首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vascular endothelial Flt-1 and other stem cell markers are variably expressed in vascular smooth muscle cells (SMCs) during normal and pathological conditions, but their biological role remains uncertain. In normal rat aorta, rare flt-1+ and c-kit+ SMCs were detected. Fifteen days after injury, 61.8+3.8, 45.7+3% of the intimal cells resulted flt-1+ and c-kit+ and expressed low level of alpha-smooth muscle actin; CD133+ cells were 5.6+0.7%. BrDU+/flt-1+ largely predominated in the neointima, whereas BrDU+/CD133+ cells were rare. Forty-five and sixty days after injury, intimal proliferation such as BrDU+ cells was greatly reduced. After sixty days, intimal stem marker expression had almost disappeared whereas alpha-smooth muscle actin was restored. Flk-1 and Oct-4 SMC immunodection was consistently negative. In vitro, intimal cells obtained fifteen days after injury exhibited an epithelioid phenotype and increased flt-1 and c-kit protein and mRNA and low smooth muscle markers compared to spindle-shaped medial and intimal SMCs obtained after sixty days. Epithelioid clones, independently from layer of origin, were similar in stem cell marker expression. The anti-flt-1 blocking antibody added to epithelioid SMC cultures reduced serum-deprived apoptosis and migration but not PDGF-BB-induced proliferation, and increased cell-populated collagen lattice contraction. In conclusion, stem marker expression in vascular SMCs was variable, chronologically regulated and prevailed in epithelioid populations and clones; among stem markers, flt-1 expression critically regulates intimal SMC response to microenviromental changes.  相似文献   

3.
Metalloproteinases (MMP)-2 and MMP-9 play a role in smooth muscle cell (SMC) migration from the media to the intima following arterial injury. Intravenous administration of adenovirus encoding tissue inhibitor of metalloproteinase-1 (TIMP-1) into balloon-injured rat arteries (3 x 10(11) viral particles/rat; n=7) resulted in a transient expression of TIMP-1 and a significant inhibition of neointima thickening within 16 days ( approximately 40% vs. control; P=0.012). Three days after injury, the number of intimal SMCs was decreased by approximately 98% in TIMP-1-treated rats. However, no alteration was seen in intimal SMC proliferation after 13 days of injury. Therefore, our results show that systemic gene transfer of TIMP-1 is a promising approach in early restenosis treatment.  相似文献   

4.
Interleukin 15 (IL-15) is a pro-inflammatory cytokine that modulates T cell recruitment and activation, independent of antigen. It has been detected in human atherosclerotic plaques and atherosclerotic plaques of apoE-/- mice. IL-15 regulates fractalkine (FKN)-CX3CR1 chemokine signaling which is involved in atherogenesis and promotes SMC proliferation. We investigated the role of IL-15 in intimal thickening after arterial injury. Treatment of serum-stimulated SMC with IL-15 in vitro attenuated proliferation and suppressed CX3CR1 and FKN mRNA expression. The role of endogenous IL-15 in vivo was investigated in injured carotid arteries of mice. Periadventitial arterial injury resulted in increased IL-15 expression in the media and neointima, paralleled by increased IL-15 receptor alpha expression. Blockade of endogenous IL-15 increased intimal thickening. FKN and CX3CR1 expression increased after injury and were further augmented after IL-15 blockade. These data suggest that endogenous IL-15 attenuated intimal thickening after arterial injury. The potential mechanism of action is suppression of CX3CR1 signaling.  相似文献   

5.
Quiescent smooth muscle cells (SMC) in normal artery express a pattern of actin isoforms with alpha-smooth muscle (alpha SM) predominance that switches to beta predominance when the cells are proliferating. We have examined the relationship between the change in actin isoforms and entry of SMC into the growth cycle in an in vivo model of SMC proliferation (balloon injured rat carotid artery). alpha SM actin mRNA declined and cytoplasmic (beta + gamma) actin mRNAs increased in early G0/G1 (between 1 and 8 h after injury). In vivo synthesis and in vitro translation experiments demonstrated that functional alpha SM mRNA is decreased 24 h after injury and is proportional to the amount of mRNA present. At 36 h after injury, SMC prepared by enzymatic digestion were sorted into G0/G1 and S/G2 populations; only the SMC committed to proliferate (S/G2 fraction) showed a relative slight decrease in alpha SM actin and, more importantly, a large decrease in alpha SM actin mRNA. A switch from alpha SM predominance to beta predominance was present in the whole SMC population 5 d after injury. To determine if the change in actin isoforms was associated with proliferation, we inhibited SMC proliferation by approximately 80% with heparin, which has previously been shown to block SMC in late G0/G1 and to reduce the growth fraction. The switch in actin mRNAs and synthesis at 24 h was not prevented; however, alpha SM mRNA and protein were reinduced at 5 d in the heparin-treated animals compared to saline-treated controls. These results suggest that in vivo the synthesis of actin isoforms in arterial SMC depends on the mRNA levels and changes after injury in early G0/G1 whether or not the cells subsequently proliferate. The early changes in actin isoforms are not prevented by heparin, but they are eventually reversed if the SMC are kept in the resting state by the heparin treatment.  相似文献   

6.
7.
It is well known that arterial smooth muscle cells (SMC) of adult rats, cultured in a medium containing fetal calf serum (FCS), replicate actively and lose the expression of differentiation markers, such as desmin, smooth muscle (SM) myosin and alpha-SM actin. We report here that compared to freshly isolated cells, primary cultures of SMC from newborn animals show no change in the number of alpha-SM actin containing cells and a less important decrease in the number of desmin and SM myosin containing cells than that seen in primary cultures of SMC from adult animals; moreover, contrary to what is seen in SMC cultured from adult animals, they show an increase of alpha-SM actin mRNA level, alpha-SM actin synthesis and expression per cell. These features are partially maintained at the 5th passage, when the cytoskeletal equipment of adult SMC has further evolved toward dedifferentiation. Cloned newborn rat SMC continue to express alpha-SM actin, desmin and SM myosin at the 5th passage. Thus, newborn SMC maintain, at least in part, the potential to express differentiated features in culture. Heparin has been proposed to control proliferation and differentiation of arterial SMC. When cultured in the presence of heparin, newborn SMC show an increase of alpha-SM actin synthesis and content but no modification of the proportion of alpha-SM actin total (measured by Northern blots) and functional (measured by in vitro translation in a reticulocyte lysate) mRNAs compared to control cells cultured for the same time in FCS containing medium. This suggests that heparin action is exerted at a translational or post-translational level. Cultured newborn rat aortic SMC furnish an in vitro model for the study of several aspects of SMC differentiation and possibly of mechanisms leading to the establishment and prevention of atheromatous plaques.  相似文献   

8.
Heparan sulphate is an important mediator in determining vascular smooth muscle cell (SMC) phenotype. The sulphation pattern of the heparan sulphate chains is critical to their function. We have examined the initial step in the biosynthesis of the sulphated domains mediated by the enzyme heparan sulphate N-deacetylase/N-sulphotransferase (NDST). Rabbit aortic SMC in primary culture exhibited NDST enzyme activity and expressed NDST-1 in their Golgi apparatus, with maximal expression in SMC 2 days after dispersal in primary culture confirmed by Western blot analysis. Endothelial cells, macrophages and fibroblasts expressed NDST-1 but had generally less intense staining than SMC, although SMC expression decreased with culture. The uninjured rat aorta also showed widespread expression of NDST-1. After balloon de-endothelialisation, NDST-1 could not be detected in SMC of the neointima in the early stages of neointimal formation, but was re-expressed at later time points (after 12 weeks). In human coronary arteries, SMC of the media and the diffuse intimal thickening expressed NDST-1, while SMC in the atherosclerotic plaque were negative for NDST-1. We conclude that SMC may regulate their heparan sulphate sulphation at the level of expression of the enzyme heparan sulphate NDST in a manner related to their phenotypic state.  相似文献   

9.
Smooth muscle cell (SMC) migration plays an important role in restenosis after angioplasty. Myosin phosphorylation is necessary for cell migration. Fasudil is an inhibitor of protein kinases, including myosin light chain kinase and Rho associated kinase, thereby inhibiting myosin phosphorylation, and it has been clinically used to prevent vasospasm following subarachnoid hemorrage. Based on these findings, we examined the anti-migrative action of fasudil. In SMC (SM-3), fasudil (1-100 microM) inhibited SMC migration in a dose-dependent manner (p < 0.001). Fasudil suppressed actin stress fiber formation dose dependently. In rabbit carotid artery, fasudil (10 mg/kg/day) markedly reduced intimal hyperplasia 14 days following balloon injury. Cell kinetic study showed that fasudil did not affect proliferation but enhanced cell loss in the media after injury. We concluded that fasudil reduced neointimal formation after balloon injury through both inhibiting migration and enhancing cell loss of medial SMC.  相似文献   

10.
The role of growth hormone in the expression of two forms of hepatic cytochrome P-450(P-450), P-450(6)beta-1(6 beta-3), and P-450(6)beta-4, was investigated using RNA blots. The level of P-450(6)beta-1(6 beta-3) mRNA was twenty times higher than that of P-450(6) beta-4 mRNAs in untreated male rat livers. The levels of P-450(6)beta-1(6 beta-3) and P-450(6)beta-4 mRNAs were increased two fold and three fold, respectively, by hypophysectomy of adult male rats. By intermittent injection of human growth hormone (hGH) into hypophysectomized male rats, both mRNAs were decreased to the level of normal rats, and almost disappeared after continuous infusion of hGH. In female rats, these two mRNAs were not detected, but were increased remarkably by hypophysectomy. The increases in these mRNAs were almost abolished after continuous infusion of hGH in hypophysectomized female rats. The effect of hGH on PB-mediated induction of P-450(6)beta-1(6 beta-3) and P-450(6)beta-4 mRNAs was also examined. The PB-mediated increases in P-450(6)beta-1(6 beta-3) and P-450(6)beta-4 mRNAs were higher in hypophysectomized male rats (2.5-fold and 10.9-fold, respectively) than in normal male rats (1.5-fold and 5.2-fold, respectively). Thus, the levels of P-450(6)beta-1(6-beta-3) and P-450(6)beta-4 mRNAs were 4.1-fold and 7.3-fold, respectively, higher in PB-induced hypophysectomized rats than in normal male rats. Concerning the postnatal developmental profiles, P-450(6)beta-1(6 beta-3) mRNA was detectable at neonate and reached a maximal level at around 17 days of age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
OBJECTIVE AND BACKGROUND: Inflammation plays a critical role in all stages of atherogenesis. Proliferating vascular smooth muscle cells (SMC) and endothelial cells (EC) enhancing the inflammatory response, both contribute to the progression of atherosclerosis. Anti-proliferative, anti-inflammatory and anti-oxidative therapy seems to be a promising therapeutic strategy. The aim of this study was to assess the anti-proliferative and anti-inflammatory effect of the beta-blocker nebivolol in comparison to metoprolol in vitro and to find out whether nebivolol inhibits neointima formation in vivo. METHODS AND RESULTS: Real-time-RT-PCR revealed a decrease in VCAM-1, ICAM-1, PDGF-B, E-selectin and P-selectin mRNA expression in human coronary artery EC and SMC incubated with nebivolol for 72 hours while metoprolol did not have this effect. Nebivolol reduced MCP-1 and PDGF-BB protein in the culture supernatant of SMC and EC, respectively. Sprague-Dawley rats were treated with nebivolol for 0 or 35 days before and 28 days after carotid balloon injury. Immunohistological analyses showed that pre-treatment with nebivolol was associated with a decreased number of SMC layers and macrophages and an increased lumen area at the site of the arterial injury. The intima area was reduced by 43% after pre-treatment. CONCLUSION: We found that nebivolol reduced the expression of proinflammatory genes in endothelial cells and vascular smooth muscle cells in vitro whereas metoprolol did not. In vivo, nebivolol inhibited neointima formation by reducing SMC proliferation and macrophage accumulation.  相似文献   

12.
Increased expression of connexin43 gap junctions in smooth muscle cells (SMC) is implicated in the response to primary arterial injury and in the early stages of human coronary atherosclerosis, but the relevance of these findings to restenosis is unknown. Here we investigated the expression of connexin43 gap junctions in restenotic aortas of cholesterol-fed double injured rabbits. Immunofluorescence confocal microscopy was used to evaluate temporal and spatial expression patterns and to characterize the major expressing cell type. Parallel studies were conducted by electron microscopy, in situ hybridization and Northern blot analysis. Connexin43 gap junctions- and connexin43 mRNA-expressing cells were abundant in the media of non-injured control aorta. Following primary injury and 6 weeks cholesterol diet, connexin43 gap junctions were found distributed throughout the primary intimal layer; although medial expression was reduced, the overall mRNA expression level remained similar to that of non-injured controls. After secondary injury, no major change in distribution pattern of connexin43 gap junctions occurred up to day 10, when marked neointimal labeling was observed. This overall pattern persisted, though with some diminution, at later stages. On the mRNA level total connexin43 mRNA expression declined to about 40% of control values within 4 days after secondary injury (P < 0.05), but subsequently increased four-fold, attaining levels double that of non-injured controls in the 10-day group (P < 0.005 versus control and 4 days). At later stages mRNA expression levels returned to values similar to those of non-injured controls. At all stages, connexin43 gap junctions were localized to the SMC, not to macrophages. We conclude that the enhanced gap junction formation may contribute to the coordination of the response of SMC after secondary injury, particularly in the early phase of restenosis.  相似文献   

13.
T-cadherin is an unusual glycosilphosphatidylinositol (GPI)-anchored member of the cadherin family of cell adhesion proteins. In contrast to classical cadherins, tissue distribution of T-cadherin so far remained unknown. We examined tissue distribution of T-cadherin in rats using Western blotting and immunohistochemical method. Our results show that T-cadherin is expressed in all types of muscles (cardiac, striated, and smooth muscles), in brain neurons, and spinal cord, in the vessel endothelium, at the apical pole of intestinal villar epithelium, in the basal layer of skin, and eosophagal epithelium. Blood-derived and lymphoid cells as well as connective tissue were T-cadherin-negative. The highest level of T-cadherin expression was revealed in the cardiovascular system. Although T-cadherin was detected in smooth muscle cells, its role in the intimal thickening and restenosis is not known. We examined T-cadherin expression within 1-28 days after balloon injury of rat left carotid arteries. T-cadherin expression was valued immunohistochemically with semiquantitative method. In uninjured arteries, T-cadherin was expressed in endothelial (vWF-positive) cells, and smooth muscle (alpha-actin-positive) cells (SMCs). After denudation of arterial wall, T-cadherin was present both in the media and neointima. We revealed dynamics of T-cadherin expression in the media of injured artery: an essential increase being registered at the stage of cell migration and proliferation in the media and neointima (1-7 days), followed by its decrease to the baseline level (10-28 days). The high upregulation of T-cadherin expression in the media and neointima during migration and proliferation of vascular cells after vessel injury enables us to suggest the involvement of T-cadherin in vessel remodeling after balloon catheter injury.  相似文献   

14.
15.
This study evaluated the efficacy of a prostacyclin analog, iloprost, and a thromboxane A2 receptor antagonist, daltroban, as inhibitors of experimental intimal hyperplasia. The vascular injury model used is based on an endothelial injury induced by a brief infusion of air into an isolated segment of the common carotid artery in the rat. Iloprost and daltroban were administered by continuous IV infusion for two weeks. The infusion rates were 0.1 micrograms/kg/min for iloprost and 0.1 mg/kg/hr for daltroban; these dosing rates are associated with significant alterations in eicosanoid-related pharmacologic effects. The animals were sacrificed at two weeks and the carotid arteries fixed in situ for light microscopy. The myointimal thickening was measured as the intima to media area (I/M) ratio. The control animals developed marked intimal thickening, with an I/M ratio of 0.76 +/- 0.12 (mean +/- SEM; N = 7). There was no inhibition of intimal hyperplasia (P greater than 0.05) after either iloprost (I/M ratio: 1.04 +/- 0.13; N = 8) or daltroban (I/M ratio: 0.70 +/- 0.04; N = 6). It is concluded that neither of these two modulators of eicosanoid activity, iloprost and daltroban, inhibit intimal hyperplasia following experimental endothelial injury.  相似文献   

16.
We studied the effects of cytostatic drugs on porcine coronary artery spindle-shaped (S) and rhomboid (R) smooth muscle cell (SMC) biological activities related to intimal thickening (IT) formation. Imatinib, and to a lesser extent curcumin, decreased proliferation of S- and R-SMCs and migratory and urokinase activities of R-SMCs more efficiently compared with cyclosporine plus rapamycin. Imatinib increased the expression of alpha-smooth muscle actin in both SMC populations and that of smoothelin in S-SMCs. It decreased S100A4 expression in R-SMCs. By promoting SMC quiescence and differentiation imatinib and curcumin may represent valid candidates for restenosis preventive and therapeutic strategies.  相似文献   

17.
The plasticity of two selected mRNAs was studied in two typical fast-twitch muscles at different time intervals after orchiectomy (GDX). The levator ani muscle of the rat (LA) is exquisitely sensitive to androgens, whereas the superficial vastus lateralis (SVL) lacks such sensitivity. In vitro translation of RNA isolated from both tissues indicated that actin was among the most repressed proteins of the LA at day 10 postsurgery (GDX-10 days), whereas the template activity of the SVL mRNAs remains virtually unmodified. We used an available actin cDNA and demonstrated that the expression of the LA actin message is reduced by 85% in GDX-10 days and can be recovered after testosterone propionate (TP) injections (GDX + TP). In contrast, the actin expression in SVL remains constant up to day 20 postsurgery. In the LA, the expression of creatine kinase (CK) mRNA was increased 140% in GDX-5 days and decreased 34 and 17% in GDX-10 days and GDX-20 days, respectively, although the measured CK activity, as well as the in vitro translation of the message, remained elevated in those two latter groups. Control level of the CK mRNA expression was recovered in the GDX + TP group. Again, the expression of the message was unchanged in SVL, suggesting that the protein synthesis of this skeletal muscle is far less sensitive to androgen deprivation than that of the LA muscle.  相似文献   

18.
We examined the expression of alpha-skeletal, alpha-cardiac, and beta- and gamma-cytoskeletal actin genes in a mouse skeletal muscle cell line (C2C12) during differentiation in vitro. Using isotype-specific cDNA probes, we showed that the alpha-skeletal actin mRNA pool reached only 15% of the level reached in adult skeletal muscle and required several days to attain this peak, which was then stably maintained. However, these cells accumulated a pool of alpha-cardiac actin six times higher than the alpha-skeletal actin mRNA peak within 24 h of the initiation of differentiation. After cells had been cultured for an additional 3 days, this pool declined to 10% of its peak level. In contrast, over 95% of the actin mRNA in adult skeletal muscle coded for alpha-actin. This suggests that C2C12 cells express a pattern of sarcomeric actin genes typical of either muscle development or regeneration and distinct from that seen in mature, adult tissue. Concurrently in the course of differentiation the beta- and gamma-cytoskeletal actin mRNA pools decreased to less than 10% of their levels in proliferating cells. The decreases in beta- and gamma-cytoskeletal actin mRNAs are apparently not coordinately regulated.  相似文献   

19.
Summary Alpha-smooth muscle actin is currently considered a marker of smooth muscle cell differentiation. However, during various physiologic and pathologic conditions, it can be expressed, sometimes only transiently, in a variety of other cell types, such as cardiac and skeletal muscle cells, as well as in nonmuscle cells. In this report, the expression of actin mRNAs in cultured rat capillary endothelial cells (RFCs) and aortic smooth muscle cells (SMCs) has been studied by Northern hybridization in two-dimensional cultures seeded on individual extracellular matrix proteins and in three-dimensional type I collagen gels. In two-dimensional cultures, in addition to cytoplasmic actin mRNAs which are normally found in endothelial cell populations, RFCs expressed α-smooth muscle (SM) actin mRNA at low levels. α-SM actin mRNA expression is dramatically enhanced by TGF-β1. In addition, double immunofluorescence staining with anti-vWF and anti-α-SM-1 (a monoclonal antibody to α-SM actin) shows that RFCs co-express the two proteins. In three dimensional cultures, RFCs still expressed vWF, but lost staining for α-SM actin, whereas α-SM actin mRNA became barely detectable. In contrast to two-dimensional cultures, the addition of TGF-β1 to the culture media did not enhance α-SM actin mRNA in three-dimensional cultures, whereas it induced rapid capillary tube formation. Actin mRNA expression was modulated in SMCs by extracellular matrix components and TGF-β1 with a pattern very different from that of RFCs. Namely, the comparison of RFCs with other cell types such as bovine aortic endothelial cells shows that co-expression of endothelial and smooth muscle cell markers is very unique to RFCs and occurs only in particular culture conditions. This could be related to the capacity of these microvascular endothelial cells to modulate their phenotype in physiologic and pathologic conditions, particularly during angiogenesis, and could reflect different embryologic origins for endothelial cell populations. Supported by a Post-Doctoral Fellowship from the Swiss National Science Foundation (OK) and grant HL-RO1-28373 (JAM) from the Department of Human Services, Public Health Service, Washington, D.C.  相似文献   

20.
Intimal hyperplasia following arterial endothelial denudation results in large part from the proliferation of vascular smooth muscle cells (SMCs) and matrix accumulation. Procollagen COOH-terminal proteinase enhancer (PCPE) binds procollagen COOH-propeptides and potentiates procollagen COOH-proteinase activity to cleave COOH-propeptides of procollagens I-III. Here we report the enhanced expression of PCPE in cultured SMCs and in intimal thickening induced by arterial injury. The levels of PCPE mRNA in parallel with the level of p21(Cip1) mRNA, as a negative regulator of cellular proliferation, increased under serum deprivation or reduced cellular proliferation in cultured SMCs. In contrast, rapidly proliferating cells show the decreased levels of PCPE mRNA. In vivo, the marked induction of PCPE in injured rat arteries occurred at 14 days after endothelial denudation. The induced expression levels of PCPE as well as p21(Cip1) were maintained until 42 days, although cyclin E expression declined. Furthermore, transforming growth factor beta1 (TGF-beta1), an important regulator of cellular proliferation in atheroma, increased the levels of the PCPE mRNA in cultured SMCs. Thus, the regulatory expression of PCPE dependent on cellular proliferation, and particularly contact inhibition, may play a key role in the proliferation of SMCs and matrix production during the process of atheroma formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号