首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The salivary gland of Periplaneta americana (L.) is innervated from both the stomatogastric nervous system (SNS) and subesophageal ganglion (SEG). Methylene-blue preparations, histological sections and electron microscopy revealed a pair of nerves from the SEG, each of which contains two axons 5–7 μ in diameter, and these are accompanied by several smaller ones. The nerves going to the salivary glands from the SNS contain a dozen or more axons, each less than 2 μ thick. Axons from two sources innervate the efferent salivary ducts, the acini, the anterior ends of the salivary reservoirs, and the reservoir suspensory muscles. A nerve which has reached an acinus forms a plexus upon its surface. Electron micrographs disclose penetration of axons with or without glial wrappings, into the intercellular spaces between gland cells. Axons without glial wrappings have been observed in intimate contact with gland-cell membranes, and several areas which resemble synaptic junctions have been seen.  相似文献   

2.
Nitric oxide has been implicated in mechanisms mediating nerve-evoked vasodilatory and secretory responses in salivary glands. In the present study, the occurrence and distribution of nitric oxide synthase (NOS)-immunoreactive nerves in ferret and rat salivary glands were investigated using immunocytochemistry with rabbit and sheep NOS antisera, and using NADPH-diaphorase enzyme histochemistry. In the parotid, submandibular and sublingual glands of the rat and the ferret, NOS-immunoreactive varicose terminals encircled acini and arteries of various sizes. In the ferret, collecting ducts were also supplied with NOS-immunoreactive fibres. In the rat, only the granular ducts of the submandibular gland were supplied with such fibres. The NOS-immunoreactive innervation of acinar cells was more abundant in the rat than in the ferret, whereas the opposite was true for the innervation of blood vessels. No NOS immunoreactivity was observed in the vascular endothelium. In both species, NOS-positive ganglionic cell bodies were found in the hilar regions of the submandibular and sublingual glands, whereas none could be detected in the parotid glands. NADPH-diaphorase reactivity had the same neuronal distribution as NOS immunoreactivity and, in addition, NADPH-diaphorase reactivity was expressed in ductal epithelium. Neither sympathetic denervation (by removal of the superior cervical ganglion) nor treatment with the sensory neurotoxin capsaicin reduced the NOS-immunoreactive innervation of the parotid gland. However, parasympathetic denervation (by cutting the auriculo-temporal nerve) caused an almost total disappearance of the NOS-immunoreactive innervation. The present findings provide a morphological background to the suggested role of nitric oxide in parasympathetic secretory and vascular responses of salivary glands. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
Summary Actin and myosin were localized in various salivary glands (parotid, submandibular, sublingual, lingual and Harderian gland) and the exocrine pancreas of rats by indirect immunofluorescence microscopy using specific rabbit antibodies against chicken gizzard myosin and actin. A bright immunofluorescent staining with both antibodies was observed at three main sites: (1) In myoepithelial cells of all salivary glands, (2) in secretory gland cells underneath the cell membrane bordering the acinar lumen (except Harderian and mucous lingual gland), and (3) in epithelial cells of the various secretory ducts (of all glands) in similar distribution as in acinar cells. The present immunohistochemical findings in acinar cells could lend further support to a concept suggesting that myosin and actin are involved in the process of transport and exocytosis of secretory granules.Supported by grants form Deutsche Forschungsgemeinschaft (Dr. 91/1, Ste. 105/19 and U. 34/4). We thank Mrs. Ursula König, Mrs. Christine Mahlmeister and Miss Renate Steffens for excellent technical assistance.  相似文献   

4.
The organization of the salivary glands in ad libitum-fed adult females of the microtrombidiid mite Platytrombidium fasciatum (C. L. Koch, 1836) was observed using transmission electron microscopy. In all, four pairs of large simple alveolar salivary glands were determined, which have been named due to their position as posterior, ventral, medial and dorsal. These glands occupy a body cavity behind, around the base and partly inside the gnathosoma. The posterior glands are largest and possess large nuclei with greatly folded nuclear envelope. Secretory granules are electron-light, containing fine granular material and are partly provided with various lamellar inclusions inside the granules. The latter tend to be placed predominantly in the middle parts of the gland around the central (intra-alveolar) cavity. The remaining glands, conversely, are typically filled with tightly packed electron-dense secretory granules, except for the ventral glands, the granules of which may show a compound organization. The nuclei of all these glands occupy a peripheral position and are mostly pressed between the granules. No prominent endoplasmic reticulum or conspicuous Golgi bodies were observed within the salivary glands. The salivary glands are provided with a complex apparatus of the intra-alveolar cavity (acinar lumen) with the excretory duct base provided by a system of branched special cells producing the duct walls. The ventral glands open by separate ducts into the most posterior part of the subcheliceral space. Ducts of the posterior glands immediately fuse with the ducts of the tubular (coxal) glands. The common duct of each side of the body joins with the ducts of the medial and dorsal glands respectively, and opens into the subcheliceral space far anterior to that of the ventral glands.  相似文献   

5.
Summary The adrenergic innervation of the major salivary glands in the rat has been studied by a specific histochemical method for the visualization of the adrenergic transmitter. Adrenergic varicose nerve fibres were found, located in a typical adrenergic ground plexus closely surrounding the serous acini of the submaxillary and parotid glands, but not the acini of the mainly mucous sublingual gland. The ducts were found to be completely devoid of adrenergic innervation. Arterioles and venules in the stroma of all three glands and certain very small vessels, possibly the sphincters of arterio-venous anastomoses, were also richly innervated by adrenergic vasomotor fibres. The relationship of the adrenergic nerve fibres to the different functional units of the gland parenchyma is discussed.The investigation has been supported by a research grant (B 66–257) from the Swedish Medical Research Council and by a Public Health Service Research Grant (NB 05236-01) from the National Institute of Neurological Diseases and Blindness.  相似文献   

6.
The acinar salivary glands of cockroaches receive a dual innervation from the subesophageal ganglion and the stomatogastric nervous system. Acinar cells are surrounded by a plexus of dopaminergic and serotonergic varicose fibers. In addition, serotonergic terminals lie deep in the extracellular spaces between acinar cells. Excitation-secretion coupling in cockroach salivary glands is stimulated by both dopamine and serotonin. These monoamines cause increases in the intracellular concentrations of cAMP and Ca(2+). Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, two elementary secretory processes, namely electrolyte/water secretion and protein secretion, are triggered by different aminergic transmitters. Because of its simplicity and experimental accessibility, cockroach salivary glands have been used extensively as a model system to study the cellular actions of biogenic amines and to examine the pharmacological properties of biogenic amine receptors. In this review, we summarize current knowledge concerning the aminergic control of cockroach salivary glands and discuss our efforts to characterize Periplaneta biogenic amine receptors molecularly.  相似文献   

7.
1. Using the Falck-Hillarp histochemical technique for monoamines, evidence was found for the presence of a catecholamine in the salivary gland nerves of the moth, Manduca sexta. 2. The innervation was studied with the electron microscope. Only the fluid-secreting region of the gland is innervated and the nerve endings are characteristic of monoamine-containing terminals. 3. Using a sensitive enzymatic-isotopic assay for catecholamines, it was found that whole salivary glands contain 0.33 mug/g dopamine but no noradrenaline. 4. It seems likely that dopamine mediates fluid-secretion in the salivary gland of Manduca as it does a number of other arthropods.  相似文献   

8.
The distribution of the three nitric oxide synthase (NOS) isoforms was determined immunohistochemically in the human minor and major salivary glands with comparison to that of rat salivary glands. In contrast to rat glands, which contained a dense plexus of neuronal NOS-immunoreactive nerve fibers, only a minority of the nerve fibers in human glands showed neuronal NOS immunoreactivity. Human labial and submandibular glands contained sparse NOS-immunoreactive fibers, while only occasional nerve fibers in the parotid or sublingual glands were stained. Furthermore, in contrast to the animal glands, most duct epithelial cells in all human salivary glands were immunoreactive for neuronal NOS. No specific immunoreactivity for inducible or endothelial NOS were observed in the nerve fibers or duct epithelium. We provide evidence to suggest that the role of nitric oxide in the regulation of salivary gland function is different in human as compared to experimental animals. Nitricergic innervation in human tissue is very sparse and thus nitric oxide is probably of minor importance as a neural regulator of salivary glands. Instead, NOS localized in duct epithelial cells suggests that nitric oxide might directly regulate saliva secretion and it is a putative source of nitrates previously reportedly secreted into the saliva.  相似文献   

9.
Tick salivary glands are important organs that enable the hematophagous feeding of the tick. We previously described the innervation of the salivary gland acini types II and III by a pair of protocerebral salivary gland neurons that produce both myoinhibitory peptide (MIP) and SIFamide (?imo et al., 2009b). In this study we identified authentic receptors expressed in the salivary glands for these neuropeptides. Homology-based searches for these receptors in the Ixodes scapularis genome sequence were followed by gene cloning and functional expression of the receptors. Both receptors were activated by low nanomolar concentrations of their respective ligands. The temporal expression patterns of the two ligands and their respective receptors suggest that the SIFamide signaling system pre-exists in unfed salivary glands, while the MIP system is activated upon initiation of feeding. Immunoreactivity for the SIFamide receptor in the salivary gland was detected in acini types II and III, surrounding the acinar valve and extending to the basal region of the acinar lumen. The location of the SIFamide receptor in the salivary glands suggests three potential target cell types and their probable functions: myoepithelial cell that may function in the contraction of the acini and/or the control of the valve; large, basally located dopaminergic granular cells for regulation of paracrine dopamine; and neck cells that may be involved in the control of the acinar duct and its valve.  相似文献   

10.
Cockroaches have acinar salivary glands. The acini consist of peripheral cells specialized for electrolyte and water transport and central cells contributing proteinaceous components to the saliva. Salivary duct cells probably modify the primary saliva. The acinar cells in Nauphoeta cinerea had been shown to be electrically coupled and dye-coupled. Since intercellular communication via gap junctions between acinar cells is difficult to reconcile with previous findings that dopamine and serotonin selectively stimulate the secretion of either protein-free or protein-rich saliva in Periplaneta americana, we investigated whether dye-coupling occurs between both acinar cell types and between duct cells. We iontophoretically loaded Lucifer yellow into impaled cells and tested for dye-coupling by confocal laser scanning microscopy. We found that: (1) peripheral and central cells within an acinar lobulus of the gland in P. americana are dye-coupled; and (2) salivary duct cells are dye-coupled.  相似文献   

11.
The salivary glands of the cockroach, Nauphoeta cinerea (Olivier, 1789), are innervated and there is considerable evidence to suggest that dopamine is the neurotransmitter at the neuroglandular junction. As the gland is a bilaterally symmetrical structure it was possible to electrically stimulate the salivary nerve supplying the ipsilateral side of the gland whilst the contralateral side of the gland served as a convenient control. Saliva elicited from the glands by electrical stimulation of these nerves was collected and used to monitor the physiological state of the tissue. Glands were fixed for light and electron microscopy during secretion and it was observed that the ductules in peripheral acinar cells were distended in stimulated sides of the glands but not in contralateral unstimulated sides. This evidence implies that peripheral cells are responsible for the initiation of salivary fluid secretion. Changes were also observed in the catecholamine containing axons that innervate the glands. In stimulated axons a statistically significant reduction in numbers of small agranular vesicles was observed when compared with contralateral unstimulated controls and freshly fixed tissue. This was not the case with the larger granular vesicles of the same axons which showed no reduction in number as a result of stimulation. In addition it was also noted that the small agranular vesicles tended to aggregate and change their shapes in response to nerve stimulation. These results imply that the small agranular vesicles play a role in transmitter release.  相似文献   

12.
The mechanism of silk formation inApis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.  相似文献   

13.
Summary A comparative study was undertaken on the innervation of mucous and granular glands in frog skin. Results obtained by the Falck-Hillarp fluorescence technique and cholinesterase staining indicated that both types of glands receive exclusively adrenergic innervation. Electron microscopy was used to investigate the innervation pattern at the ultrastructural level. The distribution of nerve terminals was found to differ in the two types of glands. In the mucous gland, terminals were found at a distance of about 0.5 m from the basement membrane but never within the gland parenchyma. In the granular gland, the terminals were located between smooth muscle cells and also in direct contact with the secretory epithelium but never outside the basement membrane.This work was carried out in part at King Gustaf V:s Forskningsinstitut, Stockholm, and was supported by a grant from Karolinska Institutet  相似文献   

14.
Summary Electron microscopy of cat parotid glands revealed great heterogeneity in the secretory granules of normal unstimulated acinar cells. Electrical stimulation of the parasympathetic nerve to the gland evoked a copious flow of parotid saliva which was accompanied by an extensive depletion of the secretory granules from the acinar cells. Exocytosis was captured as it was occurring by means of perfusion-fixation, and showed that the events occur in a conventional manner. Stimulation of the sympathetic nerve caused only a very small flow of saliva, and no acinar degranulation was detected. It can be concluded that the parasympathetic secretomotor axons provide the main drive for parotid acinar degranulation in the cat. This contrasts with the rat in which sympathetic impulses provide the main stimulus for parotid acinar degranulation. These dissimilarities serve to emphasise how extensively species differences may influence autonomic responses in salivary glands.  相似文献   

15.
Although feline salivary glands have been used in investigations on secretion and microlithiasis and both processes involve calcium, nothing is known about its distribution in these glands. Therefore we have demonstrated the presence of calcium by a histochemical technique using glyoxal bis(2-hydroxyanil) and a biochemical technique using dry ashing. The histochemical technique stained serous acinar cells weakly and rarely found mucous acinar cells strongly in the parotid gland, mucous acinar cells moderately to strongly and serous acinar cells weakly in the sublingual gland, and central and demilunar acinar cells moderately to strongly in the submandibular gland. The biochemical technique revealed less calcium in the parotid than in the submandibular and sublingual glands. Both techniques revealed a decrease of calcium in submandibular and sublingual glands following parasympathetic stimulation. The histochemical distribution of calcium, which corresponds to that of acinar secretory glycoprotein, and the loss of calcium following parasympathetic stimulation, which causes release of secretory granules, indicate the presence of calcium in secretory granules. The concentration of calcium in the different types of acinar cell corresponds to the acidity of the secretory glycoprotein and suggests that calcium is present as a cationic shield to allow the condensation of polyionic glycoprotein in secretory granules.  相似文献   

16.
The fine structure of the salivary glands of adult Triatoma infestans (Hemiptera: Reduviidae) bugs has been analyzed. Stereomicroscopy and scanning electron microscopy showed that each insect presents a pair of salivary glands, each pair containing three distinct units (main, supplementary, and accessory) with different sizes and colors. Transmission electron microscopy demonstrated that all gland units consist of a monolayer of epithelial cells surrounding a large central lumen. The gland units are enveloped by a thick basal lamina containing bundles of muscle cells. Microvilli are present at the apical plasma membrane domain of the gland cells, thus enlarging the available membrane area for saliva secretion towards the large gland lumen, although occasionally budding vesicles could be observed among the microvilli. Cytochemical analysis showed that the salivary gland cells of T. infestans present abundant endoplasmic reticulum profiles and several lipid droplets.  相似文献   

17.
Innervation of the ultimobranchial glands in the chicken was investigated by immunohistochemistry, fluorescence microscopy and electron microscopy. The nerve fibers distributed in ultimobranchial glands were clearly visualized by immunoperoxidase staining with antiserum to neurofilament triplet proteins (200K-, 150K- and 68K-dalton) extracted from chicken peripheral nerves. The ultimobranchial glands received numerous nerve fibers originating from both the recurrent laryngeal nerves and direct vagal branches. The left and right sides of the ultimobranchial region were asymmetrical. The left ultimobranchial gland had intimate contact with the vagus nerve trunk, especially with the distal vagal ganglion, but was somewhat separated from the recurrent nerve. The right gland touched the recurrent nerve, the medial edge being frequently penetrated by the nerve, but the gland was separated from the vagal trunk. The left gland was innervated mainly by the branches from the distal vagal ganglion, whereas the right gland received mostly the branches from the recurrent nerve. The carotid body was located cranially near to the ultimobranchial gland. Large nerve bundles in the ultimobranchial gland ran toward and entered into the carotid body. By fluorescence microscopy, nerve fibers in ultimobranchial glands were observed associated with blood vessels. Only a few fluorescent nerve fibers were present in close proximity to C cell groups; the C cells of ultimobranchial glands may receive very few adrenergic sympathetic fibers. By electron microscopy, numerous axons ensheathed with Schwann cell cytoplasm were in close contact with the surfaces of C cells. In addition, naked axons regarded as axon terminals or "en passant" synapses came into direct contact with C cells. The morphology of these axon terminals and synaptic endings suggest that ultimobranchial C cells of chickens are supplied mainly with cholinergic efferent type fibers. In the region where large nerve bundles and complex ramifications of nerve fibers were present, Schwann cell perikarya investing the axons were closely juxtaposed with C cells; long cytoplasmic processes of Schwann cells encompassed large portions of the cell surface. All of these features suggest that C-cell activity, i.e., secretion of hormones and catecholamines, may be regulated by nerve stimuli.  相似文献   

18.
Anatomy and ultrastructure of prosomal salivary glands in the unfed water mite larvae Piona carnea (C.L. Koch, 1836) were examined using serial semi-thin sections and transmission electron microscopy. Three pairs of alveolar salivary glands shown are termed lateral, ventro-lateral and medial in accordance with their spatial position. These glands belong to the podocephalic system and are situated on the common salivary duct from back to forth in the above mentioned sequence. The arrangement of the medial glands is unusual because they are situated one after another on the medial (axial) body line, therefore they are termed anterior and posterior medial glands. The secretory duct of the anterior medial gland mostly turns right, and the duct of the posterior gland turns left. The salivary glands are located in the body cavity partly inside the gnathosoma and in the idiosoma in front of the brain (synganglion). Each gland is represented by a single acinus (alveolus) and is composed of several cone shaped secretory cells arranged around the large central (intra-acinar) cavity with the secretory duct base. The cells of all glands are filled with secretory vesicles of different electron density. The remaining cell volume is occupied by elements of rough endoplasmic reticulum, and the membrane enveloping vesicles may have ribosomes on its external surface. Large nuclei provided with large nucleoli occupy the basal cell zones. The pronounced development of the prosomal salivary glands indicates their important role in extra-oral digestion of water mite larvae.  相似文献   

19.
Membrane potentials (MP) of different cell types of submaxillary glands were studied on rats with intact innervation and after preliminary sympathectomy at varying stages of experimental staphylococcal sialadenitis (2 and 24 h). Two hours and especially 24 hours after priming the rats with intact innervation manifested an abrupt fall in the MP in acinar and ductal cells. Two hours after administration of staphylococcus toxin the MP of salivary gland cells in sympathectomized rats did not differ from normal. Following 24 hours there were far less changes in the MP as compared to those in poisoned rats with intact innervation of the salivary glands.  相似文献   

20.
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) are membrane-bound ectoenzymes that hydrolyze extracellular nucleotides. We investigated the distribution of NTPDase1 and NTPDase2 in murine salivary gland and pancreas. Histochemistry and immunostaining (by both light and electron microscopy), combined with functional assays, were used to describe the localization patterns and enzyme activities in the organs of wild-type and NTPDase1/cd39-null mice. Pancreatic acinar cells and salivary gland acinar/myoepithelial cells were positive for NTPDase1 and NTPDase2. Ecto-ATPase activity was slightly higher in salivary glands. Ductal epithelial cells expressed ecto-ATPase activity but NTPDase1 and NTPDase2 expression were weak at best. ATPase activity was found in blood vessels of both tissues and its localization pattern overlapped with NTPDase1 staining. In these structures, NTPDase2 antibodies stained the basolateral aspect of endothelial cells and the supporting cells. Biochemical assays and histochemical staining showed relatively high levels of ATPase activity in both glands of cd39(-/-) mice. Our data therefore support a physiological role for NTPDase2 and other ectonucleotidases in the pancreas and salivary glands. Because NTPDase1 is expressed in non-vascular cell types, this finding suggests that NTPDase1 may have functions in the gastrointestinal tract that differ from those demonstrated in the vascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号