首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclophosphamide (CP) has potential urotoxicity such as hemorrhagic cystitis (HC). 2-Mercaptoethane sulfonate (mesna) has been widely used as an effective agent against CP-induced cystitis, but significant HC has still been encountered clinically. In recent studies, mesna was shown to be more effective if combined with antioxidants. The purpose of this study was to evaluate the effects of antioxidants, alpha-tocopherol, beta-carotene and melatonin on CP-induced bladder damage in rats, even if used without mesna administration. Male Sprague-Dawley rats weighing 180-210 g were divided into 5 groups. Four groups received a single dose of CP (100 mg/kg) intraperitoneally with the same time intervals. Group 2 received CP only, group 3 received beta-carotene (40 mg/kg/day), group 4 received alpha-tocopherol (40 mg/kg/day) and group 5 received melatonin (10 mg/kg/day) both before and the day after CP injection. Group 1 served as control. Bladder histopathology, as well as malondialdehyde (MDA) and iNOS levels, and excretion of nitrite-nitrates (NO(x)) in urine were evaluated. CP injection resulted in severe histological changes and macroscopic hematuria. alpha-Tocopherol and melatonin showed meaningful protection against bladder damage. Protection by beta-carotene was also significant but weaker. MDA levels increased significantly with CP injection and all antioxidants ameliorated this increase in bladder tissue. CP also elevated the NO(x) level in urine and iNOS activity in bladder. Only melatonin was able to decrease these parameters. In conclusion, there is no doubt that oxidants have a role in the pathogenesis of CP-cystitis. Antioxidants, especially melatonin and alpha-tocopherol, may help to ameliorate bladder damage induced by CP.  相似文献   

2.
Cyclophosphamide (CP) is a widely used antineoplastic drug, which could cause toxicity of the normal cells due to its toxic metabolites. Its urotoxicity may cause dose-limiting side effects like hemorrhagic cystitis. Overproduction of reactive oxygen species (ROS) during inflammation is one of the reasons of the urothelial injury. Selenoproteins play crucial roles in regulating ROS and redox status in nearly all tissues; therefore, in this study, the urotoxicity of CP and the possible protective effects of seleno-l-methionine (SLM) on urinary bladder of rats were investigated. Intraperitoneal (i.p.) administration of 50, 100, or 150 mg/kg CP induced cystitis, in a dose-dependent manner, as manifested by marked congestion, edema and extravasation in rat urinary bladder, a marked desquamative damage to the urothelium, severe inflammation in the lamina propria, focal erosions, and polymorphonuclear (PMN) leukocytes associated with occasional lymphocyte infiltration determined by macroscopic and histopathological examination. In rat urinary bladder tissue, a significant decrease in the endogenous antioxidant compound glutathione, and elevation of lipid peroxidation were also noted. Pretreatment with SLM (0.5 or 1 mg/kg) produced a significant decrease in the bladder edema and caused a marked decrease in vascular congestion and hemorrhage and a profound improvement in the histological structure. Moreover, SLM pretreatment decreased lipid peroxide significantly in urinary bladder tissue, and glutathione content was greatly restored. These results suggest that SLM offers protective effects against CP-induced urinary bladder toxicity and could be used as a protective agent against the drug toxicity.  相似文献   

3.
4.
Gastrointestinal inflammation has been associated with an increased generation of nitric oxide (NO) and the expression of the inducible NO synthase (iNOS). Using an experimental model of colitis induced by trinitrobenzene sulphonic acid (TNBS), we sought to determine whether the administration of N-(3-(Aminomethyl)benzyl)acetamidine (1400W), a specific inhibitor of iNOS, has a beneficial action on the colonic injury. 1400W (0.4 and 2 mg/kg/day) was administered intraperitoneally from day 5 to 10 after intrarectal instillation of TNBS. TNBS led to colonic ulceration and inflammation, an increase of colonic myeloperoxidase activity and the expression of the calcium-independent NOS from days 1 to 15. 1400W reduced the macroscopic damage and the histological changes induced by TNBS as well as the calcium-independent NOS activity and myeloperoxidase activity determined over 30 min after sacrifice. These findings indicate that the expression of iNOS accounts for most of the damage caused by TNBS and that the administration of 1400W after the onset of colitis has a beneficial action on the colonic injury.  相似文献   

5.
Microglia are the resident immune cells in the brain. Microglial activation is characteristic of several inflammatory and neurodegenerative diseases including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Though lipopolysaccharide (LPS)-induced microglial activation in models of Parkinson's disease is well documented, the free radical-mediated protein radical formation and its underlying mechanism during LPS-induced microglial activation are not known. Here we have used immuno-spin trapping and RNA interference to investigate the role of inducible nitric oxide synthase (iNOS) in peroxynitrite-mediated protein radical formation in murine microglial BV2 cells treated with LPS. Treatment of BV2 cells with LPS resulted in morphological changes, induction of iNOS, and increased protein radical formation. Pretreatments with FeTPPS (a peroxynitrite decomposition catalyst), L-NAME (total NOS inhibitor), 1400W (iNOS inhibitor), and apocynin significantly attenuated LPS-induced protein radical formation and tyrosine nitration. Results obtained with coumarin-7-boronic acid, a highly specific probe for peroxynitrite detection, correlated with LPS-induced tyrosine nitration, which demonstrated involvement of peroxynitrite in protein radical formation. A similar degree of protection conferred by 1400W and L-NAME led us to conclude that only iNOS, and no other forms of NOS, is involved in LPS-induced peroxynitrite formation. Subsequently, siRNA for iNOS, the iNOS-specific inhibitor 1400W, the NF-κB inhibitor PDTC, and the p38 MAPK inhibitor SB202190 was used to inhibit iNOS directly or indirectly. Inhibition of iNOS precisely correlated with decreased protein radical formation in LPS-treated BV2 cells. The time course of protein radical formation also matched the time course of iNOS expression. Taken together, these results prove the role of iNOS in peroxynitrite-mediated protein radical formation in LPS-treated microglial BV2 cells.  相似文献   

6.
Cyclophosphamide (CP) is an antineoplastic agent that is used for the treatment of many neoplastic diseases. Hemorrhagic cystitis (HC) is a major dose limiting side effect of CP. Recent studies show that aminogaunidine, an inhibitor of inducible nitric oxide synthase is a potent antioxidant and prevents changes caused by oxidative stress such as depletion of antioxidant activity and tissue injury. The purpose of the study is to investigate the effect of aminoguanidine on parameters of oxidative stress, antioxidant enzymes and bladder injury caused by CP. Adult male rats were randomly divided into four groups. Control rats were administered saline; the AG control group received 200 mg/kg body wt of aminoguanidine; The CP group received a single injection of CP at the dose of 150 mg/kg body wt intraperitoneally. The CP + AG group received aminoguanidine (200 mg/kg body wt) intraperitoneally 1 h before the administration of CP. The rats were sacrificed 16 h after CP/saline administration. The bladder was used for light microscopic studies and biochemical studies. The markers of oxidative damage including protein carbonyl content, protein thiol, malondialdehyde and conjugated dienes were assayed in the homogenates along with the activities of the antioxidant enzymes, superoxide dismutase, glutathione peroxidase, catalase, and glutathione reductase and glutathione S transferase. In the bladders of CP treated rats edema of lamina propria with epithelial and sub‐epithelial hemorrhage was seen. All the parameters of oxidative stress that were studied were significantly elevated in the bladders of CP treated rats. The activities of the antioxidant enzymes were significantly lowered in the bladders of CP treated rats. Aminoguanidine pretreatment prevented CP‐induced oxidative stress, decrease in the activities of anti‐oxidant enzymes and reduced bladder damage. The results of the present study suggest the antioxidant role for aminoguanidine in CP‐induced bladder damage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Hyperglycemia significantly stimulates pancreatic islet endothelial cell apoptosis; however, the precise mechanisms are not fully understood. In the present study, treating pancreatic islet endothelial (MS-1) cells with high glucose (30 mmol/l) but not mannitol significantly increased the number of apoptotic cells as compared with a physiological glucose concentration (5.5 mmol/l). Hyperglycemia significantly stimulated the expression of inducible nitric oxide synthase (iNOS) and production of NO and peroxynitrite (ONOO), relevant to MS-1 cell apoptosis. Moreover, induced reactive nitrogen species (RNS) significantly increased the expression of bax, cleaved caspase-3 and poly adenosine diphosphate (ADP)-ribose polymerase (PARP) via JNK activation, but the expression of bcl-2 was not altered. Furthermore, SP600125 (a specific inhibitor of JNK) and 1400W (a specific inhibitor of iNOS) significantly attenuated cell apoptosis induced by high glucose. Therefore, hyperglycemia triggers MS-1 cell apoptosis by activating an intrinsic-dependent apoptotic pathway via RNS-mediated JNK activation.  相似文献   

8.
The role of phosphodiesterase inhibitor, pentoxifylline, in the prevention of cyclophosphamide‐induced hemorrhagic cystitis was evaluated in a rat model. Hemorrhagic cystitis was induced in rats by an intraperitoneal (i.p.) injection of a single dose of cyclophosphamide (150 mg/kg). Pentoxifylline (150 mg/kg/day/ip) was administered for 10 days followed by cyclophosphamide. Hemorrhagic cystitis was well characterized macroscopically, microscopically, and biochemically. Cyclophosphamide induced bladder injury including acute severe inflammation, vascular congestion, severe edema, hemorrhage, inflammatory cell infiltration in the lamina propria, and epithelial denudation; as well as it notably elevated serum inflammatory cytokines (tumor necrosis factor‐α, interleukin‐6, and interleukin‐1β), bladder content of malondialdehyde and total nitrate, accompanied with depletion of bladder antioxidant enzymes activities (glutathione peroxidase, superoxide dismutase, glutathione‐S‐transferase, and catalase). Prior administration of pentoxifylline improved all biochemical and histologic alterations induced by the cytotoxic drug cyclophosphamide. In conclusion, pentoxifylline has proven uroprotective efficacy in the cyclophosphamide‐induced hemorrhagic cystitis model, possibly through modulating the release of inflammatory cytokines and nitric oxide and restoring the oxidant/antioxidant balance. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:343‐350, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21494  相似文献   

9.
The objective of this study is to investigate the potential protective effects of intravesical instillation of epinephrine in cyclophosphamide-induced hemorrhagic cystitis. In an earlier study, we have shown that epinephrine promotes hemostasis on established hemorrhagic cystitis induced by cyclophosphamide. Female Sprague-Dawley rats were divided into seven groups as follows: group 1: positive control (150 mg/kg, cyclophosphamide, i.p.), group 2: negative control (10 microg/ml, epinephrine, intravesical), co-administration of cyclophosphamide (150 mg/kg, i.p.), group 3: saline (intravesical), groups 4-6: epinephrine (2.5, 5, and 10 mu g/ml, intravesical), and group 7: mesna (50 mg/kg, i.p.). Rats were sacrificed on 3 consecutive days and the urinary bladders were removed, weighed, and evaluated. The vesical vascular permeability was determined by wet bladder weight and Evan's blue dye absorbance. After 24 hours of cyclophosphamide administration, severe hemorrhagic cystitis was induced with marked edema, hemorrhage, and inflammation. In the epinephrine-treated groups, symptoms of hemorrhagic cystitis (such as edema, inflammation, and hemorrhage) were reduced significantly. Intravesical instillation of epinephrine prevents edema, hemorrhage, and inflammation in rats with cyclophosphamide-induced hemorrhagic cystitis.  相似文献   

10.
The objective of this study was to determine if macrophage migration inhibitory factor (MIF) is upregulated in the bladder during persistent cystitis. MIF is a pro-inflammatory cytokine found pre-formed in the urothelium. Previous findings showed that acute bladder inflammation increased MIF release into the bladder lumen while upregulating MIF and CD74 (MIF receptor) in the bladder. Because the effects of persistent cystitis on MIF and CD74 are not known, MIF and CD74 changes in the bladder were examined after short-term (1-day) or persistent (8-day) cyclophosphamide (CYP)-induced bladder inflammation. Anesthetized male Sprague-Dawley rats received either a single CYP treatment (150 mg/kg, ip; saline, control) and examined 1 day after treatment (short-term), or repeated CYP doses (20-75 mg/ kg, ip; saline, control; every third day for 8 days) and examined after 8 days of treatment (persistent). MIF protein levels in urine and bladder were determined. In addition, Mif, CD74, and cox-2 expression in the bladder was determined. Histology verified cystitis and MIF and CD74 immunoreactivity in the bladder. Repeated CYP doses were decreased to avoid toxicity. Short-term or repeated low CYP doses (40 mg/kg; 8 days) increased urinary MIF and decreased bladder MIF amounts while upregulating bladder Mif and CD74 mRNA expression. Persistent CYP-induced bladder inflammation (even at 40 mg/kg; 8-day treatment) also upregulated other inflammatory cytokines (CCL5, IL-11, iNOS) in the bladder. Short-term and persistent (low dose) CYP cystitis are associated with markedly increased MIF release into the urine and upregulation of Mif and CD74 in bladder. This supports the hypothesis that MIF and CD74 play a significant role in both acute and persistent stages of bladder inflammation.  相似文献   

11.
This study evaluated the effects of the selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-(aminomethyl)benzyl]acetamidine (1400W) on the microcirculation in reperfused skeletal muscle. The cremaster muscles from 32 rats underwent 5 h of ischemia followed by 90 min of reperfusion. Rats received either 3 mg/kg 1400W or PBS subcutaneously before reperfusion. We found that blood flow in reperfused muscles was <45% of baseline in controls but sharply recovered to near baseline levels in 1400W-treated animals. There was a significant (P < 0.01 to P < 0.001) difference between the two groups at each time point throughout the 90 min of reperfusion. Vessel diameters remained <80% of baseline in controls during reperfusion, but recovered to the baseline level in the 1400W group by 20 min, and reached a maximum of 121 +/- 14% (mean +/- SD) of baseline in 10- to 20-micro m arterioles, 121 +/- 6% in 21- to 40-micro m arterioles, and 115 +/- 8% in 41- to 70-micro m arteries (P < 0.01 to P < 0.001). The muscle weight ratio between ischemia-reperfused (left) and non-ischemia-reperfused (right) cremaster muscles was 193 +/- 42% of normal in controls and 124 +/- 12% in the 1400W group (P < 0.001). Histology showed that neutrophil extravasation and edema were markedly reduced in 1400W-treated muscles compared with controls. We conclude that ischemia-reperfusion leads to increased generation of NO from iNOS in skeletal muscle and that the selective iNOS inhibitor 1400W reduces the negative effects of ischemia-reperfusion on vessel diameter and muscle blood flow. Thus 1400W may have therapeutic potential in treatment of ischemia-reperfusion injury.  相似文献   

12.
Studies in streptozotocin (STZ)-induced diabetic rats have demonstrated cardiovascular abnormalities such as depressed mean arterial blood pressure (MABP) and heart rate (HR), endothelial dysfunction, and attenuated pressor responses to vasoactive agents. We investigated whether these abnormalities are due to diabetes-associated activation of inducible nitric oxide synthase (iNOS). In addition, the effect of the duration of diabetes on these abnormalities was also evaluated. Diabetes was induced by administration of 60 mg/kg STZ via the tail vein. One, 3, 9, or 12 wk after STZ injection, MABP, HR, and endothelial function were measured in conscious unrestrained rats. Pressor response curves to bolus doses of methoxamine (MTX) and angiotensin II (ANG II) were constructed in the presence of N-[3(aminomethyl)benzyl]-acetamidine, dihydrochloride (1400W), a specific inhibitor of iNOS. Depressed MABP and HR and impairment of endothelial function were observed as early as 3 wk after induction of diabetes. Acute inhibition of iNOS with 1400W (3 mg/kg i.v.) restored the attenuated pressor responses to both MTX and ANG II without affecting the basal MABP and HR. Immunohistochemical and Western analysis blot studies in cardiovascular tissues revealed decreased expression of endothelial nitric oxide synthase (eNOS) concomitant with increased expression of iNOS and nitrotyrosine with the progression of diabetes. Our findings suggest that induction of iNOS in cardiovascular tissues is dependent on the duration of diabetes and contributes significantly to the depressed pressor responses to vasoactive agents and potentially to endothelial dysfunction.  相似文献   

13.
Both NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS) are the main sources of reactive oxygen species in kidney. However, their interactions in oxidative stress and contributions to kidney fibrosis during diabetic nephropathy have not been studied. Human mesangial cells were treated with normal glucose (5.6 mmol/L), high glucose (30 mmol/L) in the presence or absence of AGE (200 mg/L). Protein expressions of NOX1, NOX2, NOX4, and iNOS were examined by immunoblotting. NOX was genetically silenced with specific RNAi to study the interactions between NOX and iNOS in diabetic milieu. Superoxide (O·?) and peroxynitrite (ONOO·?) productions were assessed by dihydroethidium and hydroxyphenyl fluorescein, respectively. Fibrotic factors were determined by biochemistry assay. Superoxide, peroxynitrite, TGF-β, and fibronectin productions as well as the protein expressions of NOX1, NOX2, NOX4, and iNOS were increased in the diabetic milieu (high glucose 30 mmol/L plus AGE 200 mg/L). However, abolishment of iNOS induction with 1400W or iNOS RNAi would restore peroxynitrite, TGF-β, and fibronectin productions completely to basal level and attenuate superoxide production. Moreover, NOX1 inhibition not only prevented iNOS induction but also abrogated changes consequent to iNOS induction such as mesangial fibrogenesis.  相似文献   

14.
We determined the effects of cyclooxygenase-1 (COX-1; SC-560), COX-2 (SC-58125), and inducible nitric oxide synthase (iNOS; 1400W) inhibitors on atorvastatin (ATV)-induced myocardial protection and whether iNOS mediates the ATV-induced increases in COX-2. Sprague-Dawley rats received 10 mg ATV.kg(-1).day(-1) added to drinking water or water alone for 3 days and received intravenous SC-58125, SC-560, 1400W, or vehicle alone. Anesthesia was induced with ketamine and xylazine and maintained with isoflurane. Fifteen minutes after intravenous injection rats underwent 30-min myocardial ischemia followed by 4-h reperfusion [infarct size (IS) protocol], or the hearts were explanted for biochemical analysis and immunoblotting. Left ventricular weight and area at risk (AR) were comparable among groups. ATV reduced IS to 12.7% (SD 3.1) of AR, a reduction of 64% vs. 35.1% (SD 7.6) in the sham-treated group (P < 0.001). SC-58125 and 1400W attenuated the protective effect without affecting IS in the non-ATV-treated rats. ATV increased calcium-independent NOS (iNOS) [11.9 (SD 0.8) vs. 3.9 (SD 0.1) x 1,000 counts/min; P < 0.001] and COX-2 [46.7 (SD 1.1) vs. 6.5 (SD 1.4) pg/ml of 6-keto-PGF(1alpha); P < 0.001] activity. Both SC-58125 and 1400W attenuated this increase. SC-58125 did not affect iNOS activity, whereas 1400W blocked iNOS activity. COX-2 was S-nitrosylated in ATV-treated but not sham-treated rats or rats pretreated with 1400W. COX-2 immunoprecipitated with iNOS but not with endothelial nitric oxide synthase. We conclude that ATV reduced IS by increasing the activity of iNOS and COX-2, iNOS is upstream to COX-2, and iNOS activates COX-2 by S-nitrosylation. These results are consistent with the hypothesis that preconditioning effects are mediated via PG.  相似文献   

15.
Polymorphonuclear leukocyte (PMN) accumulation/activation has been implicated as a primary mechanism underlying MI/R injury. Recent studies have demonstrated that PMNs express inducible nitric oxide synthase (iNOS) and produce toxic reactive nitrogen species (RNS). However, the role of iNOS-derived reactive nitrogen species and resultant nitrative stress in PMN-induced cardiomyocyte apoptosis after MI/R remains unclear. Male adult rats were subjected to 30 min of myocardial ischemia followed by 5 h of reperfusion. Animals were randomized to receive one of the following treatments: MI/R+vehicle; MI/R+L-arginine; PMN depletion followed by MI/R+vehicle; PMN depletion followed by MI/R+L-arginine; MI/R+1400 W; MI/R+1400 W+L-arginine and MI/R+ FeTMPyP. Ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis were determined. PMN depletion virtually abolished ischemia/reperfusion- induced PMN accumulation, attenuated ischemic/reperfusion-induced and L-arginine-enhanced nitrative stress, and reduced ischemic/reperfusion-induced and L-arginine-enhanced cardiomyocyte apoptosis (P values all <0.01). Pre-treatment with 1400 W, a highly selective iNOS inhibitor, had no effect on PMN accumulation in the ischemic/reperfused tissue. However, this treatment reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis to an extent that is comparable as that seen in PMN depletion group. Treatment with FeTMPyP, a peroxynitrite decomposition catalyst, had no effect on either PMN accumulation or total NO production. However, treatment with this ONOO decomposition catalyst also reduced ischemia/reperfusion-induced and L-arginine-enhanced nitrative stress and cardiomyocyte apoptosis (P values all <0.01). These results demonstrated that ischemic/reperfusion stimulated PMN accumulation may result in cardiomyocyte injury by an iNOS-derived nitric oxide initiated and peroxynitrite-mediated mechanism. Therapeutic interventions that block PMN accumulation, inhibit iNOS activity or scavenge peroxynitrite may reduce nitrative stress and attenuate tissue injury. Xiao-Liang Wang and Hui-Rong Liu contributed equally to this study.  相似文献   

16.
This study investigated the role of inducible nitric oxide synthase (iNOS) in failure of ethanol-induced fatty liver grafts. Rat livers were explanted 20 h after gavaging with ethanol (5 g/kg) and storing in UW solution for 24h before implantation. Hepatic oil red O staining-positive areas increased from ~2 to ~33% after ethanol treatment, indicating steatosis. iNOS expression increased ~8-fold after transplantation of lean grafts (LG) and 25-fold in fatty grafts (FG). Alanine aminotransferase release, total bilirubin, hepatic necrosis, TUNEL-positive cells, and cleaved caspase-3 were higher in FG than LG. A specific iNOS inhibitor 1400W (5 μM in the cold-storage solution) blunted these alterations by >42% and increased survival of fatty grafts from 25 to 88%. Serum nitrite/nitrate and hepatic nitrotyrosine adducts increased to a greater extent after transplantation of FG than LG, indicating reactive nitrogen species (RNS) overproduction. Phospho-c-Jun and phospho-c-Jun N-terminal kinase-1/2 (JNK1/2) were higher in FG than in LG, indicating more JNK activation in fatty grafts. RNS formation and JNK activation were blunted by 1400W. Mitochondrial polarization and cell death were visualized by intravital multiphoton microscopy of rhodamine 123 and propidium iodide, respectively. After implantation, viable cells with depolarized mitochondria were 3-fold higher in FG than in LG and 1400W decreased mitochondrial depolarization in FG to the levels of LG. Taken together, iNOS is upregulated after transplantation of FG, leading to excessive RNS formation, JNK activation, mitochondrial dysfunction, and severe graft injury. The iNOS inhibitor 1400W could be an effective therapy for primary nonfunction of fatty liver grafts.  相似文献   

17.
Adenosine A1 receptor delayed preconditioning (PC) against myocardial infarction has been well described; however, there have been limited investigations of the signaling mechanisms that mediate this phenomenon. In addition, there are multiple conflicting reports on the role of inducible nitric oxide synthase (iNOS) in mediating A1 late-phase PC. The purpose of this study was to determine the roles of the p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases (MAPKs) in in vivo delayed A1 receptor PC and whether this protection at the myocyte level is due to upregulation of iNOS. Myocardial infarct size was measured in open-chest anesthetized rats 24 h after treatment with vehicle or the adenosine A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA; 100 microg/kg ip). Additional rats receiving CCPA were pretreated with the p38 inhibitor SB-203580 (1 mg/kg ip) or the MAPK/ERK kinase (MEK) inhibitor PD-098059 (0.5 mg/kg ip). At 24 h after CCPA administration, a group of animals was given the iNOS inhibitor 1400 W 10 min before ischemia. Treatment with CCPA reduced infarct size from 48 +/- 2 to 28 +/- 2% of the area at risk, an effect that was blocked by both SB-203580 and PD-098059 but not 1400 W. Ventricular myocytes isolated 24 h after CCPA injection exhibited significantly reduced oxidative stress during H2O2 exposure compared with myocytes from vehicle-injected animals, and this effect was not blocked by the iNOS inhibitor 1400 W. Western blot analysis of whole heart and cardiac myocyte protein samples revealed no expression of iNOS 6 or 24 h after CCPA treatment. These results indicate that adenosine A1 receptor delayed PC in rats is mediated by MAPK-dependent mechanisms, but this phenomenon is not associated with the early or late expression of iNOS.  相似文献   

18.
Recently the development of the cyclophosphamide (CP, 100 mg/kg/i.p.) model has added an important element to the study of neural activities accompanying cystitis genesis. CP cystitis genesis results in the dual activation of the pelvic and vagal sensory afferent systems, which in turn activate a supraspinal network comprising the ventrocaudal bulbar reticular formation (vcBRF), the sensory subdivisions of the dorsal vagal complex (DVC) and its subcortical telencephalic targets, the dorsolateral subdivision of the bed nucleus of the stria terminalis (BSTLd) and the nucleus centralis of the amygdala (CeL). Altogether these structures form the sensory neural axis of the CP cystitis. However, both clinical and experimental observations have given evidence that only the pelvic afferents are at the origin of the painful sensation and related behaviour. Because of this, and for a better understanding of the nervous network that subserves cystitis painful information, we sought to determine whether the structures that constitute the cystitis sensory neural pathway have the same reactivity depending on the origin of the sensory afferent inputs, either pelvic or vagal. Using c-fos expression, which permits quantitative analysis of neural activity, we have demonstrated that the supraspinal CP cystitis responding structures do not form an homogeneous population in terms of sources of inputs. Although all structures are predominantly driven by vagal inputs, only the vcBRF, the DVC and the BSTLd respond to pelvic inputs. Consequently, and by referring to clinical observations, we have concluded that, it is these three areas, excluding the CeL, which constitute the main framework of the supraspinal pain sensory neural pathway of CP-induced cystitis. The activation of the vagus nerve would more probably relate to the other side effects that accompany CP injections such as nausea and headache attacks.  相似文献   

19.
Long-term ketamine abuse is known to affect the lower urinary tract and produce symptoms of cystitis. However, the pathophysiology and causative mechanism of the changes in bladder function remain unclear. The present study aimed to investigate the existence of ketamine-induced cystitis in a rat model and characterize the underlining mechanisms. Rats were assigned to blank control, normal saline (NS), low-dose ketamine (LK, 5 mg/kg), and high-dose ketamine (HK, 50 mg/kg) groups. The two experimental groups received ketamine hydrochloride daily for 16 weeks. All rats were housed individually for assessment of urinary frequency and urine volume. Urinary biomarkers were measured at different time points. Rat bladders were excised for histopathology, immunohistochemistry, and western blot analysis. Ketamine-treated rats had increased urinary frequency compared to NS-treated rats at Week 16. Urinary nitric oxide and antiproliferative factor levels were increased in ketamine-treated rats within the first 30 h after administration. After long-term ketamine administration, urinary glycoprotein GP51 and potassium levels were decreased in the HK and LK groups compared to the NS group. Ketamine-treated rats showed thickened bladder epithelial layer, increased expression of inducible nitric oxide synthase and occludin, and decreased expression of zonula occludens-1 in the bladder wall. Ketamine, or its urinary metabolites, disrupted the proliferation of bladder epithelial cells, resulting in defected bladder epithelial barrier. Subsequent leakage of urinary potassium causes a stress response in the bladder and provokes cystitis.  相似文献   

20.
Cyclophosphamide (CP)-induced cystitis is often used as an animal model of visceral pain. Various neuropeptides in the hypothalamic and amygdaloid nuclei are implicated in pain-induced responses. However, little information is available regarding the regulation of the neuropeptides in response to visceral pain. In the present study, we examined the effects of CP-induced cystitis on the levels of mRNAs encoding galanin, corticotropin-releasing hormone (CRH), substance P, and enkephalins in the hypothalamic and limbic nuclei using in situ hybridization histochemistry in mouse. Galanin mRNA levels in CP-treated group increased significantly in the arcuate nucleus and the paraventricular nucleus (PVN) but not in the medial preoptic area after the intraperitoneal administration of CP (200 mg/kg body weight) in comparison to those in saline-treated group. CRH mRNA levels in CP-treated group also increased significantly in the central amygdala as well as the PVN after the CP administration. In contrast, CP-induced cystitis failed to upregulate the preprotachykinin-A and preproenkephalin genes which encode substance P and enkephalins, respectively in the hypothalamic and limbic nuclei at any of the time points examined. These results suggest that visceral nociception may upregulate both galanin and CRH gene expression in the hypothalamic and limbic nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号