首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the early steps in the biosynthesis of coenzyme F(420) in Methanocaldococcus jannaschii requires generation of 2-phospho-L-lactate, which is formed by the phosphorylation of L-lactate. Preliminary studies had shown that L-lactate in M. jannaschii is not derived from pyruvate, and thus an alternate pathway(s) for its formation was examined. Here we report that L-lactate is formed by the NAD(+)-dependent oxidation of l-lactaldehyde by the MJ1411 gene product. The lactaldehyde, in turn, was found to be generated either by the NAD(P)H reduction of methylglyoxal or by the aldol cleavage of fuculose-1-phosphate by fuculose-1-phosphate aldolase, the MJ1418 gene product.  相似文献   

2.
The Methanocaldococcus jannaschii genome contains putative genes for all four nonoxidative pentose phosphate pathway enzymes. Open reading frame (ORF) MJ0960 is a member of the mipB/talC family of 'transaldolase-like' genes, so named because of their similarity to the well-characterized transaldolase B gene family. However, recently, it has been reported that both the mipB and the talC genes from Escherichia coli encode novel enzymes with fructose-6-phosphate aldolase activity, not transaldolase activity (Schürmann and Sprenger 2001). The same study reports that other members of the mipB/talC family appear to encode transaldolases. To confirm the function of MJ0960 and to clarify the presence of a nonoxidative pentose phosphate pathway in M. jannaschii, we have cloned ORF MJ0960 from M. jannaschii genomic DNA and purified the recombinant protein. MJ0960 encodes a transaldolase and displays no fructose-6-phosphate aldolase activity. It etained full activity for 4 h at 80 degrees C, and for 3 weeks at 25 degrees C. Methanocaldococcus jannaschii transaldolase has a maximal velocity (Vmax) of 1.0 +/- 0.2 micromol min(-1) mg(-1) at 25 degrees C, whereas Vmax = 12.0 +/- 0.5 micromol min(-1) mg(-1) at 50 degrees C. Apparent Michaelis constants at 50 degrees C were Km = 0.65 +/- 0.09 mM for fructose-6-phosphate and Km = 27.8 +/- 4.3 microM for erythrose-4-phosphate. When ribose-5-phosphate replaced erythrose-4-phosphate as an aldose acceptor, Vmax decreased twofold, whereas the Km was 150-fold higher. The molecular mass of the active enzyme is 271 +/- 27 kDa as estimated by gel filtration, whereas the predicted monomer size is 23.96 kDa, suggesting that the native form of the protein is probably a decamer. A readily available source of thermophilic pentose phosphate pathway enzymes including transaldolase may have direct application in enzymatic biohydrogen production.  相似文献   

3.
Messenger RNA (mRNA) processing plays important roles in gene expression in all domains of life. A number of cases of mRNA cleavage have been documented in Archaea, but available data are fragmentary. We have examined RNAs present in Methanocaldococcus (Methanococcus) jannaschii for evidence of RNA processing upstream of protein-coding genes. Of 123 regions covered by the data, 31 were found to be processed, with 30 including a cleavage site 12–16 nucleotides upstream of the corresponding translation start site. Analyses with 3′-RACE (rapid amplification of cDNA ends) and 5′-RACE indicate that the processing is endonucleolytic. Analyses of the sequences surrounding the processing sites for functional sites, sequence motifs, or potential RNA secondary structure elements did not reveal any recurring features except for an AUG translation start codon and (in most cases) a ribosome binding site. These properties differ from those of all previously described mRNA processing systems. Our data suggest that the processing alters the representation of various genes in the RNA pool and therefore, may play a significant role in defining the balance of proteins in the cell.  相似文献   

4.
Methanofuran is the first coenzyme in the methanogenic pathway used by the archaeon Methanocaldococcus jannaschii, as well as other methanogens, to reduce CO2 to methane. The details of the pathway for the biosynthesis of methanofuran and the responsible genes have yet to be established. A clear structural element in all known methanofurans is tyramine, likely produced by the decarboxylation of L-tyrosine. We show here that the mfnA gene at M. jannaschii locus MJ0050 encodes a thermostable pyridoxal phosphate-dependent L-tyrosine decarboxylase that specifically produces tyramine. Homologs of this gene are widely distributed among euryarchaea but are not specifically related to known bacterial or plant tyrosine decarboxylases.  相似文献   

5.
6.
Suyama M  Lathe WC  Bork P 《FEBS letters》2005,579(24):5281-5286
We have identified 141 novel palindromic repetitive elements in the genome of euryarchaeon Methanocaldococcus jannaschii. The total length of these elements is 14.3kb, which corresponds to 0.9% of the total genomic sequence and 6.3% of all extragenic regions. The elements can be divided into three groups (MJRE1-3) based on the sequence similarity. The low sequence identity within each of the groups suggests rather old origin of these elements in M. jannaschii. Three MJRE2 elements were located within the protein coding regions without disrupting the coding potential of the host genes, indicating that insertion of repeats might be a widespread mechanism to enhance sequence diversity in coding regions.  相似文献   

7.
We describe the biochemical characterization of Methanocaldococcus jannaschii (M. jannaschii) DNA ligase and its potential application in single nucleotide polymorphism (SNP) genotyping. The recombinant M. jannaschii DNA ligase is an ATP-dependent ligase. The ligase activity was dependent on metal ions of Mg2+ and Mn2+. The optimal concentrations of ATP cofactor and Mg2+ ion were 0.01–2 and 10 mM, respectively. The optimal pH value for DNA ligation was 8.5. High concentrations of NaCl inhibited DNA ligation. The effects of mismatches on joining short oligonucleotides by M. jannaschii DNA ligase were fully characterized. The mismatches at the first position 5′ to the nick inhibited ligation more than those at the first position 3′ to the nick. The mismatches at other positions 5′ to the nick (3rd to 7th sites) exhibited less inhibition on ligation. However, the introduction of a C/C mismatch at the third position 5′ to the nick could completely inhibit the ligation of the terminal-mismatched nick of an oligonucleotide duplex by M. jannaschii DNA ligase. Therefore, introducing an additional mismatch at the third position 5′ to the SNP site is a more effective approach in genotyping by M. jannaschii DNA ligase.  相似文献   

8.
9.
Kleeb AC  Kast P  Hilvert D 《Biochemistry》2006,45(47):14101-14110
Prephenate dehydratase (PDT) is an important but poorly characterized enzyme that is involved in the production of L-phenylalanine. Multiple-sequence alignments and a phylogenetic tree suggest that the PDT family has a common structural fold. On the basis of its sequence, the PDT from the extreme thermophile Methanocaldococcus jannaschii (MjPDT) was chosen as a promising representative of this family for pursuing structural and functional studies. The corresponding pheA gene was cloned and expressed in Escherichia coli. It encodes a monofunctional and thermostable enzyme with an N-terminal catalytic domain and a C-terminal regulatory ACT domain. Biophysical characterization suggests a dimeric (62 kDa) protein with mixed alpha/beta secondary structure elements. MjPDT unfolds in a two-state manner (Tm = 94 degrees C), and its free energy of unfolding [DeltaGU(H2O)] is 32.0 kcal/mol. The purified enzyme catalyzes the conversion of prephenate to phenylpyruvate according to Michaelis-Menten kinetics (kcat = 12.3 s-1 and Km = 22 microM at 30 degrees C), and its activity is pH-independent over the range of pH 5-10. It is feedback-inhibited by L-phenylalanine (Ki = 0.5 microM), but not by L-tyrosine or L-tryptophan. Comparison of its activation parameters (DeltaH(++)= 15 kcal/mol and DeltaS(++)= -3 cal mol-1 K-1) with those for the spontaneous reaction (DeltaH(++) = 17 kcal/mol and DeltaS(++)= -28 cal mol-1 K-1) suggests that MjPDT functions largely as an entropy trap. By providing a highly preorganized microenvironment for the dehydration-decarboxylation sequence, the enzyme may avoid the extensive solvent reorganization that accompanies formation of the carbocationic intermediate in the uncatalyzed reaction.  相似文献   

10.
The Methanocaldococcus jannaschii (formerly Methanococcus jannaschii) protein Mj0968 has been reported to represent a soluble P-type ATPase [Ogawa et al., FEBS Lett. 471 (2000) 99-102]. In this study, we report that the heterologously expressed Mj0968-His(10) protein exhibits high rates of phosphatase activity, whereas only very low ATPase activity was measured. Replacement of the aspartate residue in the DSAGT motif (D7A), which becomes phosphorylated during the reaction cycle of P-type ATPases, does not affect the V(max), but only the K(M) of the reaction. Labeling studies with [gamma-(32)P]ATP and [alpha-(32)P]ATP revealed that the previously reported labeling experiments [Ogawa et al., 2000] do not necessarily show phosphorylation of Mj0968, but rather point to ATP binding. Binding studies with trinitrophenyl adenosine nucleotides showed low apparent K(d) values for those molecules. These results provide evidence that the native function of Mj0968 seems to be that of a phosphatase, rather than that of an ATP-hydrolyzing enzyme.  相似文献   

11.
The archaeon Methanocaldococcus jannaschii uses three different 2-oxoacid elongation pathways, which extend the chain length of precursors in leucine, isoleucine, and coenzyme B biosyntheses. In each of these pathways an aconitase-type hydrolyase catalyzes an hydroxyacid isomerization reaction. The genome sequence of M. jannaschii encodes two homologs of each large and small subunit that forms the hydrolyase, but the genes are not cotranscribed. The genes are more similar to each other than to previously characterized isopropylmalate isomerase or homoaconitase enzyme genes. To identify the functions of these homologs, the four combinations of subunits were heterologously expressed in Escherichia coli, purified, and reconstituted to generate the iron-sulfur center of the holoenzyme. Only the combination of MJ0499 and MJ1277 proteins catalyzed isopropylmalate and citramalate isomerization reactions. This pair also catalyzed hydration half-reactions using citraconate and maleate. Another broad-specificity enzyme, isopropylmalate dehydrogenase (MJ0720), catalyzed the oxidative decarboxylation of beta-isopropylmalate, beta-methylmalate, and d-malate. Combined with these results, phylogenetic analysis suggests that the pyruvate pathway to 2-oxobutyrate (an alternative to threonine dehydratase in isoleucine biosynthesis) evolved several times in bacteria and archaea. The enzymes in the isopropylmalate pathway of leucine biosynthesis facilitated the evolution of 2-oxobutyrate biosynthesis through the introduction of a citramalate synthase, either by gene recruitment or gene duplication and functional divergence.  相似文献   

12.
13.
Mehrotra S  Balaram H 《Biochemistry》2007,46(44):12821-12832
Adenylosuccinate synthetase (AdSS) catalyzes the Mg2+ dependent condensation of a molecule of IMP with aspartate to form adenylosuccinate, in a reaction driven by the hydrolysis of GTP to GDP. AdSS from the thermophilic archaea, Methanocaldococcus jannaschii (MjAdSS) is 345 amino acids long against an average length of 430-457 amino acids for most mesophilic AdSS. This short AdSS has two large deletions that map to the middle and C-terminus of the protein. This article discusses the detailed kinetic characterization of MjAdSS. Initial velocity and product inhibition studies, carried out at 70 degrees C, suggest a rapid equilibrium random AB steady-state ordered C kinetic mechanism for the MjAdSS catalyzed reaction. AdSS are known to exhibit monomer-dimer equilibrium with the dimer being implicated in catalysis. In contrast, our studies show that MjAdSS is an equilibrium mixture of dimers and tetramers with the tetramer being the catalytically active form. The tetramer dissociates into dimers with a minor increase in ionic strength of the buffer, while the dimer is extremely stable and does not dissociate even at 1.2 M NaCl. Phosphate, a product of the reaction, was found to be a potent inhibitor of MjAdSS showing biphasic inhibition of enzyme activity. The inhibition was competitive with IMP and noncompetitive with GTP. MjAdSS, like the mouse acidic isozyme, exhibits substrate inhibition, with IMP inhibiting enzyme activity at subsaturating GTP concentrations. Regulation of enzyme activity by the glycolytic intermediate, fructose 1,6 bisphosphate, was also observed with the inhibition being competitive with IMP and noncompetitive against GTP.  相似文献   

14.
By the sequential action of dCTP deaminase and dUTPase, dCTP is converted to dUMP, the precursor of thymidine nucleotides. In addition, dUTPase has an essential role as a safeguard against uracil incorporation in DNA. The putative dCTP deaminase (MJ0430) and dUTPase (MJ1102) from the hyperthermophilic archaeon Methanocaldococcus jannaschii were overproduced in Escherichia coli. Unexpectedly, we found the MJ0430 protein capable of both reactions, i.e. hydrolytic deamination of the cytosine ring and hydrolytic cleavage of the phosphoanhydride bond between the alpha- and beta-phosphates. When the reaction was followed by thin layer chromatography using [3H]dCTP as substrate, dUMP and not dUTP was identified as a reaction product. In the presence of unlabeled dUTP, which acted as an inhibitor, no label was transferred from [3H]dCTP to the pool of dUTP. This finding strongly suggests that the two consecutive steps of the reaction are tightly coupled within the enzyme. The hitherto unknown bifunctionality of the MJ0430 protein appears beneficial for the cells because the toxic intermediate dUTP is never released. The MJ0430 protein also catalyzed the hydrolysis of dUTP to dUMP but with a low affinity for the substrate (Km >100 micro m). According to limited proteolysis, the C-terminal residues constitute a flexible region. The other protein investigated, MJ1102, is a specific dUTPase with a Km for dUTP (0.4 micro m) comparable in magnitude with that found for previously characterized dUTPases. Its physiological function is probably to degrade dUTP derived from other reactions in nucleotide metabolism.  相似文献   

15.
The central carbon metabolism is well investigated in bacteria, but this is not the case for archaea. MJ0400-His6 from Methanocaldococcus jannaschii catalyzes the cleavage of fructose-1,6-bisphosphate (FBP) to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate with a V max of 33 mU mg−1 and a K m of 430 μM at 50 °C. MJ0400-His6 is inhibited competitively by erythrose-4-phosphate with a K i of 380 μM and displays heat stability with a half-life of c . 1 h at 100 °C. Hence, MJ0400 is the second gene encoding for an FBP aldolase in M. jannaschii . Previously, MJ0400 was shown to act as an 2-amino-3,7-dideoxy- d - threo -hept-6-ulosonic acid synthase. This indicates that MJ0400 is involved in both the carbon metabolism and the shikimate pathway in M. jannaschii .  相似文献   

16.
Methanocaldococcus jannaschii prolyl-tRNA synthetase (ProRS) was previously reported to also catalyze the synthesis of cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) to make up for the absence of the canonical cysteinyl-tRNA synthetase in this organism (Stathopoulos, C., Li, T., Longman, R., Vothknecht, U. C., Becker, H., Ibba, M., and S?ll, D. (2000) Science 287, 479-482; Lipman, R. S., Sowers, K. R., and Hou, Y. M. (2000) Biochemistry 39, 7792-7798). Here we show by acid urea gel electrophoresis that pure heterologously expressed recombinant M. jannaschii ProRS misaminoacylates M. jannaschii tRNA(Pro) with cysteine. The enzyme is unable to aminoacylate purified mature M. jannaschii tRNA(Cys) with cysteine in contrast to facile aminoacylation of the same tRNA with cysteine by Methanococcus maripaludis cysteinyl-tRNA synthetase. Although M. jannaschii ProRS catalyzes the synthesis of Cys-tRNA(Pro) readily, the enzyme is unable to edit this misaminoacylated tRNA. We discuss the implications of these results on the in vivo activity of the M. jannaschii ProRS and on the nature of the enzyme involved in the synthesis of Cys-tRNA(Cys) in M. jannaschii.  相似文献   

17.
Archaea have been shown to produce isoprenoids from mevalonate; however, genome analysis has failed to identify several genes in the mevalonate pathway on the basis of sequence similarity. A predicted archaeal kinase, coded for by the MJ0044 gene, was associated with other mevalonate pathway genes in the archaea and was predicted to be the "missing" phosphomevalonate kinase. The MJ0044-derived protein was tested for phosphomevalonate kinase activity and was found not to catalyze this reaction. The MJ0044 gene product was found to phosphorylate isopentenyl phosphate, generating isopentenyl diphosphate. Unlike other known kinases associated with isoprene biosynthesis, Methanocaldococcus jannaschii isopentenyl phosphate kinase is predicted to be a member of the aspartokinase superfamily.  相似文献   

18.
Identification of the earliest traces of life is made difficult by the scarcity of the preserved microbial remains and by the alteration and potential contamination of the organic matter (OM) content of rocks. These factors can confuse interpretations of the biogenicity and syngenicity of fossilised structures and organic molecules found in ancient rocks. In order to improve our knowledge of the fossilisation processes and their effects at the molecular level, we made a preliminary study of the fate of OM during experimental fossilisation. Changes in the composition and quantity of amino acids, monosaccharides and fatty acids were followed with HPLC, GC and GC-MS analyses during 1 year of silicification of the hyperthermophilic Archaea Methanocaldococcus jannaschii. Although the cells themselves did not fossilise and the accompanying extracellular polymeric substances (EPS) did, our analyses showed that the OM initially present in both cells and EPS was uniformly preserved in the precipitated silica, with amino acids and fatty acids being the best preserved compounds. This study thus completes previous data obtained by electron microscopy investigations of simulated microbial fossilisation and can help better identification and interpretation of microbial biosignatures in both ancient rocks and in recent hydrothermal formations and sediments.  相似文献   

19.
Prefoldin is a molecular chaperone found in the domains eukarya and archaea that acts in conjunction with Group II chaperonin to correctly fold other nascent proteins. Previously, our group identified a putative single subunit of prefoldin, gamma PFD, that was up-regulated in response to heat stress in the hyperthermophilic archaeon Methanocaldococcus jannaschii. In order to characterize this protein, we subcloned and expressed it and the other two prefoldin subunits from M. jannaschii, alpha and beta PFD, into Eschericia coli and characterized the proteins. Whereas alpha and beta PFD readily assembled into the expected hexamer, gamma PFD would not assemble with either protein. Instead, gamma PFD forms long filaments of defined dimensions measuring 8.5 nm x 1.7-3.5 nm and lengths exceeding 1 microm. Filamentous gamma PFD acts as a molecular chaperone through in vitro assays, in a manner comparable to PFD. A possible molecular model for filament assembly is discussed.  相似文献   

20.
Zhang Y  White RH  Ealick SE 《Biochemistry》2008,47(1):205-217
Purine biosynthesis requires 10 enzymatic steps in higher organisms, while prokaryotes require an additional enzyme for step 6. In most organisms steps 9 and 10 are catalyzed by the purH gene product, a bifunctional enzyme with both 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) synthase and inosine monophosphate (IMP) cyclohydrolase activity. Recently it was discovered that Archaea utilize different enzymes to catalyze steps 9 and 10. An ATP-dependent FAICAR synthetase is encoded by the purP gene, and IMP cyclohydrolase is encoded by the purO gene. We have determined the X-ray crystal structures of FAICAR synthetase from Methanocaldococcus jannaschii complexed with various ligands, including the tertiary substrate complex and product complex. The enzyme belongs to the ATP grasp superfamily and is predicted to use a formyl phosphate intermediate formed by an ATP-dependent phosphorylation. In addition, we have determined the structures of a PurP orthologue from Pyrococcus furiosus, which is functionally unclassified, in three crystal forms. With approximately 50% sequence identity, P. furiosus PurP is structurally homologous to M. jannaschii PurP. A phylogenetic analysis was performed to explore the possible role of this functionally unclassified PurP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号