共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of activated protein C by protein S. The role of phospholipid in factor Va inactivation 总被引:28,自引:0,他引:28
F J Walker 《The Journal of biological chemistry》1981,256(21):11128-11131
Protein S enhances the rate of Factor Va inactivation by activated Protein C (Walker, F. J. (1980) J. Biol. Chem. 255, 5521-5524). The activity of protein S is saturable, appearing to interact stoichiometrically with activated Protein C. Diisopropylphosphate-modified activated Protein C reversed the effect of Protein S, further indicating that a Protein S-activated Protein C interaction is required for expression of the activity of Protein S. In the absence of phospholipid, Protein S had no effect on the rate of activated Protein C-catalyzed inactivation of Factor Va. The activity of Protein S was only expressed in the presence of phospholipid vesicles, where it appeared to increase the affinity of the inactivation system for phospholipid. Protein S had no effect upon the rate of Factor Va inactivation in the presence of saturating levels of phospholipid vesicles. The effects of Protein S on the kinetics of Factor Va inactivation corresponded with its effect on the interaction between activated Protein C and phospholipid vesicles, measured by light scattering. In the presence of Protein S, the binding of activated Protein C to phospholipid vesicles was enhanced. Protein S had no effect upon the binding on the zymogen (Protein C to phospholipid vesicles). In conclusion, the stimulatory effect of Protein S on the inactivation of Factor Va by activated Protein C can be attributed, in part, to the enhancement of the binding of activated Protein C to phospholipid vesicles. 相似文献
2.
Inactivation of factor VIII by activated protein C and protein S 总被引:4,自引:0,他引:4
Factor VIII was inactivated by activated protein C in the presence of calcium and phospholipids. Analysis of the activated protein C-catalyzed cleavage products of factor VIII indicated that inactivation resulted from the cleavage of the heavy chains. The heavy chains appeared to be converted into 93- and 53-kDa peptides. Inactivation of factor VIII that was only composed of the 93-kDa heavy chain and 83-kDa light chain indicated that the 93-kDa polypeptide could be degraded into a 68-kDa peptide that could be subsequently cleaved into 48- and 23-kDa polypeptides. Thus, activated protein C catalyzed a minimum of four cleavages in the heavy chain. Activated protein C did not appear to alter the factor VIII light chain. The addition of protein S accelerated the rate of inactivation and the rate of all of the cleavages. The effect of protein S could be observed on the cleavage of the heavy chains and on secondary cleavages of the smaller products, including the 93-, 68-, and 53-kDa polypeptides. The addition of factor IX to the factor VIII-activated protein C reaction mixture resulted in the inhibition of factor VIII inactivation. The effect of factor IX was dose dependent. Factor VIII was observed to compete with factor Va for activated protein C. The concentration dependence of factor VIII inhibition of factor Va inactivation suggested that factor VIII and factor Va were equivalent substrates for activated protein C. 相似文献
3.
Harmon S Preston RJ Ni Ainle F Johnson JA Cunningham MS Smith OP White B O'Donnell JS 《The Journal of biological chemistry》2008,283(45):30531-30539
Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain. 相似文献
4.
Hiroshi Deguchi José A Fernández John H Griffin 《The Journal of biological chemistry》2002,277(11):8861-8865
To test whether neutral glycosphingolipids can serve as anticoagulant cofactors, the effects of incorporation of neutral glycosphingolipids into phospholipid vesicles on anticoagulant and procoagulant reactions were studied. Glucosylceramide (GlcCer), lactosylceramide (LacCer), and globotriaosylceramide (Gb(3)Cer) in vesicles containing phosphatidylserine (PS) and phosphatidylcholine (PC) dose dependently enhanced factor Va inactivation by the anticoagulant factors, activated protein C (APC) and protein S. Addition of GlcCer to PC/PS vesicles enhanced protein S-dependent APC cleavage in factor Va at Arg-506 by 13-fold, whereas PC/PS vesicles alone minimally affected protein S enhancement of this reaction. Incorporation into PC/PS vesicles of GlcCer, LacCer, or Gb(3)Cer, but not galactosylceramide or globotetraosylceramide, dose dependently prolonged factor Xa-1-stage clotting times of normal plasma in the presence of added APC without affecting baseline clotting times in the absence of APC, showing that certain neutral glycosphingolipids enhance anticoagulant but not procoagulant reactions in plasma. Thus, certain neutral glycosphingolipids (e.g. GlcCer, LacCer, and Gb(3)Cer) can enhance anticoagulant activity of APC/protein S by mechanisms that are distinctly different from those of phospholipids alone. We speculate that under some circumstances certain neutral glycosphingolipids either in lipoprotein particles or in cell membranes may help form antithrombotic microdomains that might enhance down-regulation of thrombin by APC in vivo. 相似文献
5.
Protein C inhibitor isolated from human plasma inhibited thrombin, factor Xa, trypsin and chymotrypsin as well as activated protein C, but had very little effect on urokinase and plasmin. The inhibition constants (K1) of protein C inhibitor for activated protein C, thrombin and factor Xa were 5.6 X 10(-8) M, 6.7 X 10(-8) M and 3.1 X 10(-7) M, respectively. The second-order rate constant for inhibition of activated protein C by the inhibitor increased about 30-fold in the presence of an optimal heparin concentration (5-10 units/ml). The inhibition of activated protein C by plasma protein C inhibitor was also accelerated by heparin. When activated protein C (Mr = 62,000) was incubated with protein C inhibitor (Mr = 57,000), enzyme-inhibitor complexes with apparent Mr = 102,000 and 88,000 were observed in the nonreduced and the reduced samples, respectively, on SDS-polyacrylamide gel electrophoresis. In addition to these complexes, a band of unbound enzyme and a band with Mr = 54,000 were detected. When 125I-labeled protein C inhibitor was exposed to activated protein C, the inhibitor band was converted to bands with apparent Mr = 102,000 and 54,000 in the nonreduced samples, as determined by autoradiography after gel electrophoresis in SDS. The band with Mr = 54,000 also appeared when the inhibitor reacted with other serine proteases. The activated protein C was released from the inactive complex by treatment with 1 M ammonia or hydroxylamine. This phenomenon was found by SDS-polyacrylamide gel electrophoresis to represent the dissociation of the enzyme-inhibitor complex by ammonia or hydroxylamine into the free enzyme and the proteolytically modified inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
To elucidate the mechanism by which C4b-binding protein inhibits the cofactor activity of protein S for anticoagulant-activated protein C, the interactions between protein S, activated protein C, and C4b-binding protein were studied using solid-phase enzyme immunoassays. Both activated protein C and C4b-binding protein bound to protein S fixed to microplate wells. C4b-binding protein did not inhibit the binding of activated protein C to protein S, nor did activated protein C inhibit the binding of C4b-binding protein to protein S. Activated protein C bound to a protein S-C4b-binding protein complex which was cross-linked with a chemical reagent as well as it bound to free protein S. Protein S-C4b-binding protein complex competitively inhibited activated protein C-binding to free protein S and also the cofactor activity of free protein S. Immunoblotting analysis showed ternary complex formation with protein S, C4b-binding protein, and activated protein C in the liquid phase by treatment with the cross-linking reagent. These findings suggest that the protein S-C4b-binding protein complex inhibits the cofactor activity of free protein S probably by inhibition of functionally active protein S-activated protein C complex formation by the apparent competitive formation of an inactive ternary complex with protein S, C4b-binding protein, and activated protein C. 相似文献
7.
8.
Alan F. Lau Wendy E. Kurata Martha Y. Kanemitsu Lenora W. M. Loo Bonnie J. Warn-Cramer Walter Eckhart Paul D. Lampe 《Journal of bioenergetics and biomembranes》1996,28(4):359-368
Gap junctions are specialized membrane structures that are involved in the normal functioning of numerous mammalian tissues and implicated in several human disease processes. This mini-review focuses on the regulation of gap junctions through phosphorylation of connexin43 induced by the v-Src or epidermal growth factor receptor tyrosine kinases. These tyrosine kinases markedly disrupt gap junctional communication in mammalian cells. Here, we describe work correlating the alteration of connexin43 function with the ability of the v-Src tyrosine kinase to phosphorylate connexin43 directly on two distinct tyrosine sites in mammalian cells (Y247 and Y265). We also present evidence that proline-rich regions and phosphotyrosine sites of connexin43 may mediate interactions with the SH3 and SH2 domains of v-Src. In contrast to v-Src, the activated epidermal growth factor receptor acts indirectly through activated MAP kinase which may stimulate phosphorylation of connexin43 exclusively on serine. This phosphorylation event is complex because MAP kinase phosphorylates three serine sites in connexin43 (S255, S279, and S282). These findings suggest novel interactions between connexin43, the v-Src tyrosine kinase, and activated MAP kinase that set the stage for future investigations into the regulation of gap junctions by protein phosphorylation. 相似文献
9.
Briedé JJ Tans G Willems GM Hemker HC Lindhout T 《The Journal of biological chemistry》2001,276(10):7164-7168
Recent studies have indicated that factor Va bound to activated platelets is partially protected from inactivation by activated protein C (APC). To explore whether this sustained factor Va activity could maintain ongoing thrombin generation, the kinetics of platelet factor Va-dependent prothrombinase activity and its inhibition by APC were studied. In an attempt to mimic physiologically relevant conditions, platelets were adhered to collagen type I-coated discs. These discs were then spun in solutions containing prothrombin and factor Xa either in the absence or presence of APC. The experiments were performed in the absence of platelet-derived microparticles, with thrombin generation and inhibition confined to the surface of the adherent platelets. APC completely inactivated platelet-associated prothrombinase activity with an overall second order rate constant of 3.3 x 10(6) m(-)1 s(-)1, which was independent of the prothrombin concentration over a wide range around the apparent K(m) for prothrombin. Kinetic studies on prothrombinase assembled at a planar phospholipid membrane composed of 25 mol % phosphatidylserine and 75 mol % phosphatidylcholine revealed a similar second order rate constant of inhibition (2.5 x 10(6) m(-1) s(-1)). Collectively, these data demonstrate that ongoing platelet factor Va-dependent thrombin generation at the surface of collagen-adherent platelets is effectively inhibited by APC. No differences were observed between the kinetics of APC inactivation of plasma-derived factor Va or platelet factor Va as part of the prothrombinase associated with, respectively, a planar membrane of synthetic phospholipids or collagen-adherent platelets. 相似文献
10.
Mechanisms by which soluble endothelial cell protein C receptor modulates protein C and activated protein C function 总被引:31,自引:0,他引:31
Liaw PC Neuenschwander PF Smirnov MD Esmon CT 《The Journal of biological chemistry》2000,275(8):5447-5452
The endothelial cell protein C receptor (EPCR) functions as an important regulator of the protein C anticoagulant pathway by binding protein C and enhancing activation by the thrombin-thrombomodulin complex. EPCR binds to both protein C and activated protein C (APC) with high affinity. A soluble form of EPCR (sEPCR) circulates in plasma and inhibits APC anticoagulant activity. In this study, we investigate the mechanisms by which sEPCR modulates APC function. Soluble EPCR inhibited the inactivation of factor Va by APC only in the presence of phospholipid vesicles. By using flow cytometric analysis in the presence of 3 mM CaCl(2) and 0. 6 mM MgCl(2), sEPCR inhibited the binding of protein C and APC to phospholipid vesicles (K(i) = 40 +/- 7 and 33 +/- 4 nM, respectively). Without MgCl(2), the K(i) values increased approximately 4-fold. Double label flow cytometric analysis using fluorescein-APC and Texas Red-sEPCR indicated that the APC.sEPCR complex does not interact with phospholipid vesicles. By using surface plasmon resonance, we found that sEPCR also inhibited binding of protein C to phospholipid in a dose-dependent fashion (K(i) = 32 nM). To explore the possibility that sEPCR evokes structural changes in APC, fluorescence spectroscopy studies were performed to monitor sEPCR/Fl-APC interactions. sEPCR binds saturably to Fl-APC (K(d) = 27 +/- 13 nM) with a maximum decrease in Fl-APC fluorescence of 10.8 +/- 0.6%. sEPCR also stimulated the amidolytic activity of APC toward synthetic substrates. We conclude that sEPCR binding to APC blocks phospholipid interaction and alters the active site of APC. 相似文献
11.
Leinweber B Parissenti AM Gallant C Gangopadhyay SS Kirwan-Rhude A Leavis PC Morgan KG 《The Journal of biological chemistry》2000,275(51):40329-40336
Previous studies from this laboratory have shown that, upon agonist activation, calponin co-immunoprecipitates and co-localizes with protein kinase Cepsilon (PKCepsilon) in vascular smooth muscle cells. In the present study we demonstrate that calponin binds directly to the regulatory domain of PKC both in overlay assays and, under native conditions, by sedimentation with lipid vesicles. Calponin was found to bind to the C2 region of both PKCepsilon and PKCalpha with possible involvement of C1B. The C2 region of PKCepsilon binds to the calponin repeats with a requirement for the region between amino acids 160 and 182. We have also found that calponin can directly activate PKC autophosphorylation. By using anti-phosphoantibodies to residue Ser-660 of PKCbetaII, we found that calponin, in a lipid-independent manner, increased auto-phosphorylation of PKCalpha, -epsilon, and -betaII severalfold compared with control conditions. Similarly, calponin was found to increase the amount of (32)P-labeled phosphate incorporated into PKC from [gamma-(32)P]ATP. We also observed that calponin addition strongly increased the incorporation of radiolabeled phosphate into an exogenous PKC peptide substrate, suggesting an activation of enzyme activity. Thus, these results raise the possibility that calponin may function in smooth muscle to regulate PKC activity by facilitating the phosphorylation of PKC. 相似文献
12.
T Suzuki K Narita A Terakita E Takai K Nagai Y Kito Y Tsukahara 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》1999,122(3):369-374
Phospholipase C (PLC) is the key enzyme in the phototransduction cascade of invertebrate rhabdomeric photoreceptors. In addition to 130 kDa PLC, a 95 kDa protein recognized by antibody against the catalytic site of PLC was found in the squid retina. The PLC-like 95 kDa protein (95 kDa PLC) was produced from 130 kDa PLC by an intrinsic protease in the presence of calcium. The 130 kDa PLC was stimulated by the active form of Gq-class G-protein alpha (Gq alpha), but the 95 kDa PLC was not, although their PLC activity was similar. A 35 kDa fragment, the counterpart of 95 kDa PLC, was not recognized by antibodies against catalytic site or N-terminal site of the 130 kDa PLC, indicating that the cleavage site is on the C-terminal side beyond the catalytic site. In the presence of a large excess of the 35 kDa fragment, 95 kDa PLC was stimulated by Gq alpha to a similar extent as intact 130 kDa PLC. These results indicate that the C-terminal polypeptide of PLC is necessary for regulation of its enzyme activity by Gq alpha. The uncoupling of PLC from Gq alpha, caused by limited proteolysis, is therefore a candidate regulatory mechanism of the phototransduction cascade in rhabdomeric photoreceptors. 相似文献
13.
Regulation of protein kinase C activity by lipids 总被引:9,自引:0,他引:9
R R Rando 《FASEB journal》1988,2(8):2348-2355
Protein kinase C is activated by the simultaneous presence of phospholipid, a diglyceride, and Ca2+. Under physiological conditions the activity of the enzyme is regulated by the availability of diglycerides, which are the products of phosphoinositide hydrolysis. The phospholipid-kinase interactions appear not to be of a highly specific nature. Phosphatidylserine (PS) is presumed to be the endogenous lipid that interacts with the kinase, but other acidic lipids can substitute. On the other hand, the kinase-diglyceride interactions are highly specific in nature, as would be expected of a physiological regulator. These interactions are stereo-specific and stoichiometric with respect to diglyceride. The specificity is directed toward the glycerol backbone and hydrophilic oxygen moieties of the diglyceride. The removal of one or more of the oxygen atoms or the addition of a single methyl group to the glycerol backbone virtually abolishes the activity of a putative diglyceride activator. The extreme specificity of the kinase toward the diglycerides, however, must be contrasted with the abilities of structurally diverse tumor promotors and irritants to activate the kinase. Specific small-molecule antagonists of protein kinase C have yet to be developed. The small-molecule antagonists that have been developed so far have been relatively nonspecific cationic lipids that appear to function by interfering with the interaction between the acidic phospholipids and Ca2+. 相似文献
14.
Regulation of protein kinase C activity by gangliosides 总被引:22,自引:0,他引:22
D Kreutter J Y Kim J R Goldenring H Rasmussen C Ukomadu R J DeLorenzo R K Yu 《The Journal of biological chemistry》1987,262(4):1633-1637
The activity of protein kinase C (Ca2+/phospholipid-dependent enzyme) in the presence of phosphatidylserine and its physiological regulator, diacylglycerol, could be suppressed by a mixture of brain gangliosides. Half-maximal inhibition was observed at 30 microM and was nearly complete at 100 microM. Inhibition was observed at all concentrations of Ca2+ between 10(-8) and 10(-4) M. Inhibition of protein kinase C activity could not be reversed by increasing the concentration of diacylglycerol or the substrate, histone. Inhibition was also observed when myelin basic protein or a synthetic myelin basic protein peptide was used as substrate. Among the individual gangliosides, the rank order of potency was GT1b greater than GD1a = GD1b greater than GM3 = GM1. Our results suggest that gangliosides may regulate the responsiveness of protein kinase C to diacylglycerol. 相似文献
15.
Z. Kiss 《Chemistry and physics of lipids》1996,80(1-2)
In nearly all mammalian cells and tissues examined, protein kinase C (PKC) has been shown to serve as a major regulator of a phosphatidylcholine-specific phospholipase D (PLD) activity, At least 12 distinct isoforms of PKC have been described so far; of these enzymes only the α- and β-isoform were found to regulate PLD activity, While the mechanism of this regulation has remained unknown, available evidence suggests that both phosphorylating and non-phosphorylating mechanisms may be involved. A phosphatidylcholine-specific PLD activity was recently purified from pig lung, but its possible regulation by PKC has not been reported yet. Several cell types and tissues appear to express additional forms of PLD which can hydrolyze either phosphatidylethanolamine or phosphatidylinositol. It has also been reported that at least one form of PLD can be activated by oncogenes, but not by PKC activators, Similar to activated PKC, some of the primary and secondary products of PLD-mediated phospholipid hydrolysis, including phosphatidic acid, 1,2-diacylglycerol, choline phosphate and ethanolamine, also exhibit mitogenic/co-mitogenic effects in cultured cells. Furthermore, both the PLD and PKC systems have been implicated in the regulation of vesicle transport and exocytosis. Recently the PLD enzyme has been cloned and the tools of molecular biology to study its biological roles will soon be available. Using specific inhibitors of growth regulating signals and vesicle transport, so far no convincing evidence has been reported to support the role of PLD in the mediation of any of the above cellular effects of activated PKC. 相似文献
16.
17.
We investigated the effect of C4BP on APC-mediated inactivation of factor Va (FVa) in the absence and presence of protein S. FVa inactivation was biphasic (k(506) = 4.4 x 10(8) M(-)(1) s(-)(1), k(306) = 2.7 x 10(7) M(-)(1) s(-)(1)), and protein S accelerated Arg(306) cleavage approximately 10-fold. Preincubation of protein S with C4BP resulted in a total abrogation of protein S cofactor activity. C4BP also protected FVa from inactivation by APC in the absence of protein S. Control experiments with CLB-PS13, a monoclonal anti-protein S antibody, indicated that inhibition of FVa inactivation by C4BP was not mediated through contaminating traces of protein S in our reaction systems. Protection of FVa was prevented by a monoclonal antibody directed against the C4BP alpha-chain. Recombinant rC4BPalpha comprised of only alpha-chains also protected FVa, but in the presence of protein S, the level of protection was decreased, since rC4BPalpha lacks the beta-chain responsible for C4BP binding to protein S. A truncated C4BP beta-chain (SCR-1+2) inhibited protein S cofactor activity, but had no effect on FVa inactivation by APC in the absence of protein S. In conclusion, C4BP protects FVa from APC-catalyzed cleavage in a protein S-independent way through direct interactions of the alpha-chaims of C4BP with FVa and/or APC. 相似文献
18.
Proteolysis of protein C in pooled normal plasma and purified protein C by activated protein C (APC) 总被引:5,自引:0,他引:5
Protein C is a vitamin-K dependent zymogen of the anti-coagulant serine protease activated protein C (APC). In this paper, we report four lines of evidence that APC can activate protein C in pooled normal plasma, and purified protein C. First, the addition of APC to protein C-deficient plasma supplemented with protein C produces a prolongation of the clotting time of plasma that is proportional to the amount of protein C. This behavior was observed with APC from the Chromogenix APC resistance kit (Dia Pharm, Franklin, OH, USA) and from APC derived from the thrombin activation of human protein C (Enzyme Research Laboratories, South Bend, IN, USA). Secondly, using immunoblotting after gel electrophoresis, the disappearance of epitopes for monoclonal antibodies that recognize protein C but not APC indicates a time course for the activation by APC of protein C in pooled normal plasma and protein C purified from plasma. Thirdly, the same time course for the disappearance of protein C specific epitope can be followed using ELISA. Finally, protein C can be activated by APC as indicated by the increase in APC specific synthetic substrate Tryp-Arg-Arg-p nitroaniline hydrolysis. Kinetic data indicate a value of 4.7+/-0.4 mM(-1) s(-1) for the activation of protein C by APC under physiological conditions and in the presence of calcium. These observations document that APC must function not only in the inactivation of activated factors V and VIII, but also in the activation of protein C. This additional action of APC may be important to consider more broadly because of APC in the treatment of sepsis. 相似文献
19.
Undas A Williams EB Butenas S Orfeo T Mann KG 《The Journal of biological chemistry》2001,276(6):4389-4397
We report the effect of homocysteine on the inactivation of factor Va by activated protein C (APC) using clotting assays, immunoblotting, and radiolabeling experiments. Homocysteine, cysteine, or homocysteine thiolactone have no effect on factor V activation by alpha-thrombin. Factor Va derived from homocysteine-treated factor V was inactivated by APC at a reduced rate. The inactivation impairment increased with increasing homocysteine concentration (pseudo first order rate k = 1.2, 0.9, 0.7, 0.4 min(-1) at 0, 0.03, 0.1, 1 mm homocysteine, respectively). Neither cysteine nor homocysteine thiolactone treatment of factor V affected APC inactivation of derived factor Va. Western blot analyses of APC inactivation of homocysteine-modified factor Va are consistent with the results of clotting assays. Factor Va, derived from factor V treated with 1 mm beta-mercaptoethanol was inactivated more rapidly than the untreated protein sample. Factor V incubated with [(35)S]homocysteine (10-450 micrometer) incorporated label within 5 min, which was found only in those fragments that contained free sulfhydryl groups: the light chain (Cys-1960, Cys-2113), the B region (Cys-1085), and the 26/28-kDa (residues 507-709) APC cleavage products of the heavy chain (Cys-539, Cys-585). Treatment with beta-mercaptoethanol removed all radiolabel. Plasma of patients assessed to be hyperhomocysteinemic showed APC resistance in a clot-based assay. Our results indicate that homocysteine rapidly incorporates into factor V and that the prothrombotic tendency in hyperhomocysteinemia may be related to impaired inactivation of factor Va by APC due to homocysteinylation of the cofactor by modification of free cysteine(s). 相似文献
20.
Ras proteins have the capacity to bind to and activate at least three families of downstream target proteins: Raf kinases, phosphatidylinositol 3 (PI 3)-kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). We have previously shown that the Ras/Ral-GEF and Ras/Raf pathways oppose each other upon nerve growth factor stimulation, with the former promoting proliferation and the latter promoting cell cycle arrest. Moreover, the pathways are not activated equally. While the Ras/Raf/Erk signaling pathway is induced for hours, the Ras/Ral-GEF/Ral signaling pathway is induced for only minutes. Here we show that this preferential down-regulation of Ral signaling is mediated, at least in part, by protein kinase C (PKC). In particular, we show that PKC activation by phorbol ester treatment of cells blocks growth factor-induced Ral activation while it enhances Erk activation. Moreover, suppression of growth factor-induced PKC activation enhances and prolongs Ral activation. PKC does not influence the basal activity of the Ral-GEF designated Ral-GDS but suppresses its activation by Ras. Interestingly, Ras binding to the C-terminal Ras binding domain of Ral-GDS is not affected by PKC activity. Instead, suppression of Ral-GDS activation occurs through the region N terminal to the catalytic domain, which becomes phosphorylated in response to phorbol ester treatment of cells. These findings identify a role for PKC in determining the specificity of Ras signaling by its ability to differentially modulate Ras effector protein activation. 相似文献