首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stimulation of the human neutrophil NADPH-oxidase is initiated by a variety of agonists, which appear to utilize more than one activation pathway. We have discerned that opsonized zymosan (OZ) stimulates O2- release by a mechanism distinct from that of phorbol myristate acetate (PMA). PMA differs from OZ stimulation in its susceptibility to H-7 (a protein kinase inhibitor) inhibition of O2- release and the lack of PMA-initiated release of radiolabeled arachidonic acid ([3H]AA) from prelabeled cells. That AA release was linked to O2- generation in OZ-stimulated cells was suggested by the finding that mepacrine, a phospholipase inhibitor, exhibits parallel dose response inhibition for both O2- generation and [3H]AA release, whereas mepacrine did not significantly inhibit the O2- generation induced by PMA. The specific involvement of phospholipase A2 (PLA2) in the release of AA was indicated by the lack of release of [3H]oleate, which is not released by PLA2 in intact cells; [3H]AA released from phosphatidylinositol and phosphatidylcholine and not accompanied by the formation of [3H]-arachidonyl phosphatidic acid, thus eliminating the involvement of phospholipase C; and the inhibition of [3H]AA release by p-bromophenacyl bromide, a specific PLA2 inhibitor. The reduction of O2- formation by inhibitors of AA metabolism (BW755C, acetylsalicylic acid, and indomethacin) further supports a linkage between AA release and O2- generation. That [3H]AA release, like O2- generation, in OZ-stimulated cells was calcium dependent further differentiates OZ from calcium-independent PMA activation. These studies in toto suggest that OZ stimulation of the NADPH-oxidase differs from PMA, in that the particulate stimulus is PLA2 mediated and independent of protein kinase C.  相似文献   

2.
Serum-treated, or "opsonized" zymosan (OZ), a particulate material which can be phagocytized by polymorphonuclear leukocytes, activates the superoxide-generating respiratory burst in these cells. The use of dual wavelength spectroscopy in the present studies has allowed accurate continuous monitoring of superoxide generation (cytochrome c reduction) upon cellular activation by this turbid material; activation occurs after a short lag period (about 20 s) which is similar to the lag seen after activation with the chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP). Unlike the fMLP response which terminates after about 90 s, superoxide generation in response to OZ continues beyond 10 min, and is similar in this regard to the response seen with the protein kinase C activator phorbol myristate acetate (PMA). OZ and fMLP, but not PMA, also activate receptor-linked phospholipase C mechanisms as judged by the appearance of inositol trisphosphate (IP3) (as well as other inositol phosphates) and diacylglycerol (DAG), with the latter measured by a mass assay. The appearance of these potential mediators corresponded to the loss of phosphoinositides, in particular phosphatidylinositol 4,5-bisphosphate (PIP2). The magnitude of DAG and inositol sugar generation as well as the breakdown of PIP2 was considerably greater using OZ than with fMLP. In addition, while fMLP resulted in a transient increase in IP3 and DAG, OZ resulted in a sustained elevation of these molecules. With both agonists, the onset and duration of generation of putative mediators corresponded to the period of generation of O2-, consistent with a role for DAG and/or IP3 in the activation of the respiratory burst.  相似文献   

3.
Murine resident peritoneal macrophages (RPM) generate superoxide (O2-) in response to stimulation with PMA or zymosan. Murine bone marrow-derived macrophages (BMM) generate O2- in response to zymosan but not PMA. However, the ability to generate O2- in response to PMA could be induced in BMM by pre-exposing the cells to certain cytokines, including granulocyte-macrophage CSF (GM-CSF), tumor necrosis factor-alpha (TNF-alpha), IFN-gamma, and, to a lesser extent, IL-1 alpha. Bacterial LPS also induced the ability to respond to PMA. These same agents were also shown to prime RPM for enhanced PMA-induced respiratory burst. In contrast to GM-CSF, CSF-1 did not enhance the ability of BMM or RPM to generate O2- in response to PMA. Pretreatment with GM-CSF or TNF-alpha did not significantly affect the zymosan-induced release of O2- by BMM. These results suggest that unprimed BMM have a deficiency in the PMA-dependent signaling pathway that is corrected by exposure to selected cytokines. The results also raise the possibility that the basal ability of tissue macrophages to generate a respiratory burst in response to PMA may be a reflection of in vivo exposure to cytokines.  相似文献   

4.
Polymorphonuclear leukocytes from healthy volunteers (HPMN) generated superoxide (O2*-) following treatment with various stimuli, such as phorbol myristate acetate (PMA), opsonized zymozan (OZ) and arachidonic acid (AA). Other types of n-3 polyunsaturated fatty acids (PUFAS), such as docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and eicosapentaenoic acid (EPA), also stimulated O2*- generation. The free form of DHA enhanced the generation of O2*- induced by PMA but inhibited that induced by OZ. In contrast, the ethylester of DHA (DHA-E) inhibited O2*- generation induced by PMA but stimulated that induced by OZ. Similar effects were also observed with ethylesters of EPA (EPA-E), DPA (DPA-E) and AA (AA-E). High concentrations of DHA-E reduced the PMA-induced formation of superoxide without affecting the cellular activity of protein kinase C (PKC). Similar phenomena were also observed with oral neutrophils from healthy volunteers (OPMN). These results indicate that PUFAS and their esters affect 02*- generation in human PMN via different pathways, thereby modulating inflammatory reactions.  相似文献   

5.
Human peripheral blood polymorphonuclear leukocytes were preincubated with cystathionine and cystathionine metabolites found in the urine of patients with cystathioninuria. Among the cystathionine metabolites, cystathionine ketimine and N-acetyl-S-(3-oxo-3-carboxy-n-propyl) cysteine (NAc-OCPC) significantly enhanced the N-formylmethionylleucylphenylalanine (fMLP)-induced superoxide generation, but cystathionine, NAc-cystathionine, and cyclothionine did not enhance the superoxide generation. Cystathionine ketimine and NAc-OCPC also enhanced superoxide generation induced by opsonized zymosan (OZ) but not that induced by arachidonic acid (AA) and phorbol 12-myristate 13-acetate (PMA). Superoxide generation induced by cystathionine ketimine and NAc-OCPC was inhibited by genistein, an inhibitor of tyrosine kinase, and was enhanced by 1-(5-isoquinoline sulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C. Cystathionine ketimine and NAc-OCPC markedly also increased phosphorylation of 45-kDa protein in human neutrophils and the phosphorylation depended on the concentrations of cystathionine ketimine and NAc-OCPC. The phosphorylation of 45-kDa protein induced by cystathionine ketimine and NAc-OCPC was inhibited by genistein and herbimycin A, inhibitors of tyrosine kinase, but was not inhibited by H-7 and staurosporine, inhibitors of protein kinase C. Cystathionine metabolites and l-cystathionine sulfoxides were separated into two diastereoisomers, CS-I and CS-II. CS-I enhanced the superoxide generation induced by AA and PMA but not that induced by fMLP and OZ. In contrast, CS-II enhanced the superoxide generation induced by fMLP and OZ, but not that induced by AA and PMA.  相似文献   

6.
Platelet activating factor (PAF; C16), 1-O-Hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine) stimulated the production of active oxygen species by human monocyte-derived macrophages in culture. An optimal response was observed at a concentration of 13 microM PAF with half-maximal stimulation at 5 microM. The generation of superoxide ion (O2-) and hydrogen peroxide (H2O2) in response to PAF was inhibited specifically by a PAF-antagonist (1-O-Hexadecyl-2-acetyl-sn-glycero-3-phospho (N,N,N,-trimethyl) hexanolamine; such generation varied with the degree of maturation of cultured monocytes into macrophages. Production of active oxygen species increased progressively to reach a maximal level between days 4 to 6 of culture and remained maximal to day 12, after which it decreased progressively. Phorbol 12-myristate-13-acetate (PMA) and opsonized zymosan also stimulated generation of O2- and H2O2. PAF was however distinguished by its potent capacity to stimulate O2- and H2O2 production even at late stages of macrophage maturation (18 days), at which time both PMA and zymosan lacked significant effect. These findings suggest that PAF is a factor of potential relevance to the inflammatory role of the macrophage in atherogenesis.  相似文献   

7.
Neutrophils play an integral role in innate immunity by undergoing degranulation and respiratory burst in response to inflammatory stimuli. Rac2, a monomeric GTP-binding protein, has been shown to be involved in several neutrophil functions, including primary granule release and superoxide (O(2)(-.) generation. We hypothesized that Rac2 is a common signalling molecule required for primary granule translocation and maximal O(2)(-.) production. Using bone marrow neutrophils from Rac2 knockout (KO) mice and wild type C57Bl/6 mice, we found that primary granule elastase and myeloperoxi dase release were absent in Rac2 KO neutrophils upon chemoattractant stimulation. Rac2 KO neutrophils also failed to produce maximal levels of extracellular O(2(-.) generation in response to phorbol myristate acetate (PMA). Although PMA was ineffective at eliciting primary granule mediator release, it induced secondary granule exocytosis in both WT and Rac2 KO neutrophils. Thus, the signalling pathway leading to primary granule release utilized Rac2, which was also necessary for full activation of O(2)(-.) generation in stimulated neutrophils. These findings indicate that O(2)(-.) release and secondary granule secretion may use protein kinase C (PKC) - dependent pathways, whereas primary granule exocytosis appears to rely on PKC-independent signalling events. These findings shed light on possible signalling mechanisms involved in granule secretion from activated neutrophils responding to different stimuli.  相似文献   

8.
The effect of 6,9-deepoxy-6,9-(phenylimino)-delta 6,8-prostaglandin I1 (Piriprost) on the oxidative response was studied in human neutrophils stimulated by N-formyl-methionyl-leucyl-phenylalanine (fMLP), phorbol 12-myristate, 13-acetate (PMA) or opsonized zymosan. Piriprost inhibited the stimulatory effect of fMLP on superoxide anion (O2-) generation, at concentrations higher than those which depress leukotriene B4 (LTB4) formation. This inhibition was overcome by increasing the concentration of fMLP. Neither exogenous LTB4 nor indomethacin were able to reverse the inhibitory effect of piriprost on fMLP action. In contrast, piriprost did not inhibit the stimulation of O2- production induced by PMA or zymosan. Piriprost behaves thus as a specific and apparently competitive antagonist of fMLP: this action does not seem to involve lipoxygenase inhibition and might be exerted at the level of the fMLP receptor or its associated mechanisms of transduction.  相似文献   

9.
Human peripheral blood polymorphonuclear leukocytes (HPPMN) from healthy individuals are not primed and, hence, weak stimulation-dependent responses are induced by certain stimuli which bind to membrane receptors. When HPPMN were exposed to recombinant human tumor necrosis factor alpha (rHuTNF-alpha) or recombinant human granulocyte colony stimulating factor (rG-CSF), they underwent priming and the rate of superoxide anion (O.-2) generation was increased by subsequent exposure to formyl-methionyl-leucyl-phenylalanine (FMLP) or opsonized zymosan (OZ). However, the degree of enhancement was very small upon exposure to phorbol myristate acetate (PMA) or dioctanoyl glycerol (DOG). The oxygen burst induced by FMLP or OZ was inhibited by genistein and alpha-cyano-3-ethoxy-4-hydroxy-5-phenylthiomethylcinnamamid (ST638), which are inhibitors of tyrosine kinase (TK), and was enhanced by 1-(5-isoquinoline-sulfonyl)-3-methyl-piperazine (H-7) and staurosporine, which are inhibitors of protein kinase C (PKC). Without priming, however, O.-2 generation from HPPMN by high concentrations of FMLP was not inhibited strongly by genistein or ST638. On the contrary, the oxygen burst induced by PMA or DOG was stimulated by genistein or ST638 and was inhibited by H-7 or staurosporine. Furthermore, O.-2 generation by guinea pig peritoneal neutrophils, which are already primed in vivo, was induced markedly by FMLP by a mechanism which was stimulated by a low concentration of genistein or ST638. Thus, FMLP-mediated O.-2-generation of HPPMN is coupled with rHuTNF-alpha- or rG-CSF-priming and is inhibited by TK inhibitors, whereas PMA- or DOG-induced O.-2 generation is not coupled with TNF-alpha or G-CSF-priming and is inhibited by PKC inhibitors. These results suggest that both PKC and TK play critical roles in the regulatory mechanism of priming and NADPH-oxidase activation in neutrophils.  相似文献   

10.
A simple method was developed to isolate viable human salivary polymorphonuclear leukocytes (SPMN) from the oral cavity, and stimulation-coupled responses of these cells were examined. From morphological characteristics and the presence of neutrophil-specific annexin protein (39-kDa protein), we found that these cells seemed to be very similar to human peripheral polymorphonuclear leukocytes (PPMN), although they were in rather young stages. Stimulation-coupled responses of these cells were observed in terms of superoxide (O2.-) genration, luminol chemiluminescence response (LCL), membrane depolarization, and changes in intracellular calcium ion concentration ([Ca2+]i). The rates of superoxide generation by various stimuli, such as formylmethionylleucylphenylalanine (FMLP), phorbol 12-myristate 13-acetate (PMA) and opsonized zymosan (OZ) were different. Superoxide generation and strong chemiluminescence response were observed without addition of any stimuli. This endogenous LCL was inhibited by azide and superoxide dismutase (SOD), but not by uric acid (UA). The intensity of the endogenous LCL decreased with time after isolation from the oral cavity. This decrease was accompanied by the appearance of a FMLP-coupled response. Furthermore, the endogenous activity which produced active oxygen species was maintained in the medium at 4 degrees C for a long period after isolation. From these results, it is suggested that SPMN have the ability to show characteristic responses to various stimuli, and that SPMN play important roles in the defense mechanisms in the oral cavity.  相似文献   

11.
The U937 human monocytic cell line was studied to determine its ability to generate a respiratory burst after stimulation with phorbol myristate acetate (PMA) or opsonized zymosan. U937 cells cultured in normal medium produced virtually no superoxide anion or chemiluminescence in response to either stimulus. In contrast, U937 cells cultured in medium containing soluble factors from activated lymphocytes produced significant O2- and chemiluminescence when stimulated with PMA or opsonized zymosan. The chemiluminescence in response to PMA was maximal in U937 cells precultured with these soluble factors for 3 days, whereas maximal responsiveness to opsonized zymosan was not observed until 5 to 6 days of lymphokine exposure. Although this ability to generate a respiratory burst persisted for a number of days in U937 cells that were subsequently recultured in normal medium, this responsiveness was gradually lost in the continued absence of these factors. The data indicate that the U937 monocytic cell line can be activated or induced to differentiate by soluble factors released by activated lymphocytes. In the process, these cells acquire the ability to generate a respiratory burst. The U937 cell line may serve as a useful model for the study of the ontogeny and regulation of the respiratory burst during human monocytic differentiation.  相似文献   

12.
Mycobacterium leprae synthesizes a unique phenolic glycolipid (PGL-I) in abundant quantities. We studied the effect of PGL-I on the generation of superoxide anion (O2-) by stimulated human monocytes. Peripheral blood monocytes pretreated with PGL-I released less O2- when stimulated with M. leprae than did control monocytes. Monocytes pretreated with dimycocerosyl phthiocerol, mycoside A of Mycobacterium kansasii, or mycoside B of Mycobacterium microti, on the other hand, released O2- in quantities comparable to control monocytes in response to M. leprae stimulation. Monocyte O2- release in response to other stimuli of the oxidative metabolic burst, such as PMA, zymosan, Mycobacterium bovis Bacille Calmette-Guérin, or M. kansasii, was unaffected by lipid pretreatment. These findings demonstrate that PGL-I has a direct effect on monocyte O2- generation in response to M. leprae and suggest that PGL-I is a modulator of phagocytic cell function.  相似文献   

13.
The lucigenin-dependent chemiluminescence generation by guinea-pig isolated tracheal two rings preparations was studied. Tracheal preparations stimulated with phorbol myristate acetate (PMA) or opsonized zymosan generated chemiluminescence. The total amount of chemiluminescence generated in 120 min was 754+/-63 mV x min for PMA and 4832+/-396 mV x min for zymosan. Generation of chemiluminescence was decreased by more than 50% when the tissues were co-incubated with superoxide dismutase (100 U/ml). Also, addition of direct donors of nitric oxide diminished chemiluminescence generation by zymosan-activated tracheal rings significantly by about 50%. However, the presence of the precursor or of inhibitors of nitric oxide synthase did not influence zymosan-induced chemiluminescence. Removal of the epithelial layer from tracheal rings caused an approximately 90% decrease in chemiluminescence response. However, isolated epithelial cell suspensions did not generate chemiluminescence. Histologic examination showed that the number of eosinophils in the tracheal tissue was reduced from 56+/-7 to 18+/-8 per mm basal membrane when the epithelial layer was removed. These results indicated that (1) superoxide anion formation can take place in the guinea-pig trachea, (2) eosinophils in the epithelial and submucosal layers of guinea-pig trachea are likely candidates for superoxide generation although other cell types can also be involved, and (3) besides relaxing airway smooth muscle, nitric oxide donors may also affect superoxide in the airways.  相似文献   

14.
Freshly isolated human blood monocytes displayed a vigorous oxygen radical response, measured as release of superoxide anion (O2-), after stimulation with phorbol myristate acetate (PMA) or opsonized zymosan. High O2- release was observed with cells isolated by using a variety of procedures. Monocytes cultured in endotoxin-free medium M199 with or without 5% heat-inactivated autologous serum gradually lost this ability to produce O2- in response to PMA over the course of 4 days. The decreased responsiveness to PMA was accompanied by decreased adherence and viability. The loss of function, adherence, and viability was prevented by supplementing the culture medium with either bacterial lipopolysaccharide (LPS) or muramyl dipeptide (MDP). The O2- response of monocytes cultured for several days without bacterial products could be partially restored by the addition of LPS on day 2 or 3 of culture. Partial restoration could be detected in monocytes after only 1 hr of exposure to LPS, although a maximal response required a 2-day exposure. The minimum effective concentration of MDP was 1 ng/ml; stereoisomers of MDP, which are inactive as adjuvants, had no effect at 1 micrograms/ml. The minimum effective concentration of LPS was 1 pg/ml, corresponding to fewer than 10 molecules of LPS per monocyte. These results suggest that exposure to LPS or other bacterial products, represented here by MDP, may be required to preserve the microbicidal potential of human monocyte-macrophages in vivo.  相似文献   

15.
The effects of the tumor promoter phorbol 12-myristate 13-acetate (PMA) on the proliferation, protein kinase C activity (PKC), and c-fos gene expression were examined in cultures of young and senescent (90-95% lifespan completed) WI-38 human diploid fibroblasts. We observed that, following stimulation with medium containing 10% fetal bovine serum (FBS), the translocation of PKC from the cytosol to the particulate compartment was less efficient in senescent WI-38 cells than in young cells. However, when PMA was added to the medium, the intracellular distribution of PKC activity in old cells became nearly identical to that observed in young cells. The inducibility of c-fos mRNA by serum addition, which is a protein kinase C-dependent event [64], was significantly amplified in the presence of PMA. Moreover, the duration of peak c-fos expression, after stimulation by FBS and PMA, increased in senescent cells as compared to young cells. Our results reveal that the normal signal transduction pathway is altered in senescent, slowly proliferating human fibroblasts and that it can be partially restored in the presence of the tumor promoter PMA.  相似文献   

16.
The involvement of protein phosphatases in the activation of superoxide (O2-)- generating enzyme in human neutrophils was examined using calyculin A, an inhibitor of protein phosphatase type 1 and 2A. Calyculin A inhibited the phorbol myristate acetate (PMA)- and opsonized zymosan (OZ)-activated O2- generation by human neutrophils. This inhibitory effect of calyculin A on PMA-activated O2- generation was reversed by the addition of KT5926, a specific inhibitor of myosin light chain kinase and Ca2+/calmodulin-dependent protein kinase II. These results suggest that the addition of calyculin A may cause hyperphosphorylation of some protein(s) that plays a crucial role in the PMA-dependent activation of O2- generating enzyme, and that this protein hyperphosphorylation may be evoked by a KT5926-sensitive kinase or its downstream kinase. Whereas two-dimensional analysis involving 32P revealed that calyculin A caused the hyperphosphorylation of many proteins, KT5926 mainly reduced the calyculin A-induced hyperphosphorylation of a 67 kDa protein in activated neutrophils, suggesting that the hyperphosphorylation of the 67 kDa protein might inhibit the PMA-dependent activation of NADPH oxidase. The 67 kDa cytosolic protein was moderately phosphorylated on the addition of PMA. On the other hand, in the absence of calyculin A, KT5926 inhibited both PMA-induced O2- generation and phosphorylation of the 67 kDa protein. Amino acid sequence analysis of peptides derived from the 67 kDa protein revealed that the 67 kDa protein was identical to L-plastin, an actin-bundling protein. We conclude that optimally phosphorylated L-plastin may play some crucial role in the activation of NADPH oxidase.  相似文献   

17.
Unlike resident peritoneal macrophages (RPM) or tumor necrosis factor alpha (TNF alpha)-primed bone marrow-derived macrophages (BMM), unprimed BMM do not generate superoxide in response to the protein kinase C (PKC) activator, phorbol myristate acetate (PMA). However, these cells do contain significant levels of PKC activity. In contrast to PMA, zymosan induces the generation of superoxide in unprimed BMM, as well as in TNF alpha-primed BMM and RPM. Staurosporine, a potent PKC inhibitor, failed to affect the zymosan-induced production of superoxide by unprimed and TNF alpha-primed BMM and RPM, in spite of substantial inhibition of PMA-induced superoxide production by the primed BMM and RPM. However, when PKC was depleted from unprimed BMM by prolonged (24 h) treatment with phorbol dibutyrate (PdBt) (10(-7) M) the ability of zymosan to induce the production of superoxide was greatly diminished. Such a result could be interpreted as suggesting a role for PKC in the zymosan-induced response, a conclusion which contrasts with the inhibitor data. However, PKC depletion, in this case, is achieved via the PdBt-induced activation of PKC. It is thus possible that it is the initial activation of PKC, rather than its depletion, that suppresses superoxide production. Consistent with this interpretation, the co-stimulation of unprimed BMM with both zymosan and PMA resulted in a reduced superoxide release compared to zymosan alone. The activation of PKC therefore appears to have a suppressive effect on the generation of superoxide by unprimed cells. We thus conclude that PKC is not required for zymosan-induced superoxide production by either primed or unprimed macrophages and suggest that PKC may be involved in regulatory mechanisms restricting superoxide production by macrophages. However, since PMA alone can initiate the release of superoxide from primed BMM and RPM, it would appear that PKC can mediate both stimulatory and suppressive signals for macrophage superoxide production.  相似文献   

18.
NO, which suppresses T cell proliferation, may be inactivated by superoxide (O2-) due to their strong mutual affinity. To examine this possibility, preactivated Th clones were cocultured with stimulated macrophages. PMA neutralized the inhibitory activity of NO, which was dependent on extracellular O2- production. In contrast, macrophages from p47phox -/- (pKO) mice, which lack functional NADPH oxidase, retained their NO-dependent inhibition of T cell proliferation upon stimulation with PMA, indicating that NADPH oxidase is the major source of NO-inactivating O2- in this system. To examine the NO-O2- interaction in vivo, the role of NADPH oxidase in experimental autoimmune encephalomyelitis was studied in pKO mice. No clinical or histological signs were observed in the pKO mice. Neither a bias in Th subsets nor a reduced intensity of T cell responses could account for the disease resistance. Although spleen cells from pKO mice proliferated poorly in response to the immunogen, inhibition of NO synthase uncovered a normal proliferative response. These results indicate that NO activity may play a critical role in T cell responses in pKO mice and that in normal spleens inhibition of T cell proliferation by NO may be prevented by simultaneous NADPH oxidase activity.  相似文献   

19.
It is well established that activation of neutrophils within the pulmonary circulation produces acute lung injury in which adherence of neutrophils to endothelial cells is an obligatory step in the mechanism of injury. The effects of in vivo activation of neutrophils on the in vitro responses of these cells to stimulation have not been determined, although such information may be important in understanding how different etiological factors may interact to produce infection or acute respiratory failure. By using an assay to sequentially measure superoxide anion (O2-) release from adherent neutrophils stimulated with phorbol myristate acetate (PMA), we measured the in vitro activation response of peripheral blood neutrophils isolated before and 24 h after infusion of zymosan-activated plasma (ZAP; or untreated plasma as a control), air bubbles, or PMA in awake, instrumented sheep. Each of the three inflammatory agents produced an increase in lung microvascular permeability characteristic of acute lung injury; control plasma did not. For the in vivo ZAP experiments, stimulated O2- release in vitro by using PMA was approximately 50% lower (P less than 0.05) for neutrophils isolated 24 h after the in vivo infusion (4.3 +/- 0.8 nmol/500,000 cells) than before (8.1 +/- 0.2 nmol/500,000 cells). For the air emboli or PMA in vivo experiments, there were no changes in neutrophil activation responses in vitro. Similarly, infusion of control plasma did not result in reduced neutrophil O2- release. These results show that alterations in the inflammatory potential of neutrophils may occur in vivo and that such alterations appear to be dependent on the mechanism and agent by which lung injury is produced.  相似文献   

20.
Lymphocytes of aged animals exhibit a marked decrease in proliferative capacity in response to mitogen stimulation when compared to those of younger animals. In humans and mice the decreased proliferation is due at least in part (i) to the inability of lymphocytes to synthesize sufficient interleukin 2 (IL-2) and (ii) to decreased expression of IL-2 receptors (IL-2R) on the surface of aged lymphocytes. We compared proliferative abilities, IL-2 production, and IL-2R expression in splenocyte cultures of 4- to 5- and 22- to 24-month-old Fischer 344 rats stimulated with either concanavalin A (Con A) or A23187 and phorbol myristate acetate (PMA). Proliferation was significantly decreased in aged lymphocytes (30-50%) with both treatment protocols. However, unlike mice and humans we observed no difference in IL-2 activity, IL-2 mRNA levels, or IL-2R cell surface expression of lymphocytes from young and aged rats stimulated with either Con A or A23187 and PMA. These results indicate that factors other than decreased expression of IL-2 and IL-2R are responsible for the diminished proliferative capacity of aged rat lymphocytes following mitogen stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号