首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

An increasing number of microbial genomes are being sequenced and deposited in public databases. In addition, several closely related strains are also being sequenced in order to understand the genetic basis of diversity and mechanisms that lead to the acquisition of new genetic traits. These exercises have necessitated the requirement for visualizing microbial genomes and performing genome comparisons on a finer scale. We have developed GenomeViz to enable rapid visualization and subsequent comparisons of several microbial genomes in an interactive environment.

Results

Here we describe a program that allows visualization of both qualitative and quantitative information from complete and partially sequenced microbial genomes. Using GenomeViz, data deriving from studies on genomic islands, gene/protein classifications, GC content, GC skew, whole genome alignments, microarrays and proteomics may be plotted. Several genomes can be visualized interactively at the same time from a comparative genomic perspective and publication quality circular genome plots can be created.

Conclusions

GenomeViz should allow researchers to perform visualization and comparative analysis of up to eight different microbial genomes simultaneously.
  相似文献   

3.
Saito R  Ozawa Y  Kuzuno N  Tomita M 《Gene》2000,259(1-2):217-222
The processing of 16S rRNA and 23S rRNA by RNase III in E.coli is known to involve stem structures formed by both ends of the rRNA. Indeed, complementary nucleotide sequences are usually found at both ends of 16S rRNA and 23S rRNA. However, whether or not this phenomenon exists in various other bacteria has not yet been adequately studied. We have conducted computer analyses of potential stem structures of rRNA operons in 12 bacterial and 3 archaeal genomes, and compared characteristics of the stem structures among these species. We systematically computed free energy values by exhaustively 'annealing' sequences around the 5' end and sequences around the 3' end of both 16S rRNA and 23S rRNA genes, in order to predict potential stem structures.The results suggest that rRNAs in most species form stem structures at both ends. Some species, such as A.aeolicus, seem to form unusually stable stem structures. On the other hand, some rRNAs, such as rRNAs of D.radiodurans, seem not to form solid stem structures. This suggests that rRNA processing in those species must employ a reliable targeting mechanism other than recognizing stem structures by RNase III.  相似文献   

4.
The set of proteins which are conserved across families of microbes contain important targets of new anti-microbial agents. We have developed a simple and efficient computational tool which determines concordances of putative gene products that show sets of proteins conserved across one set of user specified genomes and not present in another set of user specified genomes. The thresholds and the homology scoring criterion are selectable to allow the user to decide the stringency of the homologies. The system uses a relational database to store protein coding regions from different genomes, and to store the results of a complete comparison of all sequences against all sequences using the FASTA program. Using Web technology, the display of all the related proteins for a given sequence and calculation of multiple sequence alignments (using CLUSTALW) can be performed with the click of a button. The current database holds 97 365 sequences from 19 complete or partial genomes and 8798905 FASTA comparison results. A example concordance is presented which demonstrates that the target of the quinolone antibiotics could have been identified using this tool.  相似文献   

5.
Methods for comparing gene frequencies across large, epidemiologically defined bacterial collections are limited. A novel microarray technology has been developed called 'library on a slide'. In this technology, hundreds of entire microbial genomes are arrayed, rather than sequences of a single genome or sets of genes. These slides can then be probed for the presence of specific genes allowing researchers to draw inferences regarding important differences between related strains that differ in their pathogenic potential.  相似文献   

6.
Searching for drug targets in microbial genomes   总被引:10,自引:0,他引:10  
Comparative analysis of the complete genome sequences of 10 bacterial pathogens available in the public databases offers the first insights into the drug discovery approaches of the near future. Genes that are conserved in different genomes often turn out to be essential, which makes them attractive targets for new broad-spectrum antibiotics. Subtractive genome analysis reveals the genes that are conserved in all or most of the pathogenic bacteria but not in eukaryotes; these are the most obvious candidates for drug targets. Species-specific genes, on the other hand, may offer the possibility to design drugs against a particular, narrow group of pathogens.  相似文献   

7.
The level of sequence heterogeneity among rrn operons within genomes determines the accuracy of diversity estimation by 16S rRNA-based methods. Furthermore, the occurrence of widespread horizontal gene transfer (HGT) between distantly related rrn operons casts doubt on reconstructions of phylogenetic relationships. For this study, patterns of distribution of rrn copy numbers, interoperonic divergence, and redundancy of 16S rRNA sequences were evaluated. Bacterial genomes display up to 15 operons and operon numbers up to 7 are commonly found, but ~40% of the organisms analyzed have either one or two operons. Among the Archaea, a single operon appears to dominate and the highest number of operons is five. About 40% of sequences among 380 operons in 76 bacterial genomes with multiple operons were identical to at least one other 16S rRNA sequence in the same genome, and in 38% of the genomes all 16S rRNAs were invariant. For Archaea, the number of identical operons was only 25%, but only five genomes with 21 operons are currently available. These considerations suggest an upper bound of roughly threefold overestimation of bacterial diversity resulting from cloning and sequencing of 16S rRNA genes from the environment; however, the inclusion of genomes with a single rrn operon may lower this correction factor to ~2.5. Divergence among operons appears to be small overall for both Bacteria and Archaea, with the vast majority of 16S rRNA sequences showing <1% nucleotide differences. Only five genomes with operons with a higher level of nucleotide divergence were detected, and Thermoanaerobacter tengcongensis exhibited the highest level of divergence (11.6%) noted to date. Overall, four of the five extreme cases of operon differences occurred among thermophilic bacteria, suggesting a much higher incidence of HGT in these bacteria than in other groups.  相似文献   

8.
Recent bioinformatic analyses of sequenced plant genomes reveal a previously unrecognized abundance of genes encoding antimicrobial cysteine-rich peptides, representing a formidable and dynamic defense arsenal against plant pests and pathogens.  相似文献   

9.
10.
11.
12.
13.
Complete sequences of multiple strains of the same microbial species provide an invaluable source for studying the evolutionary dynamics between orthologous genes over a relatively short time scale. Usually the intensity of the selection pressure is inferred from a comparison between the nonsynonymous substitution rate and the synonymous substitution rate. In this paper, we propose an alternative method for detecting genes with one or more fast-evolving regions from pairwise comparisons of orthologous genes. Our method looks for regions with overrepresented nonsynonymous mutations along the alignment, and requires a higher nonsynonymous evolution rate in those regions than the neutral evolution rate. It identifies gene targets under intensive selection pressure that are not detected from the conventional rate comparison analysis. For those identified genes with known annotations, most of them have a clear role in processes such as bacterial defense and host–pathogen interactions. Gene sets reported from our method provide a measure of the phenotypic divergence between two closely related genomes.  相似文献   

14.

Background  

Microbial genomes contain an abundance of genes with conserved proximity forming clusters on the chromosome. However, the conservation can be a result of many factors such as vertical inheritance, or functional selection. Thus, identification of conserved gene clusters that are under functional selection provides an effective channel for gene annotation, microarray screening, and pathway reconstruction. The problem of devising a robust method to identify these conserved gene clusters and to evaluate the significance of the conservation in multiple genomes has a number of implications for comparative, evolutionary and functional genomics as well as synthetic biology.  相似文献   

15.
Siew N  Fischer D 《Proteins》2003,53(2):241-251
Singleton sequence ORFans are orphan ORFs (open reading frames) that have no detectable sequence similarity to any other sequence in the databases. ORFans are of particular interest not only as evolutionary puzzles but also because we can learn little about them using bioinformatics tools. Here, we present a first systematic analysis of singleton ORFans in the first 60 fully sequenced microbial genomes. We show that although ORFans have been underemphasized, the number of ORFans is steadily growing, currently accounting for 23,634 sequences. At the same time, the percentage of ORFans as a fraction of all sequences is slowly diminishing, and is currently about 14%. Short ORFans comprise about 61% of all ORFans. The abundance of short ORFans may be due to a yet unexplained artifact. The data also suggest that the number of longer ORFans may soon diminish as more genomes of closely related organisms become available. To better address the questions about the functions and origins of ORFans, we propose to focus further studies on the longer ORFans, with emphasis on three new types of ORFans: ORFan modules, paralogous ORFans, and orthologous ORFans. We conclude that the large number of ORFans reflects an intrinsic property of the genetic material not yet fully understood. Further computational and experimental studies aimed at understanding Nature's protein diversity should also include ORFans.  相似文献   

16.
Detection of lateral gene transfer among microbial genomes   总被引:17,自引:0,他引:17  
An increasingly comprehensive assessment is being developed of the extent and potential significance of lateral gene transfer among microbial genomes. Genomic sequences can be identified as being of putatively lateral origin by their unexpected phyletic distribution, atypical sequence composition, differential presence or absence in closely related genomes, or incongruent phylogenetic trees. These complementary approaches sometimes yield inconsistent results. Not only more data but also quantitative models and simulations are needed urgently.  相似文献   

17.

Background  

Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem.  相似文献   

18.
Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号