首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The existence of stressor-specific induction programs of heat shock proteins (hsps) leads us to analyze the possible occurrence of a stressor-specific tolerance induced by either heat shock, arsenite, or cadmium. As a measure of this tolerance re-induction of hsps was studied. In this paper, we tested whether the refractory state is either valid for each specific hsp (implying independent regulation of every member of the heat shock protein family) or extends from small subsets of the hsp-family to even larger groups of proteins (indicating a more common denominator in their regulation). (Re-)induction of hsps does not seem to be regulated at the level of each individual hsp since differences in induced synthesis of hsps between two stressor conditions are not supplemented systematically upon the sequential application of the two stressors. The most notable example in this respect is hsp60. A pretreatment with cadmium, which hardly induces synthesis of this hsp, does induce a tolerance to (re)-induction by heat shock, which normally induces hsp60. This suggests the existence of a more common denominator regulating the coordinate expression of at least some hsps. From our data we conclude that the degree, but not the pattern, of hsp re-induction is influenced by the type of stressor used in the pretreatment. The pattern of hsps induced by a secondary applied stressor still shows most of its stressor-specificity and seems to be independent of any pretreatment. The possible implications of stressor-specificity are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Early models of the regulation of initiation of DNA replication by protein complexes predicted that binding of a replication initiator protein to a replicator region is required for initiation of each DNA replication round, since after the initiation event the replication initiator should dissociate from DNA. It was, therefore, assumed that binding of the replication initiator is a signal for triggering DNA replication. However, more recent investigations have revealed that in many replicons this is not the case. Studies on the regulation of the replication of plasmids derived from bacteriophage lambda demonstrated that, once assembled, the replication complex can be inherited by one of the two daughter plasmid copies after each replication round and may function in subsequent replication rounds. Since this DNA-bound protein complex bears information about specific initiation of DNA replication, this phenomenon has been called "protein inheritance." A similar phenomenon has recently been reported for oriJ-based plasmids. Moreover, the current model of the initiation of DNA replication in the yeast Saccharomyces cerevisiae proposes that the origin recognition complex (ORC) remains bound to one copy of the ori sequence (the ARS region) after initiation of DNA replication. Thus, it seems plausible that protein inheritance is not unique for lambda plasmids, but may be a common phenomenon in the control of DNA replication, at least in microbes.  相似文献   

3.
4.
It has been suggested that the function of the chloroplast-localized small heat shock protein (sHsp) is to protect photosystem II (PSII) from heat inactivation. This paper reports that addition of purified sHsp protein to isolated thylakoid membranes gave no protection of PSII and questions that there is any direct effect of the sHsp on PSII. The opinion is forwarded that the primary role for the chloroplast-localized sHsp may not even be protection of PSII.  相似文献   

5.
Fibrillins are nuclear-encoded, plastid proteins associated with chromoplast fibrils and chloroplast plastoglobules, thylakoids, photosynthetic antenna complexes, and stroma. There are 12 sub-families of fibrillins. However, only three of these sub-families have been characterized genetically or functionally. We review evidence indicating that fibrillins are involved in plastoglobule structural development, chromoplast pigment accumulation, hormonal responses, protection of the photosynthetic apparatus from photodamage, and plant resistance to a range of biotic and abiotic stresses. The area of fibrillin research has substantial growth potential and will contribute to better understanding of mechanisms of plant stress tolerance and plastid structure and function.  相似文献   

6.
Mala JG  Rose C 《Life sciences》2010,87(19-22):579-586
Heat shock proteins (HSPs) are upregulated and manifested upon cellular stress and possess chaperoning functions. HSP47 is an endoplasmic reticulum (ER)-resident, collagen-specific chaperone and plays a key role in collagen biosynthesis and its structural assembly. The collagen scaffold is a primary structural target of recent interest due to its applications in tissue engineering and drug delivery and in treatment of clinical disorders. This review highlights the fundamental aspects of HSPs in protein folding and quality control, in the elicitation of a stress response in connective tissue and in the characterization of HSP47 in collagen folding and assembly. The significant features of HSP47 which are distinct in its cellular capabilities are discussed. We propose that targeting the stress response is a key factor in identifying connective tissue biomarkers. We also address the issues and strategies involved in the stress response of connective tissue diseases. In conclusion, we describe the prospects of collagen biochemistry in correlation to the science of HSPs.  相似文献   

7.
When eukaryotic cells are exposed to elevated temperatures they respond by vigorously synthesizing a small group of proteins called the heat shock proteins. An essential element in defining the role of these proteins is determining whether they are unique to a stressed state or are also found in healthy, rapidly growing cells at normal temperatures. To date, there have been conflicting reports concerning the major heat-induced protein of Drosophila cells, HSP 70. We report the development of monoclonal antibodies specific for this protein. These antibodies were used to assay HSP 70 in cells incubated under different culture conditions. The protein was detectable in cells maintained at normal temperatures, but only when immunological techniques were pushed to the limits of their sensitivity. To test for the possibility that these cells contain a reservoir of protein in a cryptic antigenic state (i.e., waiting posttranslational modification for use at high temperature), we treated cells with cycloheximide or actinomycin D immediately before heat shock. HSP 70 was not detected in these cells. Finally, we tested for the presence of a reservoir of inactive messages by using a high stringency hybridization of 32P- labeled cloned gene sequences to electrophoretically separated RNAs. Although HSP 70 mRNA was detectable in rapidly growing cells, it was present at less than 1/1,000th the level achieved after induction.  相似文献   

8.
9.
10.
Small heat shock proteins (sHsps) maintain cellular homeostasis by preventing stress and disease-induced protein aggregation. While it is known that hydrophobicity impacts the ability of sHsps to bind aggregation-prone denaturing proteins, the complex quaternary structure of globular sHsps has made understanding the significance of specific changes in hydrophobicity difficult. Here we used recombinant protein of the lenticular sHsp α A-crystallin from six teleost fishes environmentally adapted to temperatures ranging from -2°C to 40°C to identify correlations between physiological temperature, protein stability and chaperone-like activity. Using sequence and structural modeling analysis we identified specific amino acid differences between the warm adapted zebrafish and cold adapted Antarctic toothfish that could contribute to these correlations and validated the functional consequences of three specific hydrophobicity-altering amino acid substitutions in αA-crystallin. Site directed mutagenesis of three residues in the zebrafish (V62T, C143S, T147V) confirmed that each impacts either protein stability or chaperone-like activity or both, with the V62T substitution having the greatest impact. Our results indicate a role for changing hydrophobicity in the thermal adaptation of α A-crystallin and suggest ways to produce sHsp variants with altered chaperone-like activity. These data also demonstrate that a comparative approach can provide new information about sHsp function and evolution.  相似文献   

11.
Beneficial actions of nitric oxide (NO) in failing myocardium have frequently been overshadowed by poorly documented negative inotropic effects mainly derived from in vitro cardiac preparations. NO's beneficial actions include control of myocardial energetics and improvement of left ventricular (LV) diastolic distensibility. In isolated cardiomyocytes, administration of NO increases their diastolic cell length consistent with a rightward shift of the passive length-tension relation. This shift is explained by cGMP-induced phosphorylation of troponin I, which prevents calcium-independent diastolic cross-bridge cycling and concomitant diastolic stiffening of the myocardium. Similar improvements in diastolic stiffness have been observed in isolated guinea pig hearts, in pacing-induced heart failure dogs, and in patients with dilated cardiomyopathy or aortic stenosis and have been shown to result in higher LV preload reserve and stroke work. NO also controls myocardial energetics through its effects on mitochondrial respiration, oxygen consumption, and substrate utilization. The effects of NO on diastolic LV performance appear to be synergistic with its effects on myocardial energetics through prevention of myocardial energy wastage induced by LV contraction against late-systolic reflected arterial pressure waves and through prevention of diastolic LV stiffening, which is essential for the maintenance of adequate subendocardial coronary perfusion. A drop in these concerted actions of NO on diastolic LV distensibility and on myocardial energetics could well be instrumental for the relentless deterioration of failing myocardium.  相似文献   

12.
Heat shock proteins (Hsps) can be found in two forms, intracellular and extracellular. The intracellular Hsps are induced as a result of stress and have been found to be cytoprotective in many instances due to their chaperone functions in protein folding and in protein degradation. The origin and role of extracellular Hsps is less clear. Although they were suspected originally to be released from damaged cells (necrosis), their presence in most normal individuals rather suggests that they have regulatory functions in circulation. As immunodominant molecules, Hsps can stimulate the immune system, leading to the production of autoantibodies recognizing epitopes shared by microbial and human Hsps. Thus, extracellular Hsps can influence the inflammatory response as evidenced by the production of inflammatory cytokines. Antibodies to Hsps have been found under normal conditions but seem to be increased in certain stresses and diseases. Such antibodies could regulate the inflammatory response positively or negatively. Here, we review the literature on the findings of antibodies to Hsps in situations of environmental or occupational stress and in a number of diseases and discuss their possible significance for the diagnosis, prognosis, or pathogenesis of these diseases.  相似文献   

13.
Bondino HG  Valle EM  Ten Have A 《Planta》2012,235(6):1299-1313
Small heat shock proteins (sHSPs) are chaperones that play an important role in stress tolerance. They consist of an alpha-crystallin domain (ACD) flanked by N- and C-terminal regions. However, not all proteins that contain an ACD, hereafter referred to as ACD proteins, are sHSPs because certain ACD proteins are known to have different functions. Furthermore, since not all ACD proteins have been identified yet, current classifications are incomplete. A total of 17 complete plant proteomes were screened for the presence of ACD proteins by HMMER profiling and the identified ACD protein sequences were classified by maximum likelihood phylogeny. Differences among and within groups were analysed, and levels of functional constraint were determined. There are 29 different classes of ACD proteins, eight of which contain classical sHSPs and five likely chaperones. The other classes contain proteins with uncharacterised or poorly characterised functions. N- and C-terminal sequences are conserved within the phylogenetic classes. Phylogenetics suggests a single duplication of the CI sHSP ancestor that occurred prior to the speciation of mono- and dicotyledons. This was followed by a number of more recent duplications that resulted in the presence of many paralogues. The results suggest that N- and C-terminal sequences of sHSPs play a role in class-specific functionality and that non-sHSP ACD proteins have conserved but unexplored functions, which are mainly determined by subsequences other than that of the ACD.  相似文献   

14.
Heparin-antithrombin interaction is one of the most documented examples of heparin/protein complexes. The specific heparin sequence responsible for the binding corresponds to a pentasaccharide sequence with an internal 3-O-sulfated glucosamine residue. Moreover, the position of the pentasaccharide along the chain as well as the structure of the neighbor units affects the affinity to antithrombin. The development of separation and purification techniques, in conjunction with physico-chemical approaches (mostly NMR), allowed to characterize several structural variants of antithrombin-binding oligosaccharides, both in the free state and in complex with antithrombin. The article provides an overview of the studies that lead to the elucidation of the mechanism of interaction as well as acquiring new knowledge in heparin biosynthesis.  相似文献   

15.
Western blotting routinely involves a control for variability in the amount of protein across immunoblot lanes. Normalizing a target signal to one found for an abundantly expressed protein is widely regarded as a reliable loading control; however, this approach is being increasingly questioned. As a result, we compared blotting for two high-abundance proteins (actin and glyceraldehyde 3-phosphate dehydrogenase [GAPDH]) and two total protein membrane staining methods (Ponceau and Coomassie Brilliant Blue) to determine the best control for loading variability. We found that Ponceau staining optimally balanced accuracy and precision, and we suggest that this approach be considered as an alternative to normalizing with a high-abundance protein.  相似文献   

16.
17.
What is the function of protein carboxyl methylation?   总被引:1,自引:0,他引:1  
The following functions of protein carboxyl methylation seem to be reasonably well established: Multiple, stoichiometric methylation of chemotactic receptors in bacteria at glutamyl residues serves as one (but not the only) adaptation mechanism of the transduction chain to constant background levels of chemotactic stimuli. Stoichiometric methylation of hormones and hormone carrier proteins plays a role in hormone storage and secretion by the pituitary gland. Substoichiometric methylation at D-aspartyl residues is involved in a repair mechanism of aged proteins. Stoichiometric methylation of calmodulin modulates the sensitivity of calmodulin-dependent processes to calcium. Research of the past 3 years has indicated that in order to demonstrate an involvement of methylation in the coupling of surface receptors to intracellular events three new criteria have to be met: (a) the cell should possess a protein carboxyl methylase with relatively narrow substrate specificity; (b) methylation should take place at L-amino acid residues; (c) the methyl accepting proteins should be methylated in a stoichiometric fashion.  相似文献   

18.
Integrins: redundant or important players in skeletal muscle?   总被引:8,自引:0,他引:8  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号