首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spores ofPteris dispar andP. semipinnata were aseptically cultured in flasks for apogamous sporophyte induction. Calli or cell colonies similar to calli were induced in cultures supplemented with hormones. Sporophytic leaves subsequently developed from them in hormone-free medium and the young sporophytes were raised into plants with sporangia. Since the wild-type plants having 116 chromosomes are tetraploid, the sporophytic plants originating from spores would appear to be diploid (dihaploid). In induced sporophytes ofP. semipinnata, non-homologous chromosomes (58 univalents) were found during the meiotic process in sporocytes. InP. dispar, however, the meiotic cells showed many bivalent chromosomes (maximum 29ll). These results suggest thatP. semipinnata is allotetraploid, whereasP. dispar is autotetraploid.  相似文献   

2.
In meiosis of basal land plants, meiotic division planes are typically predicted by quadri-lobing of the cytoplasm and/or quadri-partitioning of plastids prior to nuclear divisions. However, sporocytes of several marchantialean liverworts display no indication of premeiotic establishment of quadripolarity, as is observed in flowering plants. In these cases, the shape of sporocytes remains spherical or elliptical and numerous plastids are distributed randomly in the cytoplasm during meiosis. Through a survey of sporocyte morphology in marchantialean liverworts, we newly report the occurrence of apolar sporocytes in Sauteria japonica and Athalamia nana (Cleveaceae; Marchantiales). Molecular phylogenetic analyses revealed that the quadri-lobing of cytoplasm and quadri-partitioning of plastids were lost independently several times during the evolution of marchantialean liverworts. In addition, our phylogenetic analyses indicate that the simplified sporophytes of several marchantialean liverworts are not a primitive condition but rather represent the result of reductive evolution. The loss of the quadripolarity of sporocytes appears to correlate with the evolutionary trend of the sporophyte towards reductions. Through the evolution of the simplified sporophytes, suppression of mitotic divisions of sporogenous cells might had caused not only the modification of sporophyte ontogeny but also the drastic cytological change of sporocyte.  相似文献   

3.
It appears that the tapetum is universally present in land plants, even though it is sometimes difficult to recognize, because it serves mostly as a tissue for meiocyte/spore nutrition. In addition to this main function, the tapetum has other functions, namely the production of the locular fluid, the production and release of callase, the conveying of P.A.S. positive material towards the loculus, the formation of exine precursors, viscin threads and orbicules (= Ubisch bodies), the production of sporophytic proteins and enzymes, and of pollenkitt/tryphine. Not all these functions are present in all land plants:Embryophyta. Two main tapetal types are usually distinguished in theSpermatophyta: the secretory or parietal type and the amoeboid or periplasmodial type; in lower groups, however, other types may be recognized, with greater or lesser differences. A hypothetical phylogenesis of the tapetum is proposed on the basis of its morphological appearance and of the nutritional relations with meiocytes/spores. The evolutionary trends of the tapeta tend towards a more and more intimate and increasingly greater contact with the spores/pollen grains. Three evolutionary trends can be recognized: 1) an intrusion of the tapetal cells between the spores, 2) a loss of tapetal cell walls, and 3) increasing nutrition through direct contact in narrow anthers.  相似文献   

4.
Anther contents of plants expressing the cytoplasm-gene interaction that results in anther indehiscence were studied under the light microscope. Plants could be classified in four groups on the basis of anther content: (1) A blockage resulted from cessation of development principally during the stages of meiosis of apparently normal sporocytes. This produced anthers in open flowers that usually contained monads or dyads. (2) Disorganization of sporocytes during first meiotic prophase resulted in irregularity of disjunction during the two meiotic divisions. Sporocytes produced quartet-stage clumps having more than four cells. Microspores failed to grow beyond early stages of exine development. (3) Abnormal small pollen having a very thick exine. (4) Normal pollen present in anthers that lacked terminal pores. The variety of anther content types resulted from presence of modifying genes rather than from differing actions of genes that conditioned indehiscence itself. Expression was not modified by environmental fluctuations, and plants did not show chimeral sectors having changed anther contents or dehiscent anthers.  相似文献   

5.
In Mimulus guttatus, copper tolerance is determined largely by a single gene and is expressed in both the sporophyte and microgametophyte. This study explores the extent to which selection during pollen formation affects copper tolerance in the sporophytic generation. Two sets of plants heterozygous for copper tolerance, produced by reciprocal crosses between different copper-tolerant or sensitive families, and the plant on which the original observations were based, were cloned and grown in control or copper-supplemented solutions. Pollen viability and the number of tolerant progeny produced in backcrosses to sensitive plants were compared. In addition, the effect of copper treatment on pollen viability in vitro was compared for plants tolerant, sensitive and heterozygous for copper tolerance. The extent to which in vitro pollen viability decreased in response to copper treatment corresponded to the copper tolerance of the pollen source. When grown with added copper, four of the five plants showed significant reductions in pollen viability, ranging from 18% to 48% of control values. The reductions in pollen viability were correlated with an increase in tolerant progeny (r= 0.679, p=0.004). Increases in tolerant progeny could be large, ranging from 119% to 170% of that of controls, but were usually smaller than was predicted from the reductions in viable pollen. In addition, plants derived from reciprocal crosses differed significantly in the extent to which pollen viability was decreased and sporophytic tolerance increased. Thus, while selection during pollen formation could increase sporophytic tolerance, sporophytic factors, perhaps including cytoplasmic or epigenetic ones, moderated the effectiveness of pollen selection for copper tolerance.  相似文献   

6.
Spores of Equisetum arvense were cultured in Murashige and Skoog liquid medium with or without cytokinin. Without cytokinin, spores germinated 2–3 days after sowing and developed into normal young gametophytes. These gametophytes were composed of well-vacuolated cells. On the other hand, germinated spores in the medium with cytokinin formed globular cell masses that were composed of small and dense cells. These cell masses developed into sporophytic plants after further culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Summary The exploitation of wild perennial species of subgenus Glycine has been formidable in soybean breeding programs because of extremely poor crossability and an early pod abortion. The combination of gibberellic acid application to hybridized gynoecia and improved seed culture media formulations resulted in a new intersubgeneric hybrid between Glycine max (L.) Merr. (2n=40) and G. clandestina Wendt. (2n=40). Of the 31 immature seeds cultured, 1 regenerated 21 plants through organogenesis while the remaining 30 failed to germinate. All the regenerated plants were similar morphologically, carried expected 2n=40, possessed hybrid isozyme patterns and were completely sterile. Complete absence of chromosome pairing was observed in 40.9% sporocytes. The occurrence of 1 to 6 loosely paired rod bivalents suggests some possibilities of allosyndetic pairing. Hybrid plants set aborted pods after backcrossing to G. max.  相似文献   

8.
Indirect immunofluorescence and confocal microscopy were used to study the nucleation and organization of microtubules during meiosis in two species of leafy liverworts, Cephalozia macrostachya and Telaranea longifolia. This is the first such study of sporogenesis in the largest group of liverworts important as living representatives of some of the first land plant lineages. These studies show that cytoplasmic quadrilobing of pre-meiotic sporocytes into future spore domains is initiated by girdling bands of γ-tubulin and microtubules similar to those recently described in lobed sporocytes of simple thalloid liverworts. However, spindle ontogeny is not like other liverworts studied and is, in fact, probably unique among bryophytes. Following the establishment of quadrilobing, numerous microtubules diverge from the bands and extend into the enlarging lobes. The bands disappear and are replaced by microtubules that arise from γ-tubulin associated with the nuclear envelope. This microtubule system extends into the four lobes and is gradually reorganized into a quadripolar spindle, each half spindle consisting of a pair of poles straddling opposite cleavage furrows. Chromosomes move on this spindle to the polar cleavage furrows. The reniform daughter nuclei, each curved over a cleavage furrow, immediately enter second meiotic division with spindles now terminating in the lobes. Phragmoplasts that develop in the interzones among the haploid tetrad nuclei guide deposition of cell plates that join with the pre-meiotic furrows resulting in cleavage of the tetrad of spores. These observations document a significant variation in the innovative process of sporogenesis evolved in early land plants.  相似文献   

9.
The actin cytoskeleton (microfilaments, MFs) accompanies the tubulin cytoskeleton (microtubules) during the meiotic division of the cell, but knowledge about the scope of their physiological competence and cooperation is insufficient. To cast more light on this issue, we analysed the F-actin distribution during the meiotic division of the Psilotum nudum sporocytes. Unfixed sporangia of P. nudum were stained with rhodamine-phalloidin and 4′,6-diamidino-2-phenylindole dihydrochloride, and we monitored the changes in the actin cytoskeleton and nuclear chromatin throughout sporogenesis. We observed that the actin cytoskeleton in meiotically dividing cells is not only part of the kariokinetic spindle and phragmoplast but it also forms a well-developed network in the cytoplasm present in all phases of meiosis. Moreover, in telophase I F-actin filaments formed short-lived phragmoplast, which was adjacent to the plasma membrane, exactly at the site of future cell wall formation. Additionally, the meiocytes were pre-treated with cytochalasin-B at a concentration that causes damage to the MFs. This facilitated observation of the effect of selective MFs damage on the course of meiosis and sporogenesis of P. nudum. Changes were observed that occurred in the cytochalasin-treated cells: the daughter nuclei were located abnormally close to each other, there was no formation of the equatorial plate of organelles and, consequently, meiosis did not occur normally. It seems possible that, if the actin cytoskeleton only is damaged, regular cytokinesis will not occur and, hence, no viable spores will be produced.  相似文献   

10.
Summary Two lines of transgenic Nicotiana tabacum transformed to kanamycin resistance by means of a binary Agrobacterium vector containing a nos-npt gene were investigated over three generations. Southern hybridization and crossing analyses revealed that a single copy of T-DNA had integrated in each line and that the kanamycin resistance was regularly transmitted to the progeny as a monogenic dominant trait. Homozygous transgenic plants were fully fertile, morphologically normal and did not significantly differ from wild-type plants in the quantitative characters examined (plant height, flowering time). The two lines showed very low, but significantly different levels of meiotic instability: kanamycin-sensitive plants occurred among backcross progeny from homozygous transgenic plants with frequencies of 6/45,000 and 25/45,000, respectively. The sensitive plants arose independently of each other and thus resulted from meiotic rather than mitotic events. These findings demonstrate for the first time that integrated foreign genes can be transmitted to progeny with the high degree of meiotic stability required for commercial varieties of crop plants. They emphasize the importance of non-homologous integration and of avoiding co-integration of inactive gene copies for achieving meiotically stable transformants.  相似文献   

11.
Summary The cauliflower mosaic virus 35S (35S-CaMV) promoter, which is generally used as a constitutive promoter in plants, is known to be silent during microspore and pollen development. Here we analyzed whether the 35S-CaMV promoter fused to thegus (-glucuronidase) gene can be used as a marker for early sporophytic development in embryogenic microspore cultures of tobacco andBrassica napus. In microspore culture ofB. napus, the 35S-CaMV promoter remained off from the start of embryogenic culture up to the mid-cotyledonary embryo stage. 35S-CaMV promoter activity was only present in those microspores that initiated sporophytic development, but failed to enter embryogenic development. Similar results were also obtained with shed-microspore cultures of tobacco, in which rapid, direct embryogenesis takes place. In isolated-microspore cultures, in which embryogenesis is delayed, an intermitting period of sporophytic development was observed, characterized by extensive 35S-CaMV promoter activity. Therefore, the 35S-CaMV promoter discriminates between two classes of sporophytic development: it is activated in microspores which change fate from gametophytic into (temporarily) nonembryogenic sporophytic development, whereas the promoter is silent in sporophytic microspores that enter embryogenic development directly. This mirrors our observation that the 35S-CaMV promoter is also silent in young zygotic embryos.  相似文献   

12.
13.
Summary The course of meiosis in higher plants is controlled by a large number of genes, the function of which can be discerned by means of mutants showing any kind of meiotic anomaly. In general, there are three main groups of genes belonging to this system. The as-genes control the pairing behaviour of the homologous chromosomes, causing asynapsis in the mutated condition. The ds-genes are responsible for chiasma formation and chiasma frequency, causing desynapsis in the mutated condition. As- and ds-genes influence micro- and macrosporogenesis in a similar way but the ms-genes become effective only in microsporogenesis, resulting in a complete breakdown of meiosis at a stage specific for each gene of the group.In Pisum sativum, 58 mutants showing genetically conditioned meiotic anomalies have been cytogenetically analysed: 34 of them belong to the ds- and 7 to the as-group; one gene causes asynaptic as well as desynaptic effects; 13 genotypes are male sterile due to degeneration of the chromosomes; the remaining 3 genes cause less specific meiotic disturbances. The lethality of a mutant can be overcome by distinct environmental conditions but the mutant is sterile because of manifold meiotic anomalies.One gene in the Pisum genome controls the transition from the vegetative to the reproductive stage of the plants. Other genes influence the differentiation of the growing points in such a way that the sporogenic tissues are not formed. In these mutants, no sporocytes are present which can undergo meiosis.From the findings available for many species of the plant kingdom, it can be assumed that hundreds of genes controlling meiosis are present in the genome of each higher plant.The investigations were supported by the Ministry of Research and Technology of the Federal Republic of Germany and by the European Atomic Community.  相似文献   

14.
Summary This study was conducted with the objective of determining the genomic relationship between cultivated soybean (Glycine max) and wild soybean (G. soja) of the subgenus Soja, genus Glycine. Observations on cross-ability rate, hybrid viability, meiotic chromosome pairing, and pollen fertility in F 1 hybrids of G. max × G. soja and reciprocals elucidated that both species hybridized readily and set mature putative hybrid pods, generated vigorous F1 plants, had a majority of sporocytes that showed 18II + 1IV chromosome association at diakinesis and metaphase I, and had a pollen fertility that ranged from 49.2% to 53.3%. A quadrivalent was often associated with the nucleolus, suggesting that one of the chromosomes involved in the interchange is a satellited chromosome. Thus, G. max and G. soja genetic stocks used in this study have been differentiated by a reciprocal translocation. Pachytene analysis of F1 hybrids helped construct chromosome maps based on chromosome length and euchromatin and heterochromatin distribution. Chromosomes were numbered in descending order of 1–20. Pachytene chromosomes in soybean showed heterochromatin distribution on either side of the centromeres. Pachytene analysis revealed small structural differences for chromosomes 6 and 11 which were not detected at diakinesis and metaphase I. This study suggests that G. max and G. soja carry similar genomes and validates the previously assigned genome symbol GG.Research supported in part by the Illinois Agricultural Experiment Station and U.S. Department of Agriculture Competitive Research Grant (85-CRCR-1-1616)  相似文献   

15.
We have isolated 37 radiation-sensitive mutants of the basidiomyceteCoprinus cinereus. Each mutation is recessive, and the collection defines at least ten complementation groups for survival of gamma irradiation. Four complementation groups define the genesrad3, rad9, rad11 andrad12, which are required both for survival of gamma irradiation and for meiosis. Mutants in each of these four groups fail to complete meiosis and produce mushrooms with greatly reduced numbers of viable spores. Propidium iodide staining of meiotic nuclei showed a characteristic terminal appearance for each mutant: few cells of any of the meiotic mutants progress beyond prophase I, and both condensation and fragmentation or dispersal of meiotic chromatin are frequently observed. Scanning electron micrographs showed that the meiotic mutants make varying numbers (0–6) of basidiospore initials and that few of these initials develop into mature spores. When initials are present they are always symmetrically arrayed on the basidium, regardless of initial number. In quantitative measurements of gamma ray sensitivity, double mutants of every tested combination ofrad3, rad9, rad11 andrad12 consistently showed the same gamma ray sensitivity as the more sensitive single mutant parent of the cross. Therefore, these four genes are in the same pathway for the repair of gamma radiation damage, and this pathway also represents one or more functions essential for meiosis.  相似文献   

16.
Highly fertile F1 hybrids were made between Triticum turgidum L. ssp. turgidum (2n = 28, AABB) and Aegilops tauschii Coss. (2n = 14, DD) without embryo rescue and hormone treatment. The F1 plants had an average seed set of 25%. Approximately 96% of the F2 seeds were able to germinate normally and about 67% of the F2 plants were spontaneous amphidiploid (2n = 42, AABBDD). Cytological analysis of male gametogenesis of the F1 plants showed that meiotic restitution is responsible for the high fertility. A mitosis-like meiosis led to meiotic restitution at either of the two meiotic divisions resulting in unreduced gametes. Test crosses of the T. t. turgidumAe. tauschii amphidiploid with Ae. variabilis and rye suggested that the mitosis-like meiosis is controlled by one or more nuclear genes that continue to function in derived lines. This discovery indicates a potential application of such genes in producing double haploids.  相似文献   

17.
A plant with 2n = 14 + 1 ring chromosomes was obtained in the progeny of a primary trisomie for chromosome 7 of a two-rowed cultivar, Shin Ebisu 16. The morphological characteristics of the trisomic plants with an extra ring chromosome were similar to the primary trisomic for chromosome 7 (Semierect), which suggests that it originated from this chromosome. The ring chromosomes were not completely stable in mitotic cells because of abnormal behavior. Chromosome complements varied in different plants and in different roots within a plant. Root tip cells and spikes with 2n = 14 and 14 + 2 ring chromosomes were observed on plants with 14 + 1 ring chromosomes. Breakage-fusion-bridge cycle was inferred. The ring chromosome was associated with two normal homologues forming a trivalent in 17.6% sporocytes at metaphase I. The transmission of the extra ring chromosome was 23.1% in the progeny of the plant with 14 + 1 ring chromosomes. Trivalent formation may have been much higher at early prophase stages which were difficult to analyze in barley; only 4 of 120 sporocytes analyzed showed an isolated ring at pachytene. The ring chromosome moved to one pole without separation in 24.7% of the sporocytes at AI, and divided in 27.1% sporocytes giving rise to 8-8 separation. Only 10% of the sporocytes showed bridge formation at AI.  相似文献   

18.
Brown RC  Lemmon BE 《Protoplasma》2006,227(2-4):77-85
Summary. Meiosis in Aneura pinguis is preceded by extensive cytoplasmic preparation for quadripartitioning of the diploid sporocyte into a tetrad of haploid spores. In early prophase the four future spore domains are defined by lobing of the cytoplasm and development of a quadripolar prophase spindle focused at polar organizers (POs) centered in the lobes. Cells entering the reproductive phase become isolated and, instead of hooplike cortical microtubules, have endoplasmic microtubule systems centered on POs. These archesporial cells proliferate by mitosis before entering meiosis. In prophase of each mitosis, POs containing a distinct concentration of γ-tubulin appear de novo at tips of nuclei and initiate the bipolar spindle. Cells entering meiosis become transformed into quadrilobed sporocytes with four POs, one in each lobe. This transition is a complex process encompassing assembly of two opposite POs which subsequently disperse into intersecting bands of microtubules that form around the central nucleus. The girdling bands define the future planes of cytokinesis and the cytoplasm protrudes through the restrictive bands becoming quadrilobed. Two large POs reappear in opposite cleavage furrows. Each divides and the resulting POs migrate into the tetrahedral lobes of cytoplasm. Cones of microtubules emanating from the four POs interact to form a quadripolar microtubule system (QMS) that surrounds the nucleus in meiotic prophase. The QMS is subsequently transformed into a functionally bipolar metaphase spindle by migration of poles in pairs to opposite cleavage furrows. These findings contribute to knowledge of microtubule organization and the role of microtubules in spatial regulation of cytokinesis in plants. Correspondence and reprints: Department of Biology, University of Louisiana-Lafayette, Lafayette, LA 70504-2451, U.S.A.  相似文献   

19.
The quadripolar microtubule system (QMS) is a complex array that is associated with predivision establishment of quadripolarity in sporocytes of lower plants (bryophytes and lycopsids). The QMS unerringly predicts the polarity of the two meiotic divisions and plays a central role in development of both the mitotic apparatus (MA) and cytokinetic apparatus (CA) which together accomplish quadripartitioning of the sporocyte into four haploid spores. The QMS is typically, but not exclusively, associated with monoplastidy and precocious quadrilobing of the cytoplasm. In early meiotic prophase the single plastid divides and the resultant plastids migrate so that either the tips of two plastids or the four plastids resulting from a second division are located in the future spore domains. Microtubules that emanate from the plastid tips or from individual plastids in the spore domains interact in the future planes of cytokinesis and give rise to the QMS. The QMS, which encages the prophase nucleus, consists of at least four and usually six (when spore domains are in tetrahedral arrangement) bipolar spindle-like arrays of microtubules presumably with minus ends at plastids in spore domains and plus ends interacting in the future plane of cytokinesis. Each of the six arrays is essentially like the single axial microtubule system (AMS) that intersects the division site and is transformed into the spindle in monoplastidic mitosis in hornworts. As comparative data accumulate, it appears that the AMS is not unique to monoplastidic cell division but instead represents a basic microtubule arrangement that survives as spindle and phragmoplast in cell division of higher plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号