首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Cyclic AMP-dependent protein kinase of Neurospora crassa   总被引:3,自引:0,他引:3  
Neurosporacrassa was surveyed for cyclic AMP-dependent protein kinase activity. Two peaks (I and II) of protein kinase activity were demonstrated by DEAE-cellulose chromatography of wild type Neurospora extracts. Peak I was stimulated by cyclic AMP, eluted below 60 mM NaCl and had high activity using histone H2B as substrate. Peak II eluted at 200–250 mM NaCl; its activity was not cyclic AMP stimulated and was highest with dephosphorylated casein as a substrate. Cyclic AMP binding to a protein associated with the protein kinase is specifically inhibited by certain cyclic AMP analogs.  相似文献   

2.
Cyclic nucleotide-independent protein kinase from pea shoots   总被引:6,自引:0,他引:6  
Protein kinase has been isolated from 6-day old etiolated pea shoots. Crude homogenates contain endogenous protein substrates for the kinase. Casein or phosvitin, but not histone, can serve as substrates for assay. DEAE-cellulose columns distinguish several forms of protein kinase activity. Cyclic nucleotides do not modify the activity of these protein kinases in vitro.  相似文献   

3.
Protein kinase activities have been compared in ovarian oocytes and in ovulated eggs of Xenopus laeyis.In ovaries and ovarian oocytes, we have detected, in addition to an already known (1) cyclic AMP stimulated phosphoprotein kinase, a second very active phosphoprotein kinase which is cAMP-independent.Besides these two activities, a third protein kinase activity becomes detectable after maturation and ovulation: it is a cAMP and cGMP-dependent histone kinase.  相似文献   

4.
Ca2+-activated, phospholipid-dependent protein kinase recently found in mammalian tissues (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y. (1979) J.Biol.Chem.254, 3692–3695) is able to phosphorylate five fractions of calf thymus histone. H1 histone serves as a preferential substrate, and approximately two moles of phosphate are incorporated into every mole of this histone. Analysis on the N-bromosuccinimide-bisected fragments of this radioactive histone has revealed that the enzyme phosphorylates preferentially seryl and threonyl residues located in the carboxyl-terminal half of this histone molecule.  相似文献   

5.
Glycogen synthase phosphatase has been purified from bovine heart. This preparation catalyzes conversion of synthase D into I and phosphorylase a into b and is able to dephosphorylate synthase D, phosphorylase a, active phosphorylase kinase, and phosphorylated histone and casein. The activity of phosphatase was assayed with synthase D, phosphorylase a, and histone as substrates after chromatography on Sephadex G-100, after sucrose gradient centrifugation, and after isoelectric focusing in a sucrose gradient. In all cases no separation of enzyme activity was observed with the above substrates. The phosphatase activity on all substrates was lost at the same rate by heat denaturation. These results indicate that this enzyme preparation contains a single phosphoprotein phosphatase which is responsible for the activity observed on the above substrates.  相似文献   

6.
A nucleosidediphosphate kinase activity (EC 2.7.4.6) which phosphorylates GDP to GTP is present in bovine brain microtubule protein prepared by cycles of assembly-disassembly. This activity persists through 5 cycles of assembly-disassembly and sediments with microtubules in sucrose density gradients, but is not associated with the tubulin dimer. It is proposed that the kinase is an integral part of the microtubule and is therefore a microtubule associated protein (MAP). Several isozymes of nucleosidediphosphate kinase exist in our preparations with a pI 7.6 form predominant. It may be speculated that this enzyme affects tubulin assembly in vivo by modulating the GTPGDP ratio in the microtubule environment.  相似文献   

7.
Treatment of Ehrlich ascites tumor cell cultures invitro with interferon induces a protein kinase activity that is activated by the polyamines, spermidine and spermine. Putrescine antagonizes the activation. The protein kinase yields a phosphorylated endogenous polypeptide of Mr 68,000–70,000. The polyamine-dependent protein kinase activity cofractionates with a double-stranded RNA-dependent protein kinase activity during affinity chromatography on poly (I) ·poly (C) - agarose or by chromatography on phosphocellulose. The double-stranded RNA-dependent protein kinase also phosphorylates an endogenous polypeptide of Mr 68,000–70,000. Unsuccessful attempts to discriminate between these two protein kinase activities on the bases of their respective capacities to be activated by either double-stranded RNA or spermidine/spermine, suggest that a single protein kinase enzyme may be activated by these strikingly dissimilar modifiers.  相似文献   

8.
Studies on the mechanism of activation of mitotic histone H1 kinase   总被引:4,自引:0,他引:4  
A chromatin-associated histone H1 kinase has been detected in synchronized Novikoff hepatoma cells. Enzyme specific activity increased 4 to 6-fold from late G-2 to mid-metaphase, then decayed exponentially (T12, 28.5 min) to the interphase level. Extracts of the mitotic kinase retained the ability to decay invitro at 37°C but not at 0°C (T12, 24 min), under conditions in which interphase activity was stable. Sedimentation rates in sucrose density gradients of interphase and mitotic enzymes (before and after decay) were identical. Purification did not alter the rate of enzyme decay. However, high ionic strength prevented decay of crude but not purified preparations of mitotic enzyme. The results are discussed in terms of an allosteric mechanism for reversible activation of enzyme activity.  相似文献   

9.
Dibucaine at 0.1 and 0.25 mM markedly inhibited epinephrine-stimulated lipolysis in rat epididymal fat cells invitro but did not inhibit protein kinase activity. At 1.0 mM, dibucaine half-maximally stimulated protein kinase of fat cells under basal conditions but did not stimulate lipolysis. It is concluded that dibucaine inhibits lipolysis by a mechanism not involving inhibition of protein kinase.  相似文献   

10.
Isolation of a complementing activity for a dna-B mutant   总被引:1,自引:0,他引:1  
A cell free extract which displays temperature sensitive DNA synthesis in the presence of single strand DNA and ATP was prepared from a dna-B mutant. Following an activity which would reverse this temperature sensitivity, a protein fraction was isolated. The absence of this fraction in a dna-B mutant indicates that this protein corresponds to the Dna-B product.  相似文献   

11.
The search for an unusual cyclic nucleotide-dependent protein kinase in nematodes represented an attempt to gain some insight into the proposed homology of the cAMP and cGMP-dependent protein kinases. Two species of protein kinase were found in high speed supernatants of the mycophagous nematode Aphelenchusavenae. One of the two, bound to DEAE cellulose and was eluted from it in a manner characteristic of the type I cAMP kinase. The enzyme had high affinity for cAMP and dissociated upon binding to the cyclic nucleotide, as judged by the fact that catalytic activity did not bind to a cAMP affinity column. The second enzyme did not bind to DEAE. Unexpectedly, it too had high affinity for cAMP and much lower affinity for cGMP (unlike the cAMPcGMP kinase from insects). The holoenzyme bound tightly to the cAMP affinity column and required a high concentration of the cyclic nucleotide for elution. This latter enzyme is the only example of a cAMP-dependent protein kinase that does not dissociate upon activation.  相似文献   

12.
A nuclear protein kinase which phosphorylates phosphoprotein 1108.4, recently identified as topoisomerase I, has been purified approximately 330 fold from a 10 mM Tris extract of human Namalwa cells. The kinase wás chromatographed on DEAE-Sephacel and further purified by affinity chromatography on phosvitin-Sepharose. The protein kinase exhibited a high affinity (Km = 0.3 μM) for topoisomerase I; its affinity for phosvitin was approximately 100 fold lower (Km = 25 μM).  相似文献   

13.
Primary, 7,12-dimethylbenz(α)anthracene (DMBA)-induced mammary carcinoma in the rat contains cyclic adenosine 3′,5′-monophosphate (cAMP)-dependent and -independent forms of protein kinase. When growth of DMBA-induced tumors was arrested by either ovariectomy or N6,O2′-dibutyryl cAMP treatment of the host, the activity of cAMP-dependent protein kinase type II markedly increased in the tumor cytosol, as shown by DEAE-cellulose chromatography and autophosphorylation. The increase in activity of cAMP-dependent protein kinase was also demonstrable in the tumor cytosol and nuclei following invitro incubation of tumor slices with cAMP. These results suggest that protein kinase type II is involved in the regression of hormone-dependent mammary tumors.  相似文献   

14.
A cyclic AMP dependent protein kinase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
A cyclic AMP-dependent protein kinase was found to appear during the time course of development of Dictyosteliumdiscoideum. No cyclic AMP dependency was observed at any stage of development in crude 110,000 X G soluble extracts. After partial purification, however, extracts from post-aggregation stages contained enzyme that was activated up to 6-fold by cyclic AMP, whereas protein kinase from earlier stages was not affected by cyclic AMP. Likewise, cyclic AMP binding activity increased from the aggregation to the slug stage of development. Approximately one-half of the total cyclic AMP binding activity co-purified with the cyclic AMP dependent protein kinase. The enzyme from Dictyostelium showed similarities to mammalian protein kinases with respect to its kinetic properties but differed in its behavior on ion-exchange chromatography.  相似文献   

15.
High mobility group (HMG) proteins 14 and 17 of rat C6 glioma cells are phosphorylated invivo on both serine and threonine. In HMG 14 about 60% of the total [32P]phosphate was identified as phosphoserine and 40% as phosphothreonine. In HMG 17, there was 88% phosphoserine and 12% phosphothreonine. Glioma cell nuclear protein kinase NII phosphorylates HMG 14 and 17 invitro on serine as well as threonine and the relative percentages of [32P]phosphoamino acid are similar to those seen invivo. Nuclear protein kinase NI and the type I and II cAMP-dependent protein kinases exhibit only minor phosphorylating activity towards HMG 14 and 17. We conclude that nuclear protein kinase NII is responsible for the phosphorylation of HMG 14 and 17 invivo.  相似文献   

16.
Incubation of rat splenic microsomes with the catalytic subunit of cyclic AMP-dependent protein kinase in the presence of Mg-ATP stimulated 2-3-fold lyso-platelet-activating factor:acetyltransferase activity. This activation was due to an increase in the Vmax of the acetylation reaction, whereas the Km for acetyl-CoA was not affected. The ATP derivative, AMPPNP, could not replace ATP and preincubation of the microsomes with the heat-stable inhibitor of protein kinase prevented the activation by Mg-ATP obtained in the presence of the protein kinase. Activation of the acetylation reaction by the protein kinase was reversible. Evidence is provided that the reversal of activation is due to dephosphorylation of the enzyme. These data provide evidence that in vitro lyso-platelet-activating factor:acetyltransferase from splenic microsomes is regulated by phosphorylation.  相似文献   

17.
Nuclear protein A24, which is composed of histone H2A and ubiquitin, a nonhistone protein, joined by an isopeptide linkage [Goldknopf and Busch (1977) Proc. Natl. Acad. Sci. USA74, 864–868], is found to be ADP-ribosylated in isolated rat liver nuclei.  相似文献   

18.
Cyclic GMP-stimulated protein kinase from pig lung has been shown to phosphorylate synthetic peptides. The rate of phosphorylation was about one order of magnitude higher than that for mixed histones at a comparable concentration, i.e. 0.1 mM. The peptides represented sites, phosphorylatable by cyclic AMP-stimulated protein kinase, in pyruvate kinase type L from rat liver, calf thymus histone H2B and the α-subunit of rabbit muscle phosphorylase b kinase. The shortest pyruvate kinase peptide that could be phosphorylated at a significant rate by cyclic GMP-stimulated protein kinase was Arg-Arg-Ala-Ser-Val-Ala, which is one amino acid residue longer than the minimal substrate of cyclic AMP-stimulated protein kinase. The apparent Km was 0.3 mM which is about 10 times higher than that with cyclic AMP-stimulated protein kinase. The Km was only slightly decreased upon successive extension of the peptide in the N-terminal direction to Gly-Val-Leu-Arg-Arg-Ala-Ser-Val-Ala. Modification of the sequence showed the importance of two adjacent arginyl residues, and substitution of arginine for the C-terminal alanine abolished the measurable activity. Thus, it has been demonstrated that there are both differences and similarities in substrate specificity of the two protein kinases.  相似文献   

19.
Activity of a penicillin-insensitive DD-endopeptidase that splits the D-alanyl-meso-2,6-diaminopimelyl linkage in peptidoglycan was demonstrated in a sonic extract of Escherichia coli. The protein with this activity was partially purified. The activity was inhibited by 3 μg per ml of deoxyribonucleic acid, suggesting that this cell wall hydrolytic enzyme is regulated by deoxyribonucleic acid or its fragments.  相似文献   

20.
Dizene dicarboxylic acid bis-(N,N-dimethylamide), commonly called diamide, is known to oxidize stoichiometrically intracellular pools of reduced glutathione and inhibit the accumulation of sugars and amino acids by rat kidney slices. Incubation of rat renal cortical slices in diamide also leads to a significant decrease in the level of endogenous protein kinase activity. The inhibition of sugar and amino acid transport and protein kinase activity by diamide is partially reversible by the addition of exogenous glutathione or other thiols. A comparison of protein kinase activity with amino acid and sugar transport at various concentrations of diamide indicates that there is a high degree of correlation between these two processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号