首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial inner membrane contains a large number of polytopic proteins that are derived from prokaryotic ancestors of mitochondria. Little is known about the intramitochondrial sorting of these proteins. We chose two proteins of known topology as examples to study the pathway of insertion into the inner membrane; Mrs2 and Yta10 are bitopic proteins that expose negatively charged loops of different complexity into the intermembrane space. Here we show that both Mrs2 and Yta10 transiently accumulate as sorting intermediates in the matrix before they integrate into the inner membrane. The sorting pathway of both proteins can be separated into two sequential reactions: (i) import into the matrix and (ii) insertion from the matrix into the inner membrane. The latter process was found to depend on the membrane potential and, in this respect, is similar to the insertion of membrane proteins in bacteria. A comparison of the charge distribution of intermembrane space loops in a variety of mitochondrial inner membrane proteins suggests that this mode of "conservative sorting" might be the typical insertion route for polytopic inner membrane proteins that originated from bacterial ancestors.  相似文献   

2.
Ubiquitination functions as a sorting signal for lysosomal degradation of cell-surface proteins by facilitating their internalization from the plasma membrane and incorporation into lumenal vesicles of multivesicular bodies (MVBs). Ubiquitin may also mediate sorting of proteins from the trans-Golgi network (TGN) to the endosome, thereby preventing their appearance on the cell surface and hastening their degradation in the lysosome-vacuole. Substantiation of a direct ubiquitin-dependent TGN sorting pathway relies in part on identifying candidate machinery that may function as a ubiquitin-sorting 'receptor'at the TGN. Members of the GGA family of coat proteins localize to the TGN and promote the incorporation of proteins into clathrin-coated vesicles destined for transport to endosomes. We show that the GGA coat proteins bind directly to ubiquitin through their GAT domain and demonstrate that this interaction is required for the ubiquitin-dependent sorting of the Gap1 amino acid transporter from the TGN to endosomes. Thus, GGA proteins fulfill the role of ubiquitin sorting receptors at the TGN.  相似文献   

3.
Degradation of various membrane proteins in the lumen of the vacuole/lysosome requires their prior sorting into the multivesicular body (MVB) pathway. In this process, ubiquitin serves as a sorting signal for most cargoes. The yeast ubiquitin hydrolase Doa4 acts late in the MVB pathway. It's role is to catalyze deubiquitination of cargo proteins prior to their sorting into the endosomal vesicles. This step rescues ubiquitin from degradation in the vacuole/lysosome, enabling it to be recycled. Accordingly, the level of monomeric ubiquitin is typically reduced in doa4 mutants. Although MVB sorting of cargo proteins is also impaired in doa4 mutants, the question of whether this defect is due solely to Doa4's role in maintaining a normal pool of ubiquitin in the cell remains open. We here show that the requirement of Doa4 for correct MVB sorting of the endocytic cargo general amino acid permease and of the biosynthetic cargo carboxypeptidase S are not because of the role of Doa4 in ubiquitin recycling. This suggests a direct role of Doa4 in MVB sorting and we show that this role depends on Doa4's catalytic activity. We propose that deubiquitination by Doa4 of cargo proteins and/or some components of the MVB sorting machinery is essential to correct sorting of cargoes into the MVB pathway.  相似文献   

4.
Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles.  相似文献   

5.
The sorting of transmembrane cargo proteins into the lumenal vesicles of multivesicular bodies (MVBs) depends on the recruitment of endosomal sorting complexes required for transport (ESCRTs) to the cytosolic face of endosomal membranes. The subsequent dissociation of ESCRT complexes from endosomes requires Vps4, a member of the AAA family of adenosine triphosphatases. We show that Did2 directs Vps4 activity to the dissociation of ESCRT-III but has no role in the dissociation of ESCRT-I or -II. Surprisingly, vesicle budding into the endosome lumen occurs in the absence of Did2 function even though Did2 is required for the efficient sorting of MVB cargo proteins into lumenal vesicles. This uncoupling of MVB cargo sorting and lumenal vesicle formation suggests that the Vps4-mediated dissociation of ESCRT-III is an essential step in the sorting of cargo proteins into MVB vesicles but is not a prerequisite for the budding of vesicles into the endosome lumen.  相似文献   

6.
Lysosomes are key regulators of many fundamental cellular processes such as metabolism, autophagy, immune response, cell signalling and plasma membrane repair. These highly dynamic organelles are composed of various membrane and soluble proteins, which are essential for their proper functioning. The soluble proteins include numerous proteases, glycosidases and other hydrolases, along with activators, required for catabolism. The correct sorting of soluble lysosomal proteins is crucial to ensure the proper functioning of lysosomes and is achieved through the coordinated effort of many sorting receptors, resident ER and Golgi proteins, and several cytosolic components. Mutations in a number of proteins involved in sorting soluble proteins to lysosomes result in human disease. These can range from rare diseases such as lysosome storage disorders, to more prevalent ones, such as Alzheimer’s disease, Parkinson’s disease and others, including rare neurodegenerative diseases that affect children. In this review, we discuss the mechanisms that regulate the sorting of soluble proteins to lysosomes and highlight the effects of mutations in this pathway that cause human disease. More precisely, we will review the route taken by soluble lysosomal proteins from their translation into the ER, their maturation along the Golgi apparatus, and sorting at the trans-Golgi network. We will also highlight the effects of mutations in this pathway that cause human disease.  相似文献   

7.
During endocytic transport, specific integral membrane proteins are sorted into intraluminal vesicles that bud from the limiting membrane of the endosome. This process, known as multivesicular body (MVB) sorting, is important for several important biological processes. Moreover, components of the MVB sorting machinery are implicated in virus budding. During MVB sorting, a cargo protein recruits components of the MVB sorting machinery from cytoplasmic pools and these sequentially assemble on the endosome. Disassembly of these proteins and recycling into the cytoplasm is critical for MVB sorting. Vacuolar protein sorting 4 (Vps4) is an AAA (ATPase associated with a variety of cellular activities) ATPase which has been proposed to play a critical role in disassembly of the MVB sorting machinery. However, the mechanism by which it disassembles the complex is not clear. Vps4 contains an N-terminal microtubule interacting and trafficking (MIT) domain, which has previously been shown to be required for recruitment to endosomes, and a single AAA ATPase domain, the activity of which is required for Vps4 function. In this study we have systematically characterized the interaction of Vps4 with other components of the MVB sorting machinery. We demonstrate that Vps4 interacts directly with Vps2 and Bro1. We also show that a subset of Vps4 interactions is regulated by ATP hydrolysis, and one interaction is regulated by ATP binding. Finally, we show that most proteins interact with the Vps4 MIT domain. Our studies indicate that the MIT domain has a dual role in substrate binding and recruitment to endosomes and indicate that Vps4 disassembles the MVB sorting machinery by direct effects on multiple proteins.  相似文献   

8.
The intracellular sorting of peptide hormone precursors to the dense core secretory granules (DCSGs) is essential for their bioactivation. Despite the fundamental importance of this cellular process, the nature of the sorting signals for entry of proteins into DCSGs remains a source of vigorous debate. This review highlights recent discoveries that are consistent with a model in which several protein domains, acting in a cell-specific fashion and at different steps in the sorting process, act in concert to regulate the entry of proteins into DCSGs.  相似文献   

9.
GPI-anchored proteins exit the ER in distinct vesicles from other secretory proteins, and this sorting event can be reproduced in vitro. When extracts from a uso1 mutant were used, the sorting of GPI-anchored proteins from other secretory proteins was defective. Complementation with purified Uso1p restored sorting. The Rab GTPase Ypt1p and the tethering factors Sec34p and Sec35p, but not Bet3p, a member of the TRAPP complex, were also required for protein sorting upon ER exit. Therefore, the Ypt1p tethering complex couples protein sorting in the ER to vesicle targeting to the Golgi apparatus. Sorting of GPI-anchored proteins from other secretory proteins was also observed in vivo. The sorting defect observed in vitro with uso1 and ypt1 mutants was reproduced in vivo.  相似文献   

10.
Transport of yeast alkaline phosphatase (ALP) to the vacuole depends on the clathrin adaptor-like complex AP-3, but does not depend on proteins necessary for transport through pre-vacuolar endosomes. We have identified ALP sequences that direct sorting into the AP-3-dependent pathway using chimeric proteins containing residues from the ALP cytoplasmic domain fused to sequences from a Golgi-localized membrane protein, guanosine diphosphatase (GDPase). The full-length ALP cytoplasmic domain, or ALP amino acids 1-16 separated from the transmembrane domain by a spacer, directed GDPase chimeric proteins from the Golgi complex to the vacuole via the AP-3 pathway. Mutation of residues Leu13 and Val14 within the ALP cytoplasmic domain prevented AP-3-dependent vacuolar transport of both chimeric proteins and full-length ALP. This Leucine-Valine (LV)-based sorting signal targeted chimeric proteins and native ALP to the vacuole in cells lacking clathrin function. These results identify an LV-based sorting signal in the ALP cytoplasmic domain that directs transport into a clathrin-independent, AP-3-dependent pathway to the vacuole. The similarity of the ALP sorting signal to mammalian dileucine sorting motifs, and the evolutionary conservation of AP-3 subunits, suggests that dileucine-like signals constitute a core element for AP-3-dependent transport to lysosomal compartments in all eukaryotic cells.  相似文献   

11.
In receptor-mediated sorting of soluble protein ligands in the endomembrane system of eukaryotic cells, three completely different receptor proteins for mammalian (mannose 6-phosphate receptor), yeast (Vps10p) and plant cells (vacuolar sorting receptor; VSR) have in common the features of pH-dependent ligand binding and receptor recycling. In striking contrast, the plant receptor homology-transmembrane-RING-H2 (RMR) proteins serve as sorting receptors to a separate type of vacuole, the protein storage vacuole, but do not recycle, and their trafficking pathway results in their internalization into the destination vacuole. Even though plant RMR proteins share high sequence similarity with the best-characterized mammalian PA-TM-RING family proteins, these two families of proteins appear to play distinctly different roles in plant and animal cells. Thus, this minireview focuses on this unique sorting mechanism and traffic of RMR proteins via dense vesicles in various plant cell types.  相似文献   

12.
In yeast, there are at least two vesicle populations upon ER (endoplasmic reticulum) exit, one containing Gap1p (general aminoacid permease) and a glycosylated alpha-factor, gpalphaF (glycosylated proalpha-factor), and the other containing GPI (glycosylphosphatidylinositol)-anchored proteins, Gas1p (glycophospholipid-anchored surface protein) and Yps1p. We attempted to identify sorting determinants for this protein sorting event in the ER. We found that mutant Gas1 proteins that lack a GPI anchor and/or S/T region (serine- and threonine-rich region), two common characteristic features conserved among yeast GPI-anchored proteins, were still sorted away from Gap1p-containing vesicles. Furthermore, a mutant glycosylated alpha-factor, gpalphaGPI, which contains both the GPI anchor and S/T region from Gas1p, still entered Gap1p-containing vesicles, demonstrating that these conserved characteristics do not prevent proteins from entering Gap1p-containing vesicles. gpalphaF showed severely reduced budding efficiency in the absence of its ER exit receptor Erv29p, and this residual budding product no longer entered Gap1p-containing vesicles. These results suggest that the interaction of gpalphaF with Erv29p is essential for sorting into Gap1p-containing vesicles. We compared the detergent solubility of Gas1p and the gpalphaGPI in the ER with that in ER-derived vesicles. Both GPI-anchored proteins similarly partitioned into the DRM (detergent-resistant membrane) in the ER. Based on the fact that they entered different ER-derived vesicles, we conclude that DRM partitioning of GPI-anchored proteins is not the dominant determinant of protein sorting upon ER exit. Interestingly, upon incorporation into the ER-derived vesicles, gpalphaGPI was no longer detergent-insoluble, in contrast with the persistent detergent insolubility of Gas1p in the ER-derived vesicles. We present different explanations for the different behaviours of GPI-anchored proteins in distinct ER-derived vesicle populations.  相似文献   

13.
The mechanism(s) underlying the sorting of integral membrane proteins between the Golgi complex and the plasma membrane remain uncertain because no specific Golgi retention signal has been found. Moreover one can alter a protein's eventual localization simply by altering the length of its transmembrane domain (TMD). M. S. Bretscher and S. Munro (SCIENCE: 261:1280-1281, 1993) therefore proposed a physical sorting mechanism based on the hydrophobic match between the proteins' TMD and the bilayer thickness, in which cholesterol would regulate protein sorting by increasing the lipid bilayer thickness. In this model, Golgi proteins with short TMDs would be excluded from cholesterol-enriched domains (lipid rafts) that are incorporated into transport vesicles destined for the plasma membrane. Although attractive, this model remains unproven. We therefore evaluated the energetic feasibility of a cholesterol-dependent sorting process using the theory of elastic liquid crystal deformations. We show that the distribution of proteins between cholesterol-enriched and cholesterol-poor bilayer domains can be regulated by cholesterol-induced changes in the bilayer physical properties. Changes in bilayer thickness per se, however, have only a modest effect on sorting; the major effect arises because cholesterol changes also the bilayer material properties, which augments the energetic penalty for incorporating short TMDs into cholesterol-enriched domains. We conclude that cholesterol-induced changes in the bilayer physical properties allow for effective and accurate sorting which will be important generally for protein partitioning between different membrane domains.  相似文献   

14.
Targeting proteins to their correct cellular location is crucial for their biological function. In neuroendocrine cells, proteins can be secreted by either the constitutive or the regulated secretory pathways but the mechanism(s) whereby proteins are sorted into either pathway is unclear. In this review we discuss the possibility that sorting is either an active process occurring at the level of the trans-Golgi network, or that sorting occurs passively in the immature granules, The possible involvement of protein-lipid interactions in the sorting process is also raised.  相似文献   

15.
Protein apical sorting in polarized epithelial cells is mediated by two different mechanisms, raft dependent and raft independent. In Madin-Darby canine kidney (MDCK) cells, an essential step for apical sorting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) is their coalescence into high-molecular-weight (HMW) oligomers. Here we show that this mechanism is also functional in Fischer rat thyroid cells, which possess a different sorting phenotype compared with MDCK cells. We demonstrate that, as in MDCK cells, both apical and basolateral GPI-APs associate with detergent-resistant microdomains, but that only the apical proteins are able to oligomerize into HMW complexes during their passage through the medial Golgi. We also show that oligomerization is a specific requirement for apical sorting of GPI-APs and is not used by transmembrane, non-raft-associated apical proteins.  相似文献   

16.
A growing number of yeast and mammalian plasma membrane proteins are reported to be modified with K63-linked ubiquitin (Ub) chains. However, the relative importance of this modification versus monoubiquitylation in endocytosis, Golgi to endosome traffic, and sorting into the multivesicular body (MVB) pathway remains unclear. In this study, we show that K63-linked ubiquitylation of the Gap1 permease is essential for its entry into the MVB pathway. Carboxypeptidase S also requires modification with a K63-Ub chain for correct MVB sorting. In contrast, monoubiquitylation of a single target lysine of Gap1 is a sufficient signal for its internalization from the cell surface, and Golgi to endosome transport of the permease requires neither its ubiquitylation nor the Ub-binding GAT (Gga and Tom1) domain of Gga (Golgi localizing, gamma-ear containing, ARF binding) adapter proteins, the latter being crucial for subsequent MVB sorting of the permease. Our data reveal that K63-linked Ub chains act as a specific signal for MVB sorting, providing further insight into the Ub code of membrane protein trafficking.  相似文献   

17.
The ESCRTs play multiple roles within the cell, including degradation of ubiquitinated membrane proteins by sorting them into multivesicular bodies (MVBs). Two recent studies provide structural and functional insights into how the newly identified ESCRT-I component UBAP1 dedicates ESCRT-I function for sorting ubiquitinated proteins at the MVB (Agromayor et?al., 2012 [this issue of Structure]; Stefani et?al., 2011).  相似文献   

18.
In developing pea cotyledons, storage proteins are sorted viadense vesicles into the protein storage vacuole. Formation ofthese unique transport vesicles is characterized by aggregationof their cargo proteins. Protein sorting into dense vesiclesis pH dependent. In order to gain insight into the molecularbasis of storage protein sorting, a membrane binding assay wasdeveloped which allows for a detailed biochemical analysis ofbinding events. Employing this assay it was possible to showthat storage proteins bind in a pH-dependent manner to the membranesof the secretory pathway with a pH optimum in the range of thelumenal pH of the Golgi cisternae. Through reconstitution experiments,it was possible to demonstrate further that this recruitmentoccurs via the interaction of peripheral rather than intrinsicmembrane proteins. Results of co-immunoprecipitation experimentspoint to interactions between different storage proteins inthe secretory system. These results are discussed in terms ofthe aggregation-mediated sorting of storage proteins into maturingdense vesicles. Key words: Dense vesicles, Golgi apparatus, legumin, pea, receptor, sorting Received 22 January 2008; Revised 22 January 2008 Accepted 23 January 2008  相似文献   

19.
The cargo in vacuolar storage protein transport vesicles is stratified   总被引:2,自引:2,他引:0  
Developing pea seeds contain two functionally distinct vacuoles--lytic vacuoles and protein storage vacuoles (PSV). The Golgi apparatus of these cells has to discriminate between proteins destined for these vacuolar compartments. Whereas it is known that sorting into the lytic vacuole is performed via the conserved clathrin-coated vesicle pathway, sorting of proteins into the protein storage vacuole remains enigmatic. In developing pea cotyledons, the major storage proteins are sorted via 'dense vesicles'. In this report we examined the sorting of a minor protein of the protein storage vacuole, the sucrose-binding-protein homolog (SBP), along the secretory pathway employing immunoelectron microscopy on cryosectioned pea cotyledons. SBP follows the same vesicular route into the PSV as the main storage proteins legumin and vicilin, via the dense-vesicles. Furthermore, legumin and SBP are sorted together into the same dense vesicle population at the stack. Although soluble cargo proteins of the dense vesicles, they show a stratified distribution in the lumen of the dense vesicles. Whereas the legumin label is equally distributed across the lumen, the SBP label is concentrated at the membrane of the vesicle. This observation is discussed with respect to a putative receptor-mediated sorting of the proteins into the dense vesicles.  相似文献   

20.
The sorting of transmembrane proteins (e.g., cell surface receptors) into the multivesicular body (MVB) pathway to the lysosomal/vacuolar lumen requires the function of the ESCRT protein complexes. The soluble coiled-coil-containing proteins Vps2, Vps20, Vps24, and Snf7 are recruited from the cytoplasm to endosomal membranes where they oligomerize into a protein complex, ESCRT-III. ESCRT-III contains two functionally distinct subcomplexes. The Vps20-Snf7 subcomplex binds to the endosomal membrane, in part via the myristoyl group of Vps20. The Vps2-Vps24 subcomplex binds to the Vps20-Snf7 complex and thereby serves to recruit additional cofactors to this site of protein sorting. We provide evidence for a role for ESCRT-III in sorting and/or concentration of MVB cargoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号