of the two crystal forms are similar but obvious differences can be observed in crystal packing and local conformation. The crystal structures of the two forms show that the two independent molecules in an asymmetric unit from a DHPI dimer, and the dimer formation buries more than 18.20 and 16.95 nm2 of solvent accessible surfaces for form A and form B DHPI, respectively, the largest among insulin and insulin analogs ever reported. Close examination at crystal packing shows that the dimer-forming surface of DHPI, namely Surface II, is normally present in the association of insulin and insulin analogs in their crystal structures. The results demonstrate that Surface II is crucially important for the formation of two crystal forms under the same crystallization condition.  相似文献   

2.
Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site‐directed mutagenesis on them in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson‐Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ~5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. Proteins 2014; 82:1128–1141. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The solution structure of the B9(Asp) mutant of human insulin has been determined by two-dimensional 1H nuclear magnetic resonance spectroscopy. Thirty structures were calculated by distance geometry from 451 interproton distance restraints based on intra-residue, sequential and long-range nuclear Overhauser enhancement data, 17 restraints on phi torsional angles obtained from 3JH alpha HN coupling constants, and the restraints from 17 hydrogen bonds, and the three disulphide bridges. The distance geometry structures were optimized using restrained molecular dynamics (RMD) and energy minimization. The average root-mean-square deviation for the best 20 RMD refined structures is 2.26 A for the backbone and 3.14 A for all atoms if the less well-defined N and C-terminal residues are excluded. The helical regions are better defined, with root-mean-square deviation values of 1.11 A for the backbone and 2.03 A for all atoms. The data analysis and the calculations show that B9(Asp) insulin, in water solution at the applied pH (1.8 to 1.9), is a well-defined dimer with no detectable difference between the two monomers. The association of the two monomers in the solution dimer is relatively loose as compared with the crystal dimer. The overall secondary and tertiary structures of the monomers in the 2Zn crystal hexamer is found to be preserved. The conformation-averaged NMR structures obtained for the monomer is close to the structure of molecule 1 in the hexamer of the 2Zn insulin crystal. However, minor, but significant deviations from this structure, as well as from the structure of monomeric insulin in solution, exist and are ascribed to the absence of the hexamer and crystal packing forces, and to the presence of monomer-monomer interactions, respectively. Thus, the monomer in the solution dimer shows a conformation similar to that of the crystal monomer in molecular regions close to the monomer-monomer interface, whereas it assumes a conformation similar to that of the solution structure of monomeric insulin in other regions, suggesting that B9(Asp) insulin adopts a monomer-like conformation when this is not inconsistent with the monomer-monomer arrangement in the dimer.  相似文献   

4.
TheCterminusofinsulinBchainplaysanimportantroleintheinteractionofinsulinwithitsreceptor[1—5].Inordertomanifestthespecificroleofthisregion,aseriesofanalogsmutatedorchemicallymodifiedattheCterminusofBchainhavebeenprepared,andtherelationshipbetweenthestruc…  相似文献   

5.
Proteins sample multiple conformational substates in their native environment, but the process of crystallization selects the conformers that allow for close packing. The population of conformers can be shifted by varying the environment through a range of crystallization conditions, often resulting in different space groups and changes in the packing arrangements. Three high resolution structures of myoglobin (Mb) in different crystal space groups are presented, including one in a new space group P6(1)22 and two structures in space groups P2(1)2(1)2(1) and P6. We compare coordinates and anisotropic displacement parameters (ADPs) from these three structures plus an existing structure in space group P2(1). While the overall changes are small, there is substantial variation in several external regions with varying patterns of crystal contacts across the space group packing arrangements. The structural ensemble containing four different crystal forms displays greater conformational variance (Calpha rmsd of 0.54-0.79 A) in comparison to a collection of four Mb structures with different ligands and mutations in the same crystal form (Calpha rmsd values of 0.28-0.37 A). The high resolution of the data enables comparison of both the magnitudes and directions of ADPs, which are found to be suppressed by crystal contacts. A composite dynamic profile of Mb structural variation from the four structures was compared with an independent structural ensemble developed from NMR refinement. Despite the limitations and biases of each method, the ADPs of the crystallographic ensemble closely match the positional variance from the solution NMR ensemble with linear correlation of 0.8. This suggests that crystal packing selects conformers representative of the solution ensemble, and several different crystal forms give a more complete view of the plasticity of a protein structure.  相似文献   

6.
We have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-A resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding "pocket". The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion (Chang et al., 1985). The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry.  相似文献   

7.
The structure of 2Zn pig insulin crystals at 1.5 A resolution   总被引:25,自引:0,他引:25  
The paper describes the arrangement of the atoms within rhombohedral crystals of 2Zn pig insulin as seen in electron density maps calculated from X-ray data extending to 1.5 A (1 A = 10(-10) m = 10(-1) nm) at room temperature and refined to R = 0.153. The unit cell contains 2 zinc ions, 6 insulin molecules and about 3 x 283 water molecules. The atoms in the protein molecules appear well defined, 7 of the 102 side chains in the asymmetric unit have been assigned alternative disordered positions. The electron density over the water molecules has been interpreted in terms of 349 sites, 217 weighted 1.0, 126 weighted 0.5, 5 at 0.33 and 1 at 0.25 giving ca. 282 molecules. The positions and contacts of all the residues belonging to the two A and B chains of the asymmetric unit are shown first and then details of their arrangement in the two insulin molecules, 1 and 2, which are different. The formation from these molecules of a compact dimer and the further aggregation of three dimers to form a hexamer around two zinc ions, follows. It appears that in the packing of the hexamers in the crystal there are conflicting influences; too-close contacts between histidine B5 residues in neighbouring hexamers are probably responsible for movements of atoms at the beginning of the A chain of one of the two molecules of the dimer that initiate movements in other parts, particularly near the end of the B chain. At every stage of the building of the protein structure, residues to chains of definite conformation, molecules, dimers, hexamers and crystals, we can trace the effect of the packing of like groups to like, aliphatic groups together, aromatic groups together, hydrogen-bonded structures, positive and negative ions. Between the protein molecules, the water is distributed in cavities and channels that are continuous throughout the crystals. More than half the water molecules appear directly hydrogen bonded to protein atoms. These are generally in contact with other water molecules in chains and rings of increasing disorder, corresponding with their movement through the crystals. Within the established crystal structure we survey next the distribution of hydrogen bonds within the protein molecules and between water and protein and water and water; all but eight of the active atoms in the protein form at least one hydrogen bond.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
静电和疏水效应对胰岛素二聚体稳定性的影响   总被引:2,自引:0,他引:2  
从猪胰岛素二聚体的结构出发,着重研究了胰岛素二聚体单体之间的静电和疏水相互作用,用连续介质模型的有限差分方法计算得到胰岛素二聚体的静电势,用溶剂可接近表面(ASA)模型分析了分子表面积及疏水性,还考察了不同pH值对胰岛素二聚体静电和疏水相互作用的影响。结果分析表明,当pH值处于弱酸弱碱范围内时(4.6-8.5),静电相 互作用能和疏水自由能都呈现出较小的值,当pH为6.2时,疏水性出现一个明显的峰值,这与胰岛素二聚体结晶的实验条件相吻合。  相似文献   

9.
10.
Crystal packing in six crystal forms of pancreatic ribonuclease.   总被引:7,自引:0,他引:7  
We compare the molecular packing of bovine pancreatic ribonuclease A (RNase A) in six crystal forms, two grown with alcohol, three with high salt and one with polyethylene glycol as a precipitant. The six packings differ in the number of molecules in contact and in the extent of the contacts, which bury 1570 A2 to 2790 A2 of the RNase surface. Regions of the protein surface involved in the six packings cover almost the whole RNase molecule. The abundance of polar interactions, about one per 200 A2, is the same in all types of precipitants. All molecule-to-molecule contacts are different in the six crystal forms, except for the one that forms a RNase dimer. The dimer has a large interface covering 1800 A2 and eight to ten polar interactions. Its presence in the three salt-grown crystal forms suggests that it is an intermediate in salt induced crystallization. In contrast, the two alcohol-grown forms contain only small interfaces, implying a different mechanism of nucleation.  相似文献   

11.
Camelid single domain antibodies (sdAb) are known for their thermal stability and reversible refolding. We have characterized an unusually stable sdAb recognizing Staphylococcal enterotoxin B with one of the highest reported melting temperatures (Tm = 85°C). Unexpectedly, ~10?20% of the protein formed a dimer in solution. Three other cases where <20% of the sdAb dimerized have been reported; however, this is the first report of both the monomeric and dimeric X‐ray crystal structures. Concentration of the monomer did not lead to the formation of new dimer suggesting a stable conformationally distinct species in a fraction of the cytoplasmically expressed protein. Comparison of periplasmic and cytoplasmic expression showed that the dimer was associated with cytoplasmic expression. The disulfide bond was partially reduced in the WT protein purified from the cytoplasm and the protein irreversibly unfolded. Periplasmic expression produced monomeric protein with a fully formed disulfide bond and mostly reversible refolding. Crystallization of a disulfide‐bond free variant, C22A/C99V, purified from the periplasm yielded a structure of a monomeric form, while crystallization of C22A/C99V from the cytoplasm produced an asymmetric dimer. In the dimer, a significant conformational asymmetry was found in the loop residues of the edge β‐strands (S50‐Y60) containing the highly variable complementarity determining region, CDR2. Two dimeric assemblies were predicted from the crystal packing. Mutation of a residue at one of the interfaces, Y98A, disrupted the dimer in solution. The pleomorphic homodimer may yield insight into the stability of misfolded states and the importance of the conserved disulfide bond in preventing their formation. Proteins 2014; 82:3101–3116. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
We report on crystal structures of a carbohydrate recognition domain (CRD) of human C‐type lectin receptor blood dendritic cell antigen‐2 (BDCA2). Three different crystal forms were obtained at 1.8–2.3 Å resolution. In all three, the CRD has a basic C‐type lectin fold, but a long loop extends away from the core domain to form a domain‐swapped dimer. The structures of the dimers from the three different crystal forms superimpose well, indicating that domain swapping and dimer formation are energetically stable. The structure of the dimer is compared with other domain‐swapped proteins, and a possible regulation mechanism of BDCA2 is discussed. Proteins 2014; 82:1512–1518. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Detailed comparison of the refined crystal structures of the hexokinase A: glucose complex (HKA · G) and native hexokinase B shows that, in addition to the 12 ° rotation of one lobe of the enzyme relative to the other as described previously (Bennett & Steitz, 1978) there are small systematic differences in the conformation of the polypeptide backbones of the two structures adjacent to the glucose binding site and crystal packing contacts. In the HKA · G complex, the cleft between the two lobes of the hexokinase molecule is narrowed, substantially reducing the accessibility of the active site to solvent. The HKA · G structure suggests specific contacts with a bound glucose molecule that cannot form in the more open native structure. The closed conformation of the HKA · G complex can be formed by either subunit in the heterologous dimer configuration of hexokinase B (Anderson et al. 1974); new or different interactions between subunits, or with ligands bound to the intersubunit ATP site, may be made when the upper subunit of the dimer is in the closed conformation and may contribute to the cooperative interactions observed in the crystalline dimer and in solution.  相似文献   

14.
The aromatic 1H NMR resonances of the insulin monomer are assigned at 500 MHz by comparative studies of chemically modified and genetically altered variants, including a mutant insulin (PheB25----Leu) associated with diabetes mellitus. The two histidines, three phenylalanines, and four tyrosines are observed to be in distinct local environments; their assignment provides sensitive markers for studies of tertiary structure, protein dynamics, and protein folding. The environments of the tyrosine residues have also been investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) and analyzed in relation to packing constraints in the crystal structures of insulin. Dimerization involving specific B-chain interactions is observed with increasing protein concentration and is shown to depend on temperature, pH, and solvent composition. In the monomer large variations are observed in the line widths of amide resonances, suggesting intermediate exchange among conformational substates; such substates may relate to conformational changes observed in different crystal states and proposed to occur in the hormone-receptor complex. Additional evidence for multiple conformations in solution is provided by comparative studies of an insulin analogue containing a peptide bond between residues B29 and A1 (mini-proinsulin). This analogue forms dimers and higher-order oligomers under conditions in which native insulin is monomeric, suggesting that the B29-A1 peptide bond stabilizes a conformational substate favorable for dimerization. Such stabilization is not observed in corresponding studies of native proinsulin, in which a 35-residue connecting peptide joins residues B30 and A1; this extended tether is presumably too flexible to constrain the conformation of the B-chain. The differences between proinsulin and mini-proinsulin suggest a structural mechanism for the observation that the fully reduced B29-A1 analogue folds more efficiently than proinsulin to form the correct pattern of disulfide bonds. These results are discussed in relation to molecular mechanics calculations of insulin based on the available crystal structures.  相似文献   

15.
An amino-terminal fragment of human apolipoprotein E3 (residues 1-165) has been expressed and crystallized in three different crystal forms under similar crystallization conditions. One crystal form has nearly identical cell dimensions to the previously reported orthorhombic (P2(1)2(1)2(1)) crystal form of the amino-terminal 22 kDa fragment of apolipoprotein E (residues 1-191). A second orthorhombic crystal form (P2(1)2(1)2(1) with cell dimensions differing from the first form) and a trigonal (P3(1)21) crystal form were also characterized. The structures of the first orthorhombic and the trigonal form were determined by seleno-methionine multiwavelength anomalous dispersion, and the structure of the second orthorhombic form was determined by molecular replacement using the structure from the trigonal form as a search model. A combination of modern experimental and computational techniques provided high-quality electron-density maps, which revealed new features of the apolipoprotein E structure, including an unambiguously traced loop connecting helices 2 and 3 in the four-helix bundle and a number of multiconformation side chains. The three crystal forms contain a common intermolecular, antiparallel packing arrangement. The electrostatic complimentarity observed in this antiparallel packing resembles the interaction of apolipoprotein E with the monoclonal antibody 2E8 and the low density lipoprotein receptor. Superposition of the model structures from all three crystal forms reveals flexibility and pronounced kinks in helices near one end of the four-helix bundle. This mobility at one end of the molecule provides new insights into the structural changes in apolipoprotein E that occur with lipid association.  相似文献   

16.
The basic phospholipase A2 from the venom ofAgkistrodon halys Pallas is a potent hemolytic toxin and anticoagulant. The accurate rotation and translation parameters of the molecules in orthorhombic crystal form I were successfully obtained using the fitting refinement technique. The structure was refined in the resolution range of 0.6–0.25 nm using least square refinement with non-crystallographic two fold symmetry restraint, and resulted in the finalR factor of 20.1 %, and the rms deviations from ideal stereochemistry were 0.001 3 nm for bond lengths and 1.32° for bond angles. The overall architecture of the present structure was similar to that of the determined structure of the orthorhombic crystal form II, with a few differences in the regions of the β-wing and Ca2+ -binding Imp. The dimers formed by the two molecules in the asymmetric unit in both crystal forms were also similar. However, one of the monomers showed an orientational difference of 5.5° along the dimer interface in the two crystal forms, suggesting the flexibility of the interface of the dimer to some degree. The molecular packing of the dimer in crystal form I was much more compact than that in crystal form II.  相似文献   

17.
Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (K(d) = 8.8 μM). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in K(d) values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R(6) form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R(6)-specific intra/intermolecular interactions for hexamer stability.  相似文献   

18.
The addition of phenols to hexameric insulin solutions produces a particularly stable hexamer, resulting from a rearrangement in which residues B1-B8 change from an extended conformation (T-state) to form an alpha-helix (R-state). The R-state is, in part, stabilized by nonpolar interactions between the phenolic molecule and residue B5 His at the dimer-dimer interface. The B5 His --> Tyr mutant human insulin was constructed to see if the tyrosine side chain would mimic the effect of phenol binding in the hexamer and induce the R-state. In partial support of this hypothesis, the molecule crystallized as a half-helical hexamer (T(3)R(3)) in conditions that conventionally promote the fully nonhelical (T6) form. As expected, in the presence of phenol or resorcinol, the B5 Tyr hexamers adopt the fully helical (R6) conformation. Molecular modeling calculations were performed to investigate the conformational preference of the T-state B5 Tyr side chain in the T(3)R(3) form, this side chain being associated with structural perturbations of the A7-A10 loop in an adjacent hexamer. For an isolated dimer, several different orientations of the side chain were found, which were close in energy and readily interconvertible. In the crystal environment only one of these conformations remains low in energy; this conformation corresponds to that observed in the crystal structure. This suggests that packing constraints around residue B5 Tyr result in the observed structural rearrangements. Thus, rather than promoting the R-state in a manner analogous to phenol, the mutation appears to destabilize the T-state. These studies highlight the role of B5 His in determining hexamer conformation and in mediating crystal packing interactions, properties that are likely be important in vivo.  相似文献   

19.
The basic phospholipase A2 from the venom of Agkistrodon halys Pallas is a potent hemolytic toxin and anticoagulant. The accurate rotation and translation parameters of the molecules in orthorhombic crystal form I were successfully obtained using the fitting refinement technique. The structure was refined in the resolution range of 0. 6-0.25 nm using least square refinement with non-crystallographic two fold symmetry restraint, and resulted in the final R factor of 20.1 % , and the rms deviations from ideal stereochemistry were 0. 001 3 nm for bond lengths and 1. 32° for bond angles. The overall architecture of the present structure was similar to that of the determined structure of the orthorhombic crystal form Ⅱ, with a few differences in the regions of the β-wing and Ca2+-binding loop. The dimers formed by the two molecules in the asymmetric unit in both crystal forms were also similar. However, one of the monomers showed an orientational difference of 5.5° along the dimer interface in the two crystal forms, suggesting the flexibility of the interface of the dimer to some degree. The molecular packing of the dimer in crystal form I was much more compact than that in crystal form Ⅱ.  相似文献   

20.
The crystal structure of a constitutively active multiple site mutant of plasminogen activator inhibitor 1 (PAI-1) was determined and refined at a resolution of 2.7 A.The present structure comprises a dimer of two crystallographically independent PAI-1 molecules that pack by association of the residues P6 to P3 of the reactive centre loop of one molecule (A) with the edge of the main beta-sheet A of the other molecule (B).Thus, the reactive centre loop is ordered for molecule A by crystal packing forces, while for molecule B it is unconstrained by crystal packing contacts and is disordered.The overall structure of active PAI-1 is similar to the structures of other active inhibitory serpins exhibiting as the major secondary structural feature a five-stranded beta-sheet A and an intact proteinase-binding loop protruding from the one end of the elongated molecule. No preinsertion of the reactive centre loop is observed in this structure.A comparison of the present structure with the previously determined crystal structures of PAI-1 in its alternative conformations reveals that, upon cleavage of an intact form of PAI-1 or formation of latent PAI-1, the well-characterised rearrangements of the serpin secondary structural elements are accompanied by dramatic and partly unexpected conformational changes of helical and loop structures proximal to beta-sheet A.The present structure explains the stabilising effects of the mutated residues, reveals the structural cause for the observed spectroscopic differences between active and latent PAI-1, and provides new insights into possible mechanisms of stabilisation by its natural binding partner, vitronectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号