首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction of biological control agents into New Zealand is regulated under the Hazardous Substances and New Organisms Act 1996 (HSNO). The legislation is strongly focused on the health and safety of people and the environment. HSNO is implemented by the Environmental Risk Management Authority, a quasi-judicial body of 6–8 people appointed by the Minister for the Environment. The process by which biological control applications are received and processed is described. Two case studies of weed biological control agents which have been through the HSNO process, and the scientific issues that arose in considering the environmental safety of these agents are discussed. The case studies presented are the applications to release the gall fly Procecidochares alani (Diptera: Tephritidae) to control mist flower Ageratina riparia, and three biological control agents, Macrolabis pilosellae (Diptera: Cecidomyiidae), Cheilosia urbana, and Cheilosia psilophthalma (Diptera: Syrphidae) for biological control of hawkweeds (Hieracium spp.). Both applications were approved for agent release into the environment.  相似文献   

2.
An invasive weed can occupy a variety of environments and ecological niches and generally no single control method can be used across all areas the weed is found. Biological control agents integrated with other methods can increase and/or improve site-specific weed control, but such combinatorial approaches have not been widely utilized. The successful leafy spurge (Euphorbia esula L.) control program provides examples for future integrated weed programs that utilize biological control agents with traditional methods. Weed control methods can be used separately, such as when the leafy spurge gall midge (Spurgia esulae Gagné) reduced seed production in wooded areas while herbicides prevented further spread outside the tree line. Traditional methods also can be used directly with biological control agents. Incorporation of Aphthona spp. with herbicides has resulted in more rapid and complete leafy spurge control than either method used alone. Also, the insect population often increased rapidly following herbicide treatment, especially in areas where Aphthona spp. were established for several years but had been ineffective. Incorporation of Aphthona spp. with sheep or goat grazing has resulted in a larger decline in leafy spurge production than insects alone and in weed density than grazing alone. Controlled burns can aid establishment of biological control agents in marginally suitable environments, but timing of the fire must be coordinated to the insect’s life-cycle to ensure survival. Integration of biological control agents with revegetation programs required the agent to be the last method introduced because the cultivation and herbicide treatments necessary to establish desirable grasses and forbs were destructive to the insect. In a practical application, herbicides were combined with Aphthona spp. to help the insect establish and control leafy spurge in the habitat of the western prairie fringed orchid (Platanthera praeclara Sheviak and Bowles), an endangered species. Several experimental designs can be used to evaluate biological control agents with cultural, mechanical, and chemical control methods or with additional biological agents.  相似文献   

3.
Soilborne root diseases caused by plant pathogenic Pythium species cause serious losses in a number of agricultural production systems, which has led to a considerable effort devoted to the development of biological agents for disease control. In this article we review information on the ecology and biological control of these pathogens with the premise that a clear understanding of the ecology of the pathogen will assist in the development of efficacious biocontrol agents. The lifecycles of the pathogens and etiology of host infection also are reviewed, as are epidemiological concepts of inoculum-disease relationships and the influence of environmental factors on pathogen aggressiveness and host susceptibility. A number of fungal and bacterial biocontrol agents are discussed and parallels between their ecology and that of the target pathogens highlighted. The mechanisms by which these microbial agents suppress diseases caused by Pythium spp., such as interference with pathogen survival, disruption of the process of plant infection, and induced host resistance, are evaluated. The possibilities for enhancement of efficacy of specific biological control agents by genetic manipulation or deployment tactics are discussed, as are conceptual suggestions for consideration when developing screening programs for antagonists.  相似文献   

4.
A comparison of the biological control of aphids and coccids was carried out by analyzing success rates for the three major types of biological control, i.e., classical, augmentative, and conservational. Because of the higher intrinsic rates of increase for aphids versus coccids, the working hypothesis that biological control of aphids is less successful compared to coccids was adopted. However, this hypothesis was not supported by an analysis of classical biological control using the BIOCAT database. In this analysis, parasitoids were more successful than predators when used against either aphids or coccids, but the control of Icerya spp. with Rodolia spp. (predators) was highly successful. Some reasons for success of Rodolia spp. are adduced, but field studies on the long-term population dynamics of Icerya–Rodolia systems are needed for determining the mechanisms of regulation. Comparative analyses of augmentative and conservational biological control of aphids and coccids were inconclusive, due to lack of adequate databases; some possible factors involved in the success of these types of biological control are discussed. It is suggested that parasitoids could be better control agents than predators in augmentative biological control of aphids in production greenhouses. Conservational biological control of either aphids or coccids should be aimed at enhancing populations of indigenous natural enemies, especially mobile generalist predators that are capable of keeping pace with mobile pests.  相似文献   

5.
Spiders are common generalist predators, and understanding their potential in biological control is important for the development of integrated pest management programs. In this study, predation by three groups of spiders on the mirid bug Stenotus rubrovittatus (Hemiptera: Miridae) in rice paddies was investigated using DNA-based gut-content analysis. A laboratory feeding study revealed that the detection half-lives of bug DNA in the spider gut at 25 °C was 3.4 days for Lycosidae and 1.5 days for Tetragnathidae. Individual spider predation on the mirid bug was investigated by detecting DNA of prey in field-collected spiders. In total, 1199 spiders were assayed from three spider groups: Pirata subpiraticus (Lycosidae), Tetragnatha spp. (Tetra-gnathidae), and Pachygnatha clercki (Tetra-gnathidae), which each differ in their preferred microhabitat as well as their predatory habits. Detection rates of prey DNA in spiders increased significantly with the density of prey across all spider groups. P. subpiraticus and Tetragnatha spp. predation showed a better fit to a saturated response curve to increasing prey density, while P. clercki showed a simple linear relationship with prey density. Densities of alternative prey species did not affect the detection rates of mirids. These results suggest that predation on pests by generalist predators in an agroecosystem is affected not only by prey abundance but also by predator preference for specific prey. Predator preference is therefore an important factor to consider when estimating the role of natural enemies as biological control agents.  相似文献   

6.
In order to elucidate the poorly understood relationships between mosquito larvae and their predatory aquatic insects in urban and suburban areas of tropical Southeast Asia, where vector‐borne diseases are prevalent, aquatic insects were sampled from 14 aquatic habitats in residential areas of Chiang Mai, northern Thailand, during the rainy season (July to November) in 2016. Correlations among biological variables, densities of major predatory aquatic insect groups (i.e., Odonata, Coleoptera, and Hemiptera: OCH group) in wetlands and artificial lentic habitats, and the density of mosquito larvae were analyzed. Among the sampled mosquito larvae, Culex spp. were the most abundant, and both OCH density and water quality were major determinants of Culex spp. density (rs = ?0.302 and ?0.396, respectively). Logistic regression analyses indicated that the probability of Culex spp. occurrence was significantly and negatively correlated with OCH density. Furthermore, high macrophyte abundance was associated with higher predator density, potentially reducing mosquito density. Hemipteran predators were most negatively correlated with Culex spp. density, regardless of whether macrophyte abundance was high or low (rs = ?0.547 and ?0.533, respectively). Therefore, hemipteran predators were the most important aquatic insect predators in the urban and suburban residential areas of Chiang Mai, Thailand, and OCH species, such as the hemipteran Micronecta scutellaris, could be used as biological control agents against mosquitoes in the region.  相似文献   

7.
Plant relationships have implications for many fields including weed biological control. The use of DNA sequencing and new tree building algorithms since the late 1980s and early 1990s have revolutionised plant classification and has resulted in many changes to previously accepted taxonomic relationships. It is critical that biological control researchers stay abreast of changes to plant phylogenies. One of the largest plant genera, Acacia, has undergone great change over the past 20 years and these changes have ramifications for weed biological control projects in a number of countries. Vachellia nilotica (prickly acacia) is a major weed in Australia, originating from the Indian subcontinent and Asia, and it has been a target for biological control since 1980. Once a member of Acacia, a large (>1,000 spp.) and iconic group in Australia, prickly acacia is now part of the genus Vachellia. Current knowledge suggests that Vachellia is more closely related to mimosoid genera than it is to Acacia s.s. There has also been a recent reclassification of legume subfamilies with subfamily Mimosoideae now part of subfamily Caesalpinioideae, and four new subfamilies. In this paper we review the changes that have occurred to this group since the prickly acacia biological control project began and discuss the implications for the project. A new host test list for quarantine testing is proposed. Developed following the modernisation of the centrifugal‐phylogenetic method, it is shorter than past lists, containing 46 species, although still lengthy because of the expectations of regulatory bodies, which are slower to accept advances in scientific knowledge. The list includes five Vachellia species, six “Mimoseae” species and 26 Acacia species. The number species from legume subfamilies other than the new Caesalpinioideae is greatly reduced.  相似文献   

8.
A retrospective analysis shows that invasive, alien, free-floating and emergent aquatic weeds in Europe are good targets for classical biological control, and that genus-specific chrysomelid and curculionid beetles offer the most potential. Ludwigia spp., Azolla filiculoides, Lemna minuta, Crassula helmsii and Hydrocotyle ranunculoides should be prioritised as targets. Fungal pathogens have been under-utilised as classical agents but, whilst they may have some potential against free-floating weeds, they appear to be poor candidates against submerged species, although the suitability of arthropod agents against these difficult targets still merits investigation. The use of indigenous pathogens as inundative agents (mycoherbicides) shows some promise.  相似文献   

9.
Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.  相似文献   

10.
Suppression of invasive Canada thistle, Cirsium arvense, with biological control agents has stalled because introduced agents were not host‐specific. To aid in the development of more effective management strategies, molecular markers are needed to examine the genetic structure of Canada thistle populations. Microsatellite (simple sequence repeat) markers were developed and intersimple sequence repeat (ISSR) markers were tested for North American populations. An average of nine polymorphic alleles per microsatellite locus and 11 per ISSR locus were detected. These will be used to examine the genetic structure of C. arvense in the northern Great Plains and their transferability to endemic Cirsium spp.  相似文献   

11.
Calotropis procera (Apocynaceae), a native of tropical Africa, the Middle East and the Indian subcontinent, is a serious environmental and rangeland weed of Australia and Brazil. It is also a weed in Hawaii in the USA, the Caribbean Islands, the Seychelles, Mexico, Thailand, Vietnam and many Pacific Islands. In the native range C. procera has many natural enemies, thus classical biological control could be the most cost-effective option for its long-term management. Based on field surveys in India and a literature search, some 65 species of insects and 5 species of mites have been documented on C. procera and another congeneric-invador C. gigantea in the native range. All the leaf-feeding and stem-boring agents recorded on Calotropis spp. have wide host range. Three pre-dispersal seed predators, the Aak weevil Paramecops farinosus, the Aak fruit fly Dacus persicus in the Indian subcontinent and the Sodom apple fruit fly Dacus longistylus in the Middle East, have been identified as prospective biological control agents based on their field host range. In Australia and Brazil, where C. procera has the potential to spread across vast areas, pre-dispersal seed predators would help to limit the spread of the weed. While the fruits of C. procera vary in size and shape across its range, those from India are similar to the ones in Australia and Brazil. Hence, seed-feeding insects from India are more likely to be suitable due to adaptation to fruit size and morphology. Future survey efforts for potential biological control agents should focus on North Africa.  相似文献   

12.
Rice sheath blight caused by Rhizoctonia solani is the major disease of rice that seriously threatens food security worldwide. Efficient and eco-friendly biological approaches are urgently needed since no resistant cultivars are available. In this study, fallow and paddy soils were initially subjected to microbiome analyses, and the results showed that Talaromyces spp. were significantly more abundant in the paddy soil, while Trichoderma spp. were more abundant in the fallow soil, suggesting that Talaromyces spp. could live and survive better in the paddy soil. Five Talaromyces isolates, namely, TF-04, TF-03, TF-02, TF-01 and TA-02, were isolated from the paddy soil using sclerotia of R. solani as baits and were further evaluated for their activity against rice sheath blight. These isolates efficiently parasitized the hyphae and rotted the sclerotia even at higher water contents in the sterilized sand and the soil. Isolate TF-04 significantly promoted rice growth, reduced the severity of rice sheath blight and increased the rice yield under outdoor conditions. Defence-related genes were upregulated and enzyme activities were enhanced in rice treated with isolate TF-04. Our research supplies a microbiome-guided approach to screen biological control agents and provides Talaromyces isolates to biologically control rice sheath blight.  相似文献   

13.
The dock plant (Rumex spp.) is one of the most problematic pasture weeds worldwide. Allantus luctifer was selected as a potential biological control agent for Rumex spp. Continuous rearing of A. luctifer was carried out from 2005 to 2006, and its general biology is presented in this report. The preliminary host specificity test showed a promising result for using A. luctifer to control Rumex spp.  相似文献   

14.
Pesticides targeted at pest species have often been demonstrated to have strong adverse effects on the survival of biological control agents in short-term laboratory bioassays; however, studies examining the influence of pesticides on the actual reproductive success of biological control agents in the field are rare. Because natural enemy reproduction is often directly tied to biological control success, effects of pesticides on reproduction are of central importance. Here we use a new technique to examine the influence of sulfur, a fungicide widely used in grape production, on the reproductive success of Anagrus erythroneurae (Hymenoptera: Mymaridae) and Anagrus daanei (Hymenoptera: Mymaridae), egg parasitoids of the grape leafhopper, Erythroneura elegantula (Homoptera: Cicadellidae). Sulfur has previously been shown to be highly toxic to Anagrus spp. in short-term laboratory and field bioassays, creating the expectation that sulfur should also reduce Anagrus reproductive success in the field. Surprisingly, in two studies, the first comparing the oviposition success of Anagrus collected live in paired sulfur-treated versus untreated vineyards and the second comparing the lifetime reproductive success of Anagrus collected at the end of their lives in unpaired sulfur-treated versus untreated vineyards, we found no effect of sulfur on parasitoid reproductive success. In this system, traditional short-term assays of laboratory toxicity do not appear to predict effects on parasitoid reproductive success, suggesting that demographic approaches to assessing the disruptive effects of pesticides may have an important role in designing IPM programs.  相似文献   

15.
A ‘Goldilocks’ hypothesis for dispersal of biological control agents   总被引:1,自引:0,他引:1  
The rate at which biological control agents disperse from release sites has important implications for their establishment and spread. Low rates of dispersal can yield spread that is too slow and may necessitate redistribution efforts for importation biological control and a high density of release sites for augmentation. Low dispersal rates may also lead to inbreeding at the site of release. On the other hand, high rates of dispersal can lead to Allee effects at the leading edge of the invasion front, potentially reducing the likelihood of establishment. Given these disadvantages associated with both low and high dispersal rates, we argue that intermediate rates of dispersal are likely to maximize the probability of establishment and appropriate spread for biological control agents released in the context of either importation or augmentative biological control. We consider this putative relationship a ‘Goldilocks hypothesis’ since it posits an optimum at intermediate values. In this review paper we begin by discussing the rationale for the Goldilocks hypothesis and then provide a case study from our work on importation biological control of the soybean aphid, Aphis glycines. Work on the soybean aphid parasitoid Binodoxys communis has shown that long-distance dispersal of immature parasitoids within winged migrating aphids is unlikely. This is likely good news for importation biological control because parasitoids dispersed in this manner would likely encounter crippling Allee effects. On the other hand, results from a field release study also suggest that female B. communis females (but not males) disperse actively from release sites. This female-biased dispersal may lead to strong mate-finding Allee effects and therefore may make establishment less likely.  相似文献   

16.
【目的】在循环养殖系统中应用不同的复合益生菌制剂,探讨凡纳滨对虾肠道菌群结构特征及免疫水平发生的变化。【方法】30 d养殖周期结束后,通过平板计数法分析肠道细菌总数和弧菌总数;基于高通量测序技术分析肠道样品V3+V4区菌群特征;采用实时荧光定量PCR技术分析免疫相关因子TLR1和Dorsal基因表达水平,阐述益生菌制剂应用的意义。【结果】益生菌制剂的应用降低了凡纳滨对虾肠道中细菌总数,抑制弧菌的生长,间接预防疾病的发生。不同益生菌制剂从不同程度上优化了凡纳滨对虾肠道菌群结构,提高高质量序列和有效OTU数量,Chao1、Simpson、Shannon指数显示了丰富度和多样性变化,复合益生菌制剂3效果较好。同时,菌群结构得到优化,其中益生菌制剂1组对拟杆菌门含量百分比产生显著影响。Toll受体TLR1和Toll通路中的Dorsal基因m RNA表达受到益生菌制剂的影响,1、3组促进了TLR 1表达,1、2、3组都促进了Dorsal基因表达。【结论】在循环水养殖系统中添加益生菌制剂可优化凡纳滨对虾肠道菌群特征,提高免疫水平,为病害防控和健康养殖提供理论依据。  相似文献   

17.
The tropical fruit tree, Ziziphus mauritiana (Rhamnaceae), a native of the Indian subcontinent, is a pasture and environmental weed in northern Australia and Fiji. In their native range, Ziziphus spp., including commercially cultivated Z. mauritiana and Z. jujuba, are subjected to a wide range of pests and diseases. The feasibility of classical biological control of this weed has not been explored to date. Effective biological control could reduce plant vigour and seed output, thereby limiting the spread of Z. mauritiana in Australia. Two Ziziphus species are native to Australia, hence, any prospective biological control agent should be specific to Z. mauritiana. Opportunistic field surveys and literature searches identified 133 species of phytophagous insects, 9 species of phytophagous mites and 12 plant pathogens on Ziziphus spp. Host records suggest the following are possibly specific to Z. mauritiana and hence are prospective biological control agents in Australia: the seed‐feeding weevil Aubeus himalayanus; the leaf‐feeding gracillariid moth Phyllonorycter iochrysis; the leaf‐mining chrysomelid beetle Platypria erinaceus; the leaf‐folding crambid moth Synclera univocalis; the leaf‐galling midge Phyllodiplosis jujubae; and the gall‐mites Aceria cernuus and Larvacarus transitans. Host range of the rust Phakopsora zizyphi‐vulgaris includes many Ziziphus species, including the native Z. oenoplia and hence would not be a suitable biological control agent in Australia. The powdery mildew Pseudoidium ziziphi, with a host range restricted to Ziziphus species, has not been reported on Z. oenoplia. All available information on the pests and diseases of Z. mauritiana are from cultivated varieties. Hence, future surveys should focus on wild Z. mauritiana in the Indian subcontinent in areas that are climatically similar to the regions of northern Australia, where it is currently most abundant.  相似文献   

18.
Augmentative forms of biological control, wherenatural enemies are periodically introduced,are applied over large areas in variouscropping systems in Latin America. About 25%of the world area under augmentative control issituated in this region. Well-known examplesare the use of species of the egg parasitoidTrichogramma for management ofLepidoptera in various crops. In Mexico, forexample, about 1.5 million hectares are treatedwith Trichogramma spp. Application ofTrichogramma also occurs on large areasin Colombia and Cuba, but use is limited inother Latin American countries for economicreasons, the generally low level of educationof farmers, and, more importantly, because ofthe intensive use of pesticides that preventsuse of natural enemies. Of the other eggparasitoids, the main species used incommercial releases are Trissolcusbasalis (Wollaston) against the heteropteranNezara viridula (L.) in soybean inBrazil, and Telenomus remus Nixon againstSpodoptera frugiperda (J.E. Smith) incorn in Venezuela. Natural enemies attackinglarval and pupal stages are not used to a largeextent in augmentative biological control infield crops, with the exception of the use ofCotesia parasitoids against sugarcaneborers in Brazil and several other LatinAmerican countries. In addition to the use ofparasitoids and predators, Latin America isapplying microbial control agents on a largescale, such as viruses for control ofcaterpillars in soybean, fungi for control ofpests in coffee, cotton and sugar cane, andnematodes for control of soil pests. A recentdevelopment in biological control in LatinAmerica is the use of natural enemies andantagonists for disease and pest control inprotected cultivation, for example, inColombia, Brazil and Peru. Up to date, reliablefigures on current use of inundative andseasonal inoculative biological controlappeared hard to obtain, but it is clear thatLatin America currently is a main player in thefield of augmentative releases.  相似文献   

19.
Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a ”well-behaved” biological control agent on native fauna. We studied a grassland in west-central Montana infested with spotted knapweed (Centaurea maculosa) to examine the effects of knapweed invasion and two gall flybiological control agents (Urophora affinis and U. quadrifasciata) on the native deer mouse (Peromyscus maniculatus). Stomach-content analysis revealed that Urophora were the primary food item in Peromyscus diets for most of the year and made up 84–86% of the winter diet. Stomach contents indicated that wild-caught mice consumed on average up to 247 Urophora larvae mouse–1 day–1, while feeding trials revealed that deer mice could depredate nearly 5 times as many larvae under laboratory conditions. In feeding trials, deer mice selected knapweed seedheads with greater numbers of galls while avoiding uninfested seedheads. When Urophora larvae were present in knapweed seedheads, deer mice selected microhabitats with moderately high (31–45% cover) and high knapweed infestation (≥46% cover). After Urophora emerged and larvae were unavailable to Peromyscus, mice reversed habitat selection to favor sites dominated by native-prairie with low knapweed infestation (0–15%). Establishment of the biological control agent, Urophora spp., has altered deer mouse diets and habitat selection by effecting changes in foraging strategies. Deer mice and other predators may reduce Urophora populations below a threshold necessary to effectively control spotted knapweed. Received: 04 May 1999 / Accepted: 14 August 1999  相似文献   

20.
Mustard green manures or seed meal high in glucosinolates, which produce a natural biofumigant upon incorporation into the soil, form an alternative to synthetic fumigants. However, the non-target impacts of these biofumigants in the field are unclear. We examined the effectiveness of soil incorporation of Brassica carinata seed meal both in controlling the plant-parasitic Columbia root-knot nematode (Meloidogyne chitwoodi), and on the biological control exerted by the entomopathogenic nematodes Steinernema feltiae and Steinernema riobrave on root-knot nematodes and the Colorado potato beetle (Leptinotarsa decemlineata). Singly, both the seed meal and Steinernema spp. reduced root-knot nematode damage to potato tubers and increased marketable tuber yields. However, there was a negative interaction between the two bioagents such that their combination did not further improve suppression of plant-parasitic nematodes. Thus, mustard seed meal applications harmful to the target root-knot nematode also disrupted the ability of Steinernema spp. to act as biocontrol agents. Further, we observed modest disruption of the biological control of potato beetles following biofumigation. But, the potato beetles were less likely to lay eggs on potato plants grown in mustard-amended soil, suggesting a counteracting benefit of mustard application. Multiple, complementary controls must be integrated to replace the very effective pest suppression typical of synthetic soil fumigants. Our study suggests significant interference between biofumigation and biocontrol agents in the soil, presenting challenges in combining these two environmentally friendly approaches to managing plant-parasitic nematodes and other pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号