首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial cell activation in the process of tumor angiogenesis and in various aspects of vascular biology has been extensively studied. However, endothelial cells also function in other capacities, including in immune regulation. Compared to the more traditional immune regulatory populations (Th1, Th2, Treg, etc.), endothelial cells have received far less credit as being immune regulators. Their regulatory capacity is multifaceted. They are critical in both limiting and facilitating the trafficking of various immune cell populations, including T cells and dendritic cells, out of the vasculature and into tissue. They also can be induced to stimulate immune reactivity or to be immune inhibitory. In each of these parameters (trafficking, immune stimulation and immune inhibition), their role can be physiological, whereby they have an active role in maintaining health. Alternatively, their role can be pathological, whereby they contribute to disease. In theory, endothelial cells are in an ideal location to recruit cells that can mediate immune reactivity to tumor tissue. Furthermore, they can activate the immune cells as they transmigrate across the endothelium into the tumor. However, what is seen is the absence of these protective effects of endothelial cells and, instead, the endothelial cells succumb to the defense mechanisms of the tumor, resulting in their acquisition of a tumor-protective role. To understand the immune regulatory potential of endothelial cells in protecting the host versus the tumor, it is useful to better understand the other circumstances in which endothelial cells modulate immune reactivities. Which of the multitude of immune regulatory roles that endothelial cells can take on seems to rely on the type of stimulus that they are encountering. It also depends on the extent to which they can be manipulated by potential dangers to succumb and contribute toward attack on the host. This review will explore the physiological and pathological roles of endothelial cells as they regulate immune trafficking, immune stimulation and immune inhibition in a variety of conditions and will then apply this information to their role in the tumor environment. Strategies to harness the immune regulatory potential of endothelial cells are starting to emerge in the non-tumor setting. Results from such efforts are expected to be applicable to being able to skew endothelial cells from having a tumor-protective role to a host-protective role.  相似文献   

2.
After a myocardial infarction (MI), the inflammatory responses are induced and assist to repair ischaemic injury and restore tissue integrity, but excessive inflammatory processes promote abnormal cardiac remodelling and progress towards heart failure. Thus, a timely resolution of inflammation and a firmly regulated balance between regulatory and inflammatory mechanisms can be helpful. Molecular- and cellular-based approaches modulating immune response post-MI have emerged as a promising therapeutic strategy. Exosomes are essential mediators of cell-to-cell communications, which are effective in modulating immune responses and immune cells following MI, improving the repair process of infarcted myocardium and maintaining ventricular function via the crosstalk among immune cells or between immune cells and myocardial cells. The present review aimed to seek the role of immune cell-secreted exosomes in infarcted myocardium post-MI, together with mechanisms behind their repairing impact on the damaged myocardium. The exosomes we focus on are secreted by classic immune cells including macrophages, dendritic cells, regulatory T cells and CD4+ T cells; however, further research is demanded to determine the role of exosomes secreted by other immune cells, such as B cells, neutrophils and mast cells, in infarcted myocardium after MI. This knowledge can assist in the development of future therapeutic strategies, which may benefit MI patients.  相似文献   

3.
The tumor immune microenvironment (TIME) is the cellular environment in which tumors exist. This includes: surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, lymphocytes, signaling molecules, immune checkpoint proteins and the extracellular matrix (ECM). The TIME plays a critical role in cancer progression and regulation. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells. The molecules and cells in the TIME influence disease outcome by altering the balance of suppressive versus cytotoxic responses in the vicinity of the tumor. Having a better understanding of the tumor immune microenvironment will pave the way for identifying new targets for immunotherapies that promote cancer elimination.  相似文献   

4.
The secondary immune response is one of the most important features of immune systems. During the secondary immune response, the immune system can eliminate the antigen, which has been encountered by the individual during the primary invasion, more rapidly and efficiently. Both T and B memory cells contribute to the secondary response. In this paper, we only concentrate on the functions of memory B cells. We explore a model describing the memory contributed by the specific long-lived clone which is maintained by continued stimulation with a small amount of antigens sequestered on the surfaces of the follicular dendritic cells (FDC). The behavior of the secondary response provided by the model can be compared with experimental observations. The model shows that memory B cells indeed play an important role in the secondary response. It is found that a single memory cell in a long-lived clone may not be long-lived. In the present note, the influences of relevant parameters on the secondary response are also explored.  相似文献   

5.
There are several mechanisms by which human immunodeficiency virus (HIV) can mediate immune dysfunction and exhaustion during the course of infection. Chronic immune activation, after HIV infection, seems to be a key driving force of such unwanted consequences, which in turn worsens the pathological status. In such cases, the immune system is programmed to initiate responses that counteract unwanted immune activation, for example through the expansion of myeloid-derived suppressor cells (MDSCs). Although the expansion of immune suppressor cells in the setting of systemic chronic immune activation, in theory, is expected to contain immune activation, HIV infection is still associated with a remarkably high level of biomarkers of immune activation. Paradoxically, the expansion of immune suppressor cells during HIV infection can suppress potent anti-viral immune responses, which in turn contribute to viral persistence and disease progression. This indicates that HIV hijacks not only immune activation but also the immune regulatory responses to its advantage. In this work, we aim to pave the way to comprehend how such unwanted expansion of MDSCs could participate in the pathology of acute/primary and chronic HIV infection in humans, as well as simian immunodeficiency virus infection in rhesus macaques, according to the available literature.  相似文献   

6.
Immune surveillance: a balance between protumor and antitumor immunity   总被引:10,自引:0,他引:10  
Precancerous and malignant cells can induce an immune response which results in the destruction of transformed and/or malignant cells, a process known as immune surveillance. However, immune surveillance is not always successful, resulting in 'edited' tumors that have escaped immune surveillance. Immunoediting is not simply because of the absence of antitumor immunity, but is because of protumor immunity that blocks antitumor adaptive and innate responses, and promotes conditions that favor tumor progression. Several immune protumor effector mechanisms are upregulated by chronic inflammation, leading to the hypothesis that inflammation promotes carcinogenesis and tumor growth by altering the balance between protumor and antitumor immunity, thereby preventing the immune system from rejecting malignant cells, and providing a tumor-friendly environment for progressive disease.  相似文献   

7.
Pattern recognition receptors (PRRs) have been found on all cells of the body—cells of the innate and adaptive immune systems, epithelial and endothelial cells, keratinocytes, etc. PRRs can recognize specific molecular structures of microorganisms as well as allergens and other substances. The interaction with ligands of foreign microorganisms activates PRRs, after which host cells start to produce cytokines both to specifically activate innate immunity and to control adaptive immune reactions. On the othe hand, no immune response develops against microorganisms of the normal microflora. Practically, the development of all immune responses is controlled by PRRs. These responses start in epithelial cells, skin cells, and vascular epithelial cells, which meet alien first. The immune system uses these cells to control the composition of normal microflora. Accordingly, the definition of immune system functions should be complemented by the regulation of body’s microflora in addition to the protection from alien and altered self.  相似文献   

8.
In this study, we have demonstrated that antibody secretion by hybridoma cell lines can be down-regulated by idiotype-specific immune spleen cells or by nylon wool nonadherent spleen cells. This suppression of antibody secretion can be abolished by treating the idiotype-specific immune spleen cells with anti-Thy 1.2 plus complement. The hybridoma we used for most of our experiments secretes IgM specific for the cross-reacting haptens 2,4,6-trinitrophenyl (TNP) and 2,4-dinitrophenyl (DNP). Suppression was achieved by direct coculture of hybridoma cells with immune cells from animals which were injected with affinity-purified hybridoma antibody-coupled syngeneic spleen cells. The suppressed and control cultures contained similar numbers of viable hybridoma cells, suggesting that a simple cytotoxic effect is not responsible. Idiotype specificity was established in experiments showing that two idiotype immune animals immunized with antibody from two different IgM anti-TNP hybridomas could suppress the hybridoma to which they were immunized but could not affect the other hybridoma. Immune spleen cells required 3-4 days of coculture with hybridoma cells before maximum suppression was achieved. The kinetics of the response suggest that the final effector suppressor cell is generated during the coculture period and that a second signal, perhaps a product of the hybridoma cells, may be required.  相似文献   

9.
10.
The testis exhibits a distinctive form of immune privilege to protect the germ cells from the host immune attack. The property of testicular immune privilege was originally attributed to the blood-testis barrier in the seminiferous epithelium, which sequesters antigens. Recent studies have uncovered several levels of immune control besides the blood-testis barrier involved in the privilege of the testis, including the mechanisms of immune tolerance, reduced immune activation, localized active immunosuppression and antigen-specific immunoregulation. The somatic cells of the testis, especially Sertoli cells, play a key role in regulating the testicular immune privileged status. The constitutive expression of anti-inflammatory factors in the testis by somatic cells is essential for local immunosuppression. Growing evidence shows that androgens orchestrate the inhibition of proinflammatory factors and shift cytokine balance toward a tolerogenic environment. Disruption of these protective mechanisms, which may be caused by trauma, infection and genetic factors, can lead to orchitis and infertility. This review article highlights the unique immune environment of the testis, particularly focuses on the regulation of testicular immune privilege.  相似文献   

11.
淋巴细胞活化因子-3(lymphocyte activation gene-3,LAG-3)又名CD223,为一类免疫检查点受体蛋白,主要表达于活化的免疫细胞中.LAG-3分子在生理条件下可维持机体免疫稳态,在肿瘤微环境中可介导肿瘤细胞的免疫逃逸,因此,可将LAG-3作为肿瘤免疫治疗的新靶点进行研究.LAG-3阻断性抗...  相似文献   

12.
The immune system as a regulator of thyroid hormone activity   总被引:5,自引:0,他引:5  
It has been known for decades that the neuroendocrine system can both directly and indirectly influence the developmental and functional activity of the immune system. In contrast, far less is known about the extent to which the immune system collaborates in the regulation of endocrine activity. This is particularly true for immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis. Although thyroid-stimulating hormone (TSH) can be produced by many types of extra-pituitary cells--including T cells, B cells, splenic dendritic cells, bone marrow hematopoietic cells, intestinal epithelial cells, and lymphocytes--the functional significance of those TSH pathways remains elusive and historically has been largely ignored from a research perspective. There is now, however, evidence linking cells of the immune system to the regulation of thyroid hormone activity in normal physiological conditions as well as during times of immunological stress. Although the mechanisms behind this are poorly understood, they appear to reflect a process of local intrathyroidal synthesis of TSH mediated by a population of bone marrow cells that traffic to the thyroid. This hitherto undescribed cell population has the potential to microregulate thyroid hormone secretion leading to critical alterations in metabolic activity independent of pituitary TSH output, and it has expansive implications for understanding mechanisms by which the immune system may act to modulate neuroendocrine function during times of host stress. In this article, the basic underpinnings of the hematopoietic-thyroid connection are described, and a model is presented in which the immune system participates in the regulation of thyroid hormone activity during acute infection.  相似文献   

13.
Interleukin (IL-)17 is a potent proinflammatory cytokine for which an important role in the immune response against infections and in autoimmune diseases has been demonstrated. Recently, it has been shown that - in addition to mature T cells which are primed in the immune periphery - this cytokine can also be produced by T cells in the thymus, so-called naturally occurring IL-17-producing T cells (nT17 cells). In this study we demonstrate that the generation and activation of nT17 cells in the thymus do not depend on the cytokine IL-6. In addition, nT17 cells are not regulated by IL-2. These properties of nT17 cells significantly differ from induced IL-17-producing T cells primed in the immune periphery (iT17 cells). Given the strong association of IL-17-producing T cells with immune responses against infections and human autoimmune diseases, closer characterization of nT17 cells is warranted.  相似文献   

14.
The peripheral nervous system (PNS) displays structural barriers and a lack of lymphatic drainage which strongly limit the access of molecules and cells from the immune system. In addition, the PNS has the ability to set up some specific mechanisms of immune protection to limit the pathogenicity of inflammation processes following insults by pathogens or inflammatory autoimmune diseases like the Guillain-Barré syndrome. Schwann cells are among the most prominent cells which can display immune capabilities in the PNS. Numerous in vitro studies have shown that Schwann cells were indeed able to display a large repertoire of properties, ranging from the participation to antigen presentation, to secretion of pro- and anti-inflammatory cytokines, chemokines and neurotrophic factors. In vivo studies have confirmed the immune capabilities of Schwann cells. The aim of this review is to present how Schwann cells can participate to the initiation, the regulation and the termination of the immune response in the light of the recent discovery of the Schwann cell expression of purinergic P2X7 receptors.  相似文献   

15.
Murphy WJ  Nolta JA 《Cell Stem Cell》2012,10(5):485-487
Achieving immune tolerance through cell transplantation is a promising approach for treating autoimmune disease. In this issue of Cell Stem Cell, Akiyama et?al. (2012) demonstrate that human and mouse mesenchymal stem cells can induce immune suppression by attracting and killing autoreactive T?cells, which stimulates TGFb production by macrophages and generates regulatory T?cells.  相似文献   

16.

Cancer has the ability to escape the immune system using different molecular actors. Adenosine is known to be involved in mechanisms which control inflammatory reactions and prevent excessive immune response. This purine nucleoside can be translocated from the cell or produced in the extracellular space by 5′-ectonucleotidases. Once bound to its receptors on the surface of immune effector cells, adenosine activates various molecular pathways, which lead to functional inhibition of the cell or its death. Some tumors are infiltrated by the different cells of immune system but are able to use adenosine as an immunosuppressive molecule and thus inhibit immune anticancer response. This mechanism is well described on adaptive cells, but much less on innate cells. This review outlines major effects of adenosine on innate immune cells, its consequences on cancer progression, and possible ways to block the adenosine-dependent immunosuppressive effect.

  相似文献   

17.
Roles of lipoarabinomannan in the pathogenesis of tuberculosis   总被引:5,自引:0,他引:5  
Tuberculosis is a worldwide public health threat caused by Mycobacterium tuberculosis. All mycobacteria express a unique cell envelope glycolipid, lipoarabinomannan, which can be released at sites of infection. Lipoarabinomannan is a potential virulence factor which can bind to leukocytes and modulate immune responses. Here, we provide an overview of the interactions of mycobacteria and lipoarabinomannan with immune cells.  相似文献   

18.
Studies of notch signaling in immune cells have uncovered critical roles for this pathway both during the differentiation and effector function phases of immune responses. Cells of the myeloid lineage, including macrophages and dendritic cells, function as key components of innate immune defense against infection and, by acting as antigen presenting cells, can instruct cells of the adaptive immune response, specifically CD4 and CD8 T cells. Tight regulation of this functional interaction is needed to ensure a well-balanced immune response and its dysregulation may indirectly or directly cause the tissue damage characteristic of autoimmune diseases. In this review, the focus will be placed on those recent findings which support a role for notch signaling in inflammatory responses mediated by macrophages and other myeloid lineage cells, as well as peripheral T cells, and their relevance to inflammatory and autoimmne diseases.  相似文献   

19.
近二十多年,全球范围内先后爆发了由严重急性呼吸综合征冠状病毒(severe acute respiratory syndrome coronavirus,SARS-CoV)、中东呼吸综合征冠状病毒(middle east respiratory syndrome coronavirus,MERS-CoV)和严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)3种高致病性冠状病毒导致的疫情。这3种高致病性冠状病毒感染通常伴随着免疫系统功能失调,临床表现有淋巴细胞减少症、细胞因子风暴、急性呼吸系统窘迫综合征,甚至多器官衰竭而导致死亡。揭示高致病性冠状病毒在免疫应答中的作用机制,对于预防与控制冠状病毒感染具有重要意义。本文总结了SARS-CoV、MRES-CoV和SARS-CoV-2的进入机制和受体特征、固有免疫应答和适应性免疫应答失调方面的研究进展,强调了高致病性冠状病毒与宿主免疫应答之间的复杂相互作用,以期为防治冠状病毒感染提供参考。  相似文献   

20.
The central nervous system (CNS) is generally regarded as a site of immune privilege, whether the antigen presenting cells (APCs) are involved in the immune homeostasis of the CNS is largely unknown. Microglia and DCs are major APCs in physiological and pathological conditions, respectively. In this work, primary microglia and microglia-like cells obtained by co-culturing mature dendritic cells with CNS endothelial cells in vitro were functional evaluated. We found that microglia not only cannot prime CD4 T cells but also inhibit mature DCs (maDCs) initiated CD4 T cells proliferation. More importantly, endothelia from the CNS can differentiate maDCs into microglia-like cells (MLCs), which possess similar phenotype and immune inhibitory function as microglia. Soluble factors including NO lie behind the suppression of CD4 T cell proliferation induced by both microglia and MLCs. All the data indicate that under physiological conditions, microglia play important roles in maintaining immune homeostasis of the CNS, whereas in a pathological situation, the infiltrated DCs can be educated by the local microenvironment and differentiate into MLCs with inhibitory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号