首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cell volume determinations and electrophysiological measurements have been made in an attempt to determine if mitochondria-rich (MR) cells are localized pathways for conductive movements of Cl across frog skin epithelium. Determinations of cell volume with video microscope techniques during transepithelial passage of current showed that most MR cells swell when the tissue is voltage clamped to serosa-positive voltages. Voltage-induced cell swelling was eliminated when Cl was removed from the mucosal bath solution. Using a modified vibrating probe technique, it was possible to electrically localize a conductance specifically to some MR cells in some tissues. These data are evidence supporting the idea that MR cells are pathways for conductive movements of Cl through frog skin epithelium.  相似文献   

2.
The onset of active Na(+) transport and activated Cl(-) conductance (G(Cl)) across the skin epithelium of Pelobates syriacus was investigated during natural ontogenetic development. Structural features, including band three and Peanut lectin bindings were tested in parallel and structure-function relationships were attempted. The 22 specimens studied were divided into two tadpole, three juvenile, and two adult stages, corresponding to the Taylor-Kollros standard table, in accordance with external morphology of their developmental stage. Onset of transepithelial electrical potential and drop in conductance occurred abruptly, coinciding with metamorphosis climax of tadpoles into juveniles at about stage XXI of development. Amiloride-sensitive Na(+) transport occurred a little later at stage XXIII, followed by the appearance of activated Cl(-) conductance, G(Cl). Parallel structural examination showed that skin MR cells occurred upon metamorphosis, as the tadpole integument transformed into the adult epithelium and could be associated with the occurrence of activated G(Cl). It was not related temporally with the appearance of band three protein in MR cells. Our findings support the association of G(Cl) with MR cells, whereas band three may only be a corollary of G(Cl) and not necessarily essential for its manifestation.  相似文献   

3.
Seven lectins were employed to localize glycoconjugates in the skin of a toad (Bufo viridis). Each of the lectins exhibited a particular, specific and selective binding pattern. Peanut lectin (PNA) and WGA bound to mitochondria-rich (MR) cells, but WGA bound also abundantly, in the dermis. Band 3-like protein, as indicated by the reaction with polyclonal anti band 3 antibody, was localized exclusively in MR cells. Ionic acclimation (200 mmol/L NaCl, or 50 mmol/L KCl) affected profoundly the binding pattern of the lectins. High NaCl acclimation resulted also in diminishing anti band 3 antibody binding, whereas in skins of KCl-acclimated toads the staining remained similar to the control. The binding of WGA but not PNA, corresponded with the same cells that stained with anti band 3 antibody. PNA in concentration of < 10 μg/mL reduced reversibly, both the resting and activated Cl? conductance by 25–30%. Based on differential binding of band 3, WGA and PNA, these observations provide conclusive verification of the presence of at least two populations of MR cells in the toad skin epithelium. It is suggested that the PNA positive MR cells may correspond to a β-type MR cell. The information can be used to study molecular mechanisms that are involved in ionic acclimation.  相似文献   

4.
Krogh introduced the concept of active ion uptake across surface epithelia of freshwater animals, and proved independent transports of Na(+) and Cl(-) in anuran skin and fish gill. He suggested that the fluxes of Na(+) and Cl(-) involve exchanges with ions of similar charge. In the so-called Krogh model, Cl(-)/HCO(3)(-) and Na(+)/H(+) antiporters are located in the apical membrane of the osmoregulatory epithelium. More recent studies have shown that H(+) excretion in anuran skin is due to a V-ATPase in mitochondria-rich (MR) cells. The pump has been localized by immunostaining and H(+) fluxes estimated by pH-stat titration and mathematical modelling of pH-profiles in the unstirred layer on the external side of the epithelium. H(+) secretion is voltage-dependent, sensitive to carbonic-anhydrase inhibitors, and rheogenic with a charge/ion-flux ratio of unity. Cl(-) uptake from freshwater is saturating, voltage independent, and sensitive to DIDS and carbonic-anhydrase inhibitors. Depending on anuran species and probably on acid/base balance of the animal, apical exit of protons is coupled to an exchange of Cl(-) with base (HCO(3)(-)) either in the apical membrane (gamma-type of MR cell) or in the basolateral membrane (alpha-type MR cell). The gamma-cell model accounts for the rheogenic active uptake of Cl(-) observed in several anuran species. There is indirect evidence also for non-rheogenic active uptake accomplished by a beta-type MR cell with apical base secretion and basolateral proton pumping. Several studies have indicated that the transport modes of MR cells are regulated via ion- and acid/base balance of the animal, but the signalling mechanisms have not been investigated. Estimates of energy consumption by the H(+)-ATPase and the Na(+)/K(+)-ATPase indicate that the gamma-cell accomplishes uptake of NaCl in normal and diluted freshwater. Under common freshwater conditions with serosa-positive or zero V(t), the K(+) conductance of the basolateral membrane would have to maintain the inward driving force for Na(+) uptake across the apical membrane. With the K(+) equilibrium potential across the basolateral membrane estimated to -105 mV, this would apply to external Na(+) concentrations down to 40-120 micromol/l. NaCl uptake from concentrations down to 10 micromol/l, as observed by Krogh, presupposes that the H(+) pump hyperpolarizes the apical membrane, which would then have to be associated with serosa-negative V(t). In diluted freshwater, exchange of cellular HCO(3)(-) with external Cl(-) seems to be possible only if the proton pump has the additional function of keeping the external concentration of HCO(3)(-) low. Quantitative considerations also lead to the conclusion that with the above extreme demand, at physiological intracellular pH of 7.2, the influx of Cl(-) via the apical antiporter and the passive exit of Cl(-) via basolateral channels would be possible within a common range of intracellular Cl(-) concentrations.  相似文献   

5.
The chloride current across the isolated epithelium from saline-acclimated Bufo viridis toads was studied using the extracellular vibrating probe technique. Local peak current densities varying between 5 and 100 microA/cm2 were recorded over subpopulation of mitochondria-rich cells, but never over granulosum cells. These local transepithelial currents had characteristics similar to the activated chloride current observed in the whole skin (Katz, U. and Larsen, E.H. (1984) J. Exp. Biol. 109, 353-371). Replacement of the apical Ringer with chloride-free (nitrate) ringer resulted in reversible reduction in the current at the mitochondria-rich cells. It is concluded that the mitochondria-rich cells are the principal site of passive chloride conductance across the epithelium.  相似文献   

6.
《Journal of morphology》2017,278(9):1208-1219
The anuran peripheral olfactory system is composed of a number of subsystems, represented by distinct neuroepithelia. These include the main olfactory epithelium and vomeronasal organ (found in most tetrapods) and three specialized epithelia of anurans: the buccal‐exposed olfactory epithelium of larvae, and the olfactory recess and middle chamber epithelium of postmetamorphic animals. To better characterize the developmental changes in these subsystems across the life cycle, morphometric changes of the nasal chemosensory organs during larval development and metamorphosis were analyzed in three different anuran species (Rhinella arenarum , Hypsiboas pulchellus , and Xenopus laevis ). We calculated the volume of the nasal chemosensory organs by measuring the neuroepithelial area from serial histological sections at four different stages. In larvae, the vomeronasal organ was relatively reduced in R. arenarum compared with the other two species; the buccal‐exposed olfactory epithelium was absent in X. laevis , and best developed in H. pulchellus . In postmetamorphic animals, the olfactory epithelium (air‐sensitive organ) was relatively bigger in terrestrial species (R. arenarum and H. pulchellus ), whereas the vomeronasal and the middle chamber epithelia (water‐sensitive organs) was best developed in X. laevis . A small olfactory recess (likely homologous with the middle chamber epithelium) was found in R. arenarum juveniles, but not in H. pulchellus . These results support the association of the vomeronasal and middle chamber epithelia with aquatic olfaction, as seen by their enhanced development in the secondarily aquatic juveniles of X. laevis . They also support a role for the larval buccal‐exposed olfactory epithelium in assessment of oral contents: it was absent in X. laevis , an obligate suspension feeder, while present in the two grazing species. These initial quantitative results give, for the first time, insight into the functional importance of the peripheral olfactory subsystems across the anuran life cycle.  相似文献   

7.
The rate of somatic development of anuran amphibians is only roughly correlated with the rate of gonad differentiation and varies among species. The somatic stage of a tadpole often does not reflect its age, which seems to be crucial for gonad differentiation rate. We compared the morphology and differentiation of developing ovaries at the light and electron microscopy level, with reference to somatic growth and age of a female. Our observations were performed on 12 species of six families (Rana lessonae, R. ridibunda, R. temporaria, R. arvalis, R. pipiens, R. catesbeiana, Bombina bombina, Hyla arborea, Bufo bufo. B. viridis, Xenopus laevis, Pelobates fuscus) and compared with the results obtained by other authors. This allowed us to describe the unified pattern of anuran female gonad differentiation. Ovary differentiation was divided into 10 stages: I-III, undifferentiated gonad; IV, sexual differentiation; V, first nests of meiocytes; VI, first diplotene oocytes; VII-IX, increasing number of diplotene oocytes and decreasing number of oogonia and nests; X, fully developed ovary composed of diplotene oocytes with rudimental patches of oogonia. We distinguished three types of ovary differentiation rate: basic (most species), retarded (genus Bufo), and accelerated (green frogs of the subgenus Pelophylax genus Rana).  相似文献   

8.
In early studies of salt transport across frog and toad skin, it was assumed that chloride movement is extracellular. However, later studies suggested that chloride movement is largely transcellular. Chloride transport across toad skin is greatly diminished in skins of salt-acclimated toads (Bufo viridis) and was correlated with the number of mitochondria-rich (m.r.) cells in the epithelium. The activated chloride conductance could be recovered upon in vitro incubation with theophylline. It was found that the short-circuit current (Isc) and the chloride conductance (Gcl) in toad skin could be separated experimentally by selective use of synthetic oxytocin (Syntocinon) or theophylline, and by substituting impermeable anions for chloride. With the use of the vibrating probe we demonstrated directly that chloride-dependent peak currents are localized only over m.r. cells, under hyperpolarized (V = -100 mV) conditions. It is concluded that the m.r. cells form the principal site for passive chloride movement across amphibian skin. This cellular pathway is regulated through a cyclic AMP-mediated process. It is suggested that the spatial separation of the sodium and chloride channels is essential to maintain the granulosum cells which are engaged in sodium transport hyperpolarized, and thus providing the driving force for the sodium entry into the cells.  相似文献   

9.
Previously, the only anuran amphibian known to regenerate the lens of the eye was Xenopus laevis. This occurs during larval stages through transdifferentiation of the outer cornea epithelium under control of factors presumably secreted by the neural retina. This study demonstrates that a distantly related species, X. tropicalis, is also able to regenerate lenses through this process. A transgenic line of X. tropicalis was used to examine the process of cornea-lens transdifferentiation in which green fluorescent protein (GFP) is expressed in differentiated lens cells under the control of the Xenopus gamma1-crystallin promoter element. Unlike X. laevis, the process of cornea-lens transdifferentiation typically occurs at a very low frequency in X. tropicalis due to the rapid rate at which the inner cornea endothelium heals to recover the pupillary opening. The inner cornea endothelium serves as a key physical barrier that normally prevents retinal signals from reaching the outer cornea epithelium. If this barrier is circumvented by implanting outer cornea epithelium of transgenic tadpoles directly into the vitreous chamber of non-transgenic X. tropicalis larval eyes, a higher percentage of cases formed lenses expressing GFP. Lenses were also formed if these tissues were implanted into X. laevis larval eyes, suggesting the same or similar inducing factors are present in both species. When pericorneal ectoderm and posteriolateral flank ectoderm were implanted into the vitreous chamber, only in rare cases did pericorneal ectoderm form lens cells. Thus, unlike the case in X. laevis, competence to respond to the inducing factors is tightly restricted to the cornea epithelium in X. tropicalis. As controls, all these tissues were implanted into the space located between the inner and outer corneas. None of these implants, including outer cornea epithelium, exhibited GFP expression. Thus, the essential inductive factors are normally contained within the vitreous chamber. One explanation why this type of lens regeneration is not seen in some other anurans could be due to the rapid rate at which the inner cornea endothelium heals to recover the pupillary opening once the original lens is removed. These findings are discussed in terms of the evolution of this developmental process within the anurans.  相似文献   

10.
11.
Intracellular ion concentrations were determined in split skins of Rana pipiens using the technique of electron microprobe analysis. Based on the 1 min Br uptake from the apical bath, two types of mitochondria-rich (MR) cells could be distinguished: active cells which rapidly exchanged their anions with the apical bath and inactive cells which did not. Br uptake and frequency of active MR cells were closely correlated with the skin conductance, g t. Replacing Cl in the apical bath with an impermeant anion significantly lowered g t and the Br uptake and Na concentration of active cells. Even larger reductions were observed after apical amiloride (0.1 mm). The inhibition of the Br uptake was reversible by voltage clamping (100 mV, inside positive). Cl removal and amiloride also led to some shrinkage of active cells. The results suggest that the active cell is responsible for a large part of g t. Inactive MR cells had much lower Br and Na concentrations which were not significantly affected by Cl removal, amiloride, or voltage clamping. Principal cells, which represent the main cell type of the epithelium, showed only a minimal Br uptake from the apical side which was not correlated with g t. Moreover, Cl removal had no effect on the Na, Br, and Cl concentrations of principal cells.I wish to thank Cathy Langford for her excellent technical assistance. Financial support was provided by National Institutes of Health grants DK35717 and 1S10-RR0-234501.  相似文献   

12.
Transepithelial Cl(-) transport in salivary gland ducts is a major component of the ion reabsorption process, the final stage of saliva production. It was previously demonstrated that a Cl(-) current with the biophysical properties of ClC-2 channels dominates the Cl(-) conductance of unstimulated granular duct cells in the mouse submandibular gland. This inward-rectifying Cl(-) current is activated by hyperpolarization and elevated intracellular Cl(-) concentration. Here we show that ClC-2 immunolocalized to the basolateral region of acinar and duct cells in mouse salivary glands, whereas its expression was most robust in granular and striated duct cells. Consistent with this observation, nearly 10-fold larger ClC-2-like currents were observed in granular duct cells than the acinar cells obtained from submandibular glands. The loss of inward-rectifying Cl(-) current in cells from Clcn2(-/-) mice confirmed the molecular identity of the channel responsible for these currents as ClC-2. Nevertheless, both in vivo and ex vivo fluid secretion assays failed to identify significant changes in the ion composition, osmolality, or salivary flow rate of Clcn2(-/-) mice. Additionally, neither a compensatory increase in Cftr Cl(-) channel protein expression nor in Cftr-like Cl(-) currents were detected in Clcn2 null mice, nor did it appear that ClC-2 was important for blood-organ barrier function. We conclude that ClC-2 is the inward-rectifying Cl(-) channel in duct cells, but its expression is not apparently required for the ion reabsorption or the barrier function of salivary ductal epithelium.  相似文献   

13.
Morphological, cytological and transport properties of the integument of Salamandra salamandra were investigated during natural ontogenetic development, from birth to adult. Three stages were operationally defined: I, larvae, from birth to metamorphosis; II, metamorphosis (judged externally by the colour change and loss of the gills); and III, post-metamorphosis to adult. Pieces of skin were fixed at various stages for immunocytochemical examinations, and the electrical properties were investigated on parallel pieces. Distinct cellular changes take place in the skin during metamorphosis, and lectin (PNA, WGA and ConA) binding indicates profound changes in glycoprotein composition of cell membranes, following metamorphosis. Band 3 and carbonic anhydrase I (CA I) were confined to mitochondria-rich (MR)-like cells, and were detected only in the larval stage. CA II on the other hand, was detected both in MR-like and in MR cells following metamorphosis. The electrical studies show that the skin becomes more tight (transepithelial resistance increases) upon metamorphosis, followed by manifestation of amiloride-sensitive short-circuit current (I(SC)) indicating that functional Na+ uptake has been acquired. The skin of metamorphosed adults had no finite transepithelial Cl- conductance, and band 3 was not detected in its MR cells. The functional properties of MR-like and MR cells remain to be established.  相似文献   

14.
Changes in characteristic components of the skin epidermis of the large tadpole of Pelobates syriacus were studied throughout its development. The fate of two specific cells in the skin epidermis was followed, from the young tadpole to the adult was studied. It was found that flask-shaped type cells in the tadpole epidermis which are PAS-positive, stain with peanut lectin (PNA). There is no detectable band 3 in the premetamorphosed stages, and mitochondria-rich cells are very rare. This pattern of staining changes completely upon metamorphosis: the PAS-positive cells, specific to the tadpole epidermis disappear, and the mitochondria-rich (MR) cells in the adult skin epithelium react with polyclonal anti-band 3 antibody. Western blot analysis showed the presence of a band 3-like protein of about 95 kDa, only in the adult epithelial extract, corroborating the immunocytochemical observations. The finding of the presence of band 3-like protein in the MR cells of Pelobates, is similar to the observations made in the skin of other amphibian species. On the other hand, the binding of peanut lectin to MR cells is species-specific, since it does not react with the MR cells in the skin epithelium of Pelobates syriacus.  相似文献   

15.
16.
Fates of digits in amniotes, i.e., free or webbed digits, are determined by the size of programmed interdigital cell death (ICD) area. However, no (or very few) cell death has thus far been observed in developing limb buds of non-amniotic terrestrial vertebrates including other anuran or urodela amphibians. We speculate that the undetectable situation of amphibian ICD is the result of their less frequency due to slow developmental speed characteristic to most amphibian species. Here, we present three strategies for detecting difficult-to-find ICD in the frog, Xenopus laevis. (1) Addition of triiodo-L-thyronine (T(3)) accelerated two to three times the limb development and increased two to four times the appearance frequency of vital dye-stainable cells in limb buds of the accelerated tadpoles (stage 54 to 55). (2) Application of human bone morphogenetic protein-4 to the autopods of tadpoles at stage 53 to 54 enhanced digital cartilage formation and induced vital dye-stainable cells around the enhanced digital cartilages within 2 d. (3) In cell culture, T(3) increased the chondrogenic and cell death activities of limb mesenchymal cells. The augmentation of both activities by T(3) was stronger in the forelimb cells than in the hindlimb cells. This situation is well coincided with the limb fates of non-webbed forelimbs and webbed hindlimbs in X. laevis adulthood. Collectively, all three approaches showed that it become possible to detect X. laevis ICD with appropriate strategies.  相似文献   

17.
Summary The density and carbonic anhydrase (CA) content of the mitochondria-rich cells (MRCs) in the skin epithelium of the toad, Bufo viridis, were studied under conditions of acclimation to various chlorinities. Long-term (days to weeks) acclimation to chloride-free solutions induced a great increase in the MRC density and the area occupied by the apical portion of these cells on the surface of the epithelium. The CA content of the epithelium, and individual MR cells, showed a 5- to 10-fold reduction after acclimation to solutions containing high chloride levels. The MRC density and their relative apical surface area correlated with the chloride permeability of the skin in acclimated (long-term) toads. It is concluded that the MRCs are the principal site of chloride permeability across the amphibian skin, and they respond in an adaptive manner to long-term changes in environmental chloride levels.This study was partially supported by the J. and A. Taub Fund for Biological Research at The Technion, and by the basic research fund of the Israel Academy of Sciences  相似文献   

18.
During amphibian metamorphosis the digestive tract is extensively remodeled under the control of epithelial-connective tissue interactions. At the cellular level, larval epithelial cells undergo apoptosis, while a small number of stem cells appear, actively proliferate, and then differentiate to form adult epithelium that is analogous to its mammalian counterpart. Therefore the amphibian digestive tract is a unique model system for the study of postembryonic organ regeneration. As amphibian intestinal remodeling can be triggered by thyroid hormone (TH), the molecular mechanisms involved can be studied from the perspective of examining the expression cascade of TH response genes. A number of these genes have been isolated from the intestine of Xenopus laevis. Recent progress in the functional analysis of this cascade has shed light on key molecules in intestinal remodeling such as matrix metalloproteinase-11, sonic hedgehog, and bone morphogenetic protein-4. These genes are also thought to play key roles in organogenesis and/or homeostasis in both chick and mammalian digestive tract, suggesting the existence of conserved mechanisms underlying such events in terrestrial vertebrates. In this article, we review our recent findings in this field, focusing on the development of adult epithelium in the X. laevis intestine.  相似文献   

19.
Transepithelial Cl(-) conductance (G(Cl)) in amphibian skin can be activated in several species by serosa positive potentials. Mitochondria-rich cells (MRC) or tight junctions (TJ) between the epithelial cells are possible sites for this pathway. The properties and the techniques used to investigate this pathway are reviewed in the present paper. In situ techniques are preferable, since specific properties of the MRC are apparently not maintained in isolated cells. Volume measurements and electronprobe microanalysis of intracellular ions suggest the localization of voltage-activated G(Cl) to MRC. G(Cl) correlates poorly with the density of MRC. The vibrating voltage probe allows quantitative correlation of the local Cl(-) current through morphologically identified structures and the transepithelial Cl(-) current. Our analysis shows that 80% of the voltage-activated Cl(-) current is accounted for by current through MRC or their immediate vicinity. The activation patterns of this current and the inhibition by the alpha(1)-adrenergic agonist, epinephrine, conform to those of the transepithelial current. However, less than 20% of the MRC are active at a certain moment and the activity is spontaneously variable with time. The molecular nature of this pathway, physiological control mechanisms and their relation to the temporal activity of MRC remain to be studied.  相似文献   

20.
In the premetamorphic larval green toad, B. viridis viridis, as in other anurans, the skin is made up of a fibrous dermis and an epidermis of stratified epithelium. The effects of bromocriptine, an antiprolactin drug, on the premetamorphic skin of B. viridis viridis was examined. Bromocriptine, dissolved in rearing water at four different concentrations, induced a number of changes in the skin of treated tadpoles. In rough sequence of appearance, these changes include: retraction ofthe melanocyte dendrites, synchronous burst ofthe apical vesicles of the superficial epithelial cells, gradual disappearance of the melanosomes from the epithelial cells and widening of the intercellular spaces. In addition, macrophages appeared in the superficial dermis amongst the retracted melanocytes. White crystals were observed on the skin surface and similar crystals were ingested by the macrophages. Prolonged treatment with bromocriptine resulted in hypertrophy and extraction of some epidermal cells. Deep melanocytes of the mesenteries were not affected by bromocriptine-treatment indicating that the drug did not penetrate deep into the tadpole tissue. Whether the macrophages observed in the dermis were recruited from deeper tissues or were converted melanocytes is another issue in need of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号